blob: 22936d939269802ce37683c5dd446af39a4d9f02 [file] [log] [blame]
#!/usr/bin/env python
# coding=utf-8
# The MIT License (MIT)
#
# Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import StringIO
import subprocess
# Base field Z_p
p = 2**255 - 19
def modp_inv(x):
return pow(x, p-2, p)
# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)
# Compute corresponding x-coordinate, with low bit corresponding to
# sign, or return None on failure
def recover_x(y, sign):
if y >= p:
return None
x2 = (y*y-1) * modp_inv(d*y*y+1)
if x2 == 0:
if sign:
return None
else:
return 0
# Compute square root of x2
x = pow(x2, (p+3) // 8, p)
if (x*x - x2) % p != 0:
x = x * modp_sqrt_m1 % p
if (x*x - x2) % p != 0:
return None
if (x & 1) != sign:
x = p - x
return x
# Curve constant
d = -121665 * modp_inv(121666) % p
# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
# Points are represented as affine tuples (x, y).
def point_add(P, Q):
x1, y1 = P
x2, y2 = Q
x3 = ((x1*y2 + y1*x2) * modp_inv(1 + d*x1*x2*y1*y2)) % p
y3 = ((y1*y2 + x1*x2) * modp_inv(1 - d*x1*x2*y1*y2)) % p
return (x3, y3)
# Computes Q = s * P
def point_mul(s, P):
Q = (0, 1) # Neutral element
while s > 0:
if s & 1:
Q = point_add(Q, P)
P = point_add(P, P)
s >>= 1
return Q
def to_bytes(x):
ret = bytearray(32)
for i in range(len(ret)):
ret[i] = x % 256
x >>= 8
assert x == 0
return ret
def to_ge_precomp(P):
# typedef struct {
# fe_loose yplusx;
# fe_loose yminusx;
# fe_loose xy2d;
# } ge_precomp;
x, y = P
return ((y + x) % p, (y - x) % p, (x * y * 2 * d) % p)
def to_base_25_5(x):
limbs = (26, 25, 26, 25, 26, 25, 26, 25, 26, 25)
ret = []
for l in limbs:
ret.append(x & ((1<<l) - 1))
x >>= l
assert x == 0
return ret
def to_base_51(x):
ret = []
for _ in range(5):
ret.append(x & ((1<<51) - 1))
x >>= 51
assert x == 0
return ret
def to_literal(x):
ret = "{{\n#if defined(BORINGSSL_CURVE25519_64BIT)\n"
ret += ", ".join(map(str, to_base_51(x)))
ret += "\n#else\n"
ret += ", ".join(map(str, to_base_25_5(x)))
ret += "\n#endif\n}}"
return ret
def main():
d2 = (2 * d) % p
small_precomp = bytearray()
for i in range(1, 16):
s = (i&1) | ((i&2) << (64-1)) | ((i&4) << (128-2)) | ((i&8) << (192-3))
P = point_mul(s, (g_x, g_y))
small_precomp += to_bytes(P[0])
small_precomp += to_bytes(P[1])
large_precomp = []
for i in range(32):
large_precomp.append([])
for j in range(8):
P = point_mul((j + 1) << (i * 8), (g_x, g_y))
large_precomp[-1].append(to_ge_precomp(P))
bi_precomp = []
for i in range(8):
P = point_mul(2*i + 1, (g_x, g_y))
bi_precomp.append(to_ge_precomp(P))
buf = StringIO.StringIO()
buf.write("""// The MIT License (MIT)
//
// Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file).
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// This file is generated from
// ./make_curve25519_tables.py > curve25519_tables.h
static const fe d = """)
buf.write(to_literal(d))
buf.write(""";
static const fe sqrtm1 = """)
buf.write(to_literal(modp_sqrt_m1))
buf.write(""";
static const fe d2 = """)
buf.write(to_literal(d2))
buf.write(""";
#if defined(OPENSSL_SMALL)
// This block of code replaces the standard base-point table with a much smaller
// one. The standard table is 30,720 bytes while this one is just 960.
//
// This table contains 15 pairs of group elements, (x, y), where each field
// element is serialised with |fe_tobytes|. If |i| is the index of the group
// element then consider i+1 as a four-bit number: (i₀, i₁, i₂, i₃) (where i₀
// is the most significant bit). The value of the group element is then:
// (i₀×2^192 + i₁×2^128 + i₂×2^64 + i₃)G, where G is the generator.
static const uint8_t k25519SmallPrecomp[15 * 2 * 32] = {""")
for i, b in enumerate(small_precomp):
buf.write("0x%02x, " % b)
buf.write("""
};
#else
// k25519Precomp[i][j] = (j+1)*256^i*B
static const ge_precomp k25519Precomp[32][8] = {
""")
for child in large_precomp:
buf.write("{\n")
for val in child:
buf.write("{\n")
for term in val:
buf.write(to_literal(term) + ",\n")
buf.write("},\n")
buf.write("},\n")
buf.write("""};
#endif // OPENSSL_SMALL
// Bi[i] = (2*i+1)*B
static const ge_precomp Bi[8] = {
""")
for val in bi_precomp:
buf.write("{\n")
for term in val:
buf.write(to_literal(term) + ",\n")
buf.write("},\n")
buf.write("""};
""")
proc = subprocess.Popen(["clang-format"], stdin=subprocess.PIPE)
proc.communicate(buf.getvalue())
if __name__ == "__main__":
main()