| #!/usr/bin/env python |
| # coding=utf-8 |
| # The MIT License (MIT) |
| # |
| # Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). |
| # |
| # Permission is hereby granted, free of charge, to any person obtaining a copy |
| # of this software and associated documentation files (the "Software"), to deal |
| # in the Software without restriction, including without limitation the rights |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| # copies of the Software, and to permit persons to whom the Software is |
| # furnished to do so, subject to the following conditions: |
| # |
| # The above copyright notice and this permission notice shall be included in all |
| # copies or substantial portions of the Software. |
| # |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| # SOFTWARE. |
| |
| import StringIO |
| import subprocess |
| |
| # Base field Z_p |
| p = 2**255 - 19 |
| |
| def modp_inv(x): |
| return pow(x, p-2, p) |
| |
| # Square root of -1 |
| modp_sqrt_m1 = pow(2, (p-1) // 4, p) |
| |
| # Compute corresponding x-coordinate, with low bit corresponding to |
| # sign, or return None on failure |
| def recover_x(y, sign): |
| if y >= p: |
| return None |
| x2 = (y*y-1) * modp_inv(d*y*y+1) |
| if x2 == 0: |
| if sign: |
| return None |
| else: |
| return 0 |
| |
| # Compute square root of x2 |
| x = pow(x2, (p+3) // 8, p) |
| if (x*x - x2) % p != 0: |
| x = x * modp_sqrt_m1 % p |
| if (x*x - x2) % p != 0: |
| return None |
| |
| if (x & 1) != sign: |
| x = p - x |
| return x |
| |
| # Curve constant |
| d = -121665 * modp_inv(121666) % p |
| |
| # Base point |
| g_y = 4 * modp_inv(5) % p |
| g_x = recover_x(g_y, 0) |
| |
| # Points are represented as affine tuples (x, y). |
| |
| def point_add(P, Q): |
| x1, y1 = P |
| x2, y2 = Q |
| x3 = ((x1*y2 + y1*x2) * modp_inv(1 + d*x1*x2*y1*y2)) % p |
| y3 = ((y1*y2 + x1*x2) * modp_inv(1 - d*x1*x2*y1*y2)) % p |
| return (x3, y3) |
| |
| # Computes Q = s * P |
| def point_mul(s, P): |
| Q = (0, 1) # Neutral element |
| while s > 0: |
| if s & 1: |
| Q = point_add(Q, P) |
| P = point_add(P, P) |
| s >>= 1 |
| return Q |
| |
| def to_bytes(x): |
| ret = bytearray(32) |
| for i in range(len(ret)): |
| ret[i] = x % 256 |
| x >>= 8 |
| assert x == 0 |
| return ret |
| |
| def to_ge_precomp(P): |
| # typedef struct { |
| # fe_loose yplusx; |
| # fe_loose yminusx; |
| # fe_loose xy2d; |
| # } ge_precomp; |
| x, y = P |
| return ((y + x) % p, (y - x) % p, (x * y * 2 * d) % p) |
| |
| def to_base_25_5(x): |
| limbs = (26, 25, 26, 25, 26, 25, 26, 25, 26, 25) |
| ret = [] |
| for l in limbs: |
| ret.append(x & ((1<<l) - 1)) |
| x >>= l |
| assert x == 0 |
| return ret |
| |
| def to_base_51(x): |
| ret = [] |
| for _ in range(5): |
| ret.append(x & ((1<<51) - 1)) |
| x >>= 51 |
| assert x == 0 |
| return ret |
| |
| def to_literal(x): |
| ret = "{{\n#if defined(BORINGSSL_CURVE25519_64BIT)\n" |
| ret += ", ".join(map(str, to_base_51(x))) |
| ret += "\n#else\n" |
| ret += ", ".join(map(str, to_base_25_5(x))) |
| ret += "\n#endif\n}}" |
| return ret |
| |
| def main(): |
| d2 = (2 * d) % p |
| |
| small_precomp = bytearray() |
| for i in range(1, 16): |
| s = (i&1) | ((i&2) << (64-1)) | ((i&4) << (128-2)) | ((i&8) << (192-3)) |
| P = point_mul(s, (g_x, g_y)) |
| small_precomp += to_bytes(P[0]) |
| small_precomp += to_bytes(P[1]) |
| |
| large_precomp = [] |
| for i in range(32): |
| large_precomp.append([]) |
| for j in range(8): |
| P = point_mul((j + 1) << (i * 8), (g_x, g_y)) |
| large_precomp[-1].append(to_ge_precomp(P)) |
| |
| bi_precomp = [] |
| for i in range(8): |
| P = point_mul(2*i + 1, (g_x, g_y)) |
| bi_precomp.append(to_ge_precomp(P)) |
| |
| |
| buf = StringIO.StringIO() |
| buf.write("""// The MIT License (MIT) |
| // |
| // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| // SOFTWARE. |
| |
| // This file is generated from |
| // ./make_curve25519_tables.py > curve25519_tables.h |
| |
| |
| static const fe d = """) |
| buf.write(to_literal(d)) |
| buf.write("""; |
| |
| static const fe sqrtm1 = """) |
| buf.write(to_literal(modp_sqrt_m1)) |
| buf.write("""; |
| |
| static const fe d2 = """) |
| buf.write(to_literal(d2)) |
| buf.write("""; |
| |
| #if defined(OPENSSL_SMALL) |
| |
| // This block of code replaces the standard base-point table with a much smaller |
| // one. The standard table is 30,720 bytes while this one is just 960. |
| // |
| // This table contains 15 pairs of group elements, (x, y), where each field |
| // element is serialised with |fe_tobytes|. If |i| is the index of the group |
| // element then consider i+1 as a four-bit number: (i₀, i₁, i₂, i₃) (where i₀ |
| // is the most significant bit). The value of the group element is then: |
| // (i₀×2^192 + i₁×2^128 + i₂×2^64 + i₃)G, where G is the generator. |
| static const uint8_t k25519SmallPrecomp[15 * 2 * 32] = {""") |
| for i, b in enumerate(small_precomp): |
| buf.write("0x%02x, " % b) |
| buf.write(""" |
| }; |
| |
| #else |
| |
| // k25519Precomp[i][j] = (j+1)*256^i*B |
| static const ge_precomp k25519Precomp[32][8] = { |
| """) |
| for child in large_precomp: |
| buf.write("{\n") |
| for val in child: |
| buf.write("{\n") |
| for term in val: |
| buf.write(to_literal(term) + ",\n") |
| buf.write("},\n") |
| buf.write("},\n") |
| buf.write("""}; |
| |
| #endif // OPENSSL_SMALL |
| |
| // Bi[i] = (2*i+1)*B |
| static const ge_precomp Bi[8] = { |
| """) |
| for val in bi_precomp: |
| buf.write("{\n") |
| for term in val: |
| buf.write(to_literal(term) + ",\n") |
| buf.write("},\n") |
| buf.write("""}; |
| """) |
| |
| proc = subprocess.Popen(["clang-format"], stdin=subprocess.PIPE) |
| proc.communicate(buf.getvalue()) |
| |
| if __name__ == "__main__": |
| main() |