| /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the Eric Young open source |
| * license provided above. |
| * |
| * The binary polynomial arithmetic software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #ifndef OPENSSL_HEADER_BN_H |
| #define OPENSSL_HEADER_BN_H |
| |
| #include <openssl/base.h> |
| #include <openssl/thread.h> |
| |
| #include <inttypes.h> // for PRIu64 and friends |
| #include <stdio.h> // for FILE* |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| // BN provides support for working with arbitrary sized integers. For example, |
| // although the largest integer supported by the compiler might be 64 bits, BN |
| // will allow you to work with numbers until you run out of memory. |
| |
| |
| // BN_ULONG is the native word size when working with big integers. |
| // |
| // Note: on some platforms, inttypes.h does not define print format macros in |
| // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which |
| // was never adopted in any C++ standard and explicitly overruled in C++11. As |
| // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself. |
| // Projects which use |BN_*_FMT*| with outdated C headers may need to define it |
| // externally. |
| #if defined(OPENSSL_64_BIT) |
| #define BN_ULONG uint64_t |
| #define BN_BITS2 64 |
| #define BN_DEC_FMT1 "%" PRIu64 |
| #define BN_DEC_FMT2 "%019" PRIu64 |
| #define BN_HEX_FMT1 "%" PRIx64 |
| #define BN_HEX_FMT2 "%016" PRIx64 |
| #elif defined(OPENSSL_32_BIT) |
| #define BN_ULONG uint32_t |
| #define BN_BITS2 32 |
| #define BN_DEC_FMT1 "%" PRIu32 |
| #define BN_DEC_FMT2 "%09" PRIu32 |
| #define BN_HEX_FMT1 "%" PRIx32 |
| #define BN_HEX_FMT2 "%08" PRIx32 |
| #else |
| #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" |
| #endif |
| |
| |
| // Allocation and freeing. |
| |
| // BN_new creates a new, allocated BIGNUM and initialises it. |
| OPENSSL_EXPORT BIGNUM *BN_new(void); |
| |
| // BN_init initialises a stack allocated |BIGNUM|. |
| OPENSSL_EXPORT void BN_init(BIGNUM *bn); |
| |
| // BN_free frees the data referenced by |bn| and, if |bn| was originally |
| // allocated on the heap, frees |bn| also. |
| OPENSSL_EXPORT void BN_free(BIGNUM *bn); |
| |
| // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was |
| // originally allocated on the heap, frees |bn| also. |
| OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn); |
| |
| // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the |
| // allocated BIGNUM on success or NULL otherwise. |
| OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src); |
| |
| // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation |
| // failure. |
| OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src); |
| |
| // BN_clear sets |bn| to zero and erases the old data. |
| OPENSSL_EXPORT void BN_clear(BIGNUM *bn); |
| |
| // BN_value_one returns a static BIGNUM with value 1. |
| OPENSSL_EXPORT const BIGNUM *BN_value_one(void); |
| |
| |
| // Basic functions. |
| |
| // BN_num_bits returns the minimum number of bits needed to represent the |
| // absolute value of |bn|. |
| OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn); |
| |
| // BN_num_bytes returns the minimum number of bytes needed to represent the |
| // absolute value of |bn|. |
| OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn); |
| |
| // BN_zero sets |bn| to zero. |
| OPENSSL_EXPORT void BN_zero(BIGNUM *bn); |
| |
| // BN_one sets |bn| to one. It returns one on success or zero on allocation |
| // failure. |
| OPENSSL_EXPORT int BN_one(BIGNUM *bn); |
| |
| // BN_set_word sets |bn| to |value|. It returns one on success or zero on |
| // allocation failure. |
| OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value); |
| |
| // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on |
| // allocation failure. |
| OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value); |
| |
| // BN_set_negative sets the sign of |bn|. |
| OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign); |
| |
| // BN_is_negative returns one if |bn| is negative and zero otherwise. |
| OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn); |
| |
| |
| // Conversion functions. |
| |
| // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as |
| // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh |
| // |BIGNUM| is allocated and returned. It returns NULL on allocation |
| // failure. |
| OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret); |
| |
| // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian |
| // integer, which must have |BN_num_bytes| of space available. It returns the |
| // number of bytes written. Note this function leaks the magnitude of |in|. If |
| // |in| is secret, use |BN_bn2bin_padded| instead. |
| OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out); |
| |
| // BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as |
| // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh |
| // |BIGNUM| is allocated and returned. It returns NULL on allocation |
| // failure. |
| OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret); |
| |
| // BN_bn2le_padded serialises the absolute value of |in| to |out| as a |
| // little-endian integer, which must have |len| of space available, padding |
| // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|, |
| // the function fails and returns 0. Otherwise, it returns 1. |
| OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in); |
| |
| // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a |
| // big-endian integer. The integer is padded with leading zeros up to size |
| // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and |
| // returns 0. Otherwise, it returns 1. |
| OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in); |
| |
| // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. |
| OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in); |
| |
| // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex |
| // representation of |bn|. If |bn| is negative, the first char in the resulting |
| // string will be '-'. Returns NULL on allocation failure. |
| OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn); |
| |
| // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by |
| // a '-' to indicate a negative number and may contain trailing, non-hex data. |
| // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and |
| // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and |
| // updates |*outp|. It returns the number of bytes of |in| processed or zero on |
| // error. |
| OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in); |
| |
| // BN_bn2dec returns an allocated string that contains a NUL-terminated, |
| // decimal representation of |bn|. If |bn| is negative, the first char in the |
| // resulting string will be '-'. Returns NULL on allocation failure. |
| OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a); |
| |
| // BN_dec2bn parses the leading decimal number from |in|, which may be |
| // proceeded by a '-' to indicate a negative number and may contain trailing, |
| // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the |
| // decimal number and stores it in |*outp|. If |*outp| is NULL then it |
| // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes |
| // of |in| processed or zero on error. |
| OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in); |
| |
| // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in| |
| // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A |
| // leading '-' is still permitted and comes before the optional 0X/0x. It |
| // returns one on success or zero on error. |
| OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in); |
| |
| // BN_print writes a hex encoding of |a| to |bio|. It returns one on success |
| // and zero on error. |
| OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a); |
| |
| // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. |
| OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a); |
| |
| // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is |
| // too large to be represented as a single word, the maximum possible value |
| // will be returned. |
| OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn); |
| |
| // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and |
| // returns one. If |bn| is too large to be represented as a |uint64_t|, it |
| // returns zero. |
| OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out); |
| |
| |
| // ASN.1 functions. |
| |
| // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes |
| // the result to |ret|. It returns one on success and zero on failure. |
| OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret); |
| |
| // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the |
| // result to |cbb|. It returns one on success and zero on failure. |
| OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn); |
| |
| |
| // BIGNUM pools. |
| // |
| // Certain BIGNUM operations need to use many temporary variables and |
| // allocating and freeing them can be quite slow. Thus such operations typically |
| // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx| |
| // argument to a public function may be NULL, in which case a local |BN_CTX| |
| // will be created just for the lifetime of that call. |
| // |
| // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called |
| // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made |
| // before calling any other functions that use the |ctx| as an argument. |
| // |
| // Finally, |BN_CTX_end| must be called before returning from the function. |
| // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from |
| // |BN_CTX_get| become invalid. |
| |
| // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. |
| OPENSSL_EXPORT BN_CTX *BN_CTX_new(void); |
| |
| // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx| |
| // itself. |
| OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx); |
| |
| // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future |
| // calls to |BN_CTX_get|. |
| OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx); |
| |
| // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once |
| // |BN_CTX_get| has returned NULL, all future calls will also return NULL until |
| // |BN_CTX_end| is called. |
| OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx); |
| |
| // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the |
| // matching |BN_CTX_start| call. |
| OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx); |
| |
| |
| // Simple arithmetic |
| |
| // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a| |
| // or |b|. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may |
| // be the same pointer as either |a| or |b|. It returns one on success and zero |
| // on allocation failure. |
| OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. |
| OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w); |
| |
| // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a| |
| // or |b|. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers, |
| // |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns |
| // one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on |
| // allocation failure. |
| OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w); |
| |
| // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or |
| // |b|. Returns one on success and zero otherwise. |
| OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx); |
| |
| // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on |
| // allocation failure. |
| OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w); |
| |
| // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as |
| // |a|. Returns one on success and zero otherwise. This is more efficient than |
| // BN_mul(r, a, a, ctx). |
| OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
| |
| // BN_div divides |numerator| by |divisor| and places the result in |quotient| |
| // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in |
| // which case the respective value is not returned. The result is rounded |
| // towards zero; thus if |numerator| is negative, the remainder will be zero or |
| // negative. It returns one on success or zero on error. |
| OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, |
| const BIGNUM *numerator, const BIGNUM *divisor, |
| BN_CTX *ctx); |
| |
| // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the |
| // remainder or (BN_ULONG)-1 on error. |
| OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor); |
| |
| // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the |
| // square root of |in|, using |ctx|. It returns one on success or zero on |
| // error. Negative numbers and non-square numbers will result in an error with |
| // appropriate errors on the error queue. |
| OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx); |
| |
| |
| // Comparison functions |
| |
| // BN_cmp returns a value less than, equal to or greater than zero if |a| is |
| // less than, equal to or greater than |b|, respectively. |
| OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_cmp_word is like |BN_cmp| except it takes its second argument as a |
| // |BN_ULONG| instead of a |BIGNUM|. |
| OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b); |
| |
| // BN_ucmp returns a value less than, equal to or greater than zero if the |
| // absolute value of |a| is less than, equal to or greater than the absolute |
| // value of |b|, respectively. |
| OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise. |
| // It takes an amount of time dependent on the sizes of |a| and |b|, but |
| // independent of the contents (including the signs) of |a| and |b|. |
| OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b); |
| |
| // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero |
| // otherwise. |
| OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w); |
| |
| // BN_is_zero returns one if |bn| is zero and zero otherwise. |
| OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn); |
| |
| // BN_is_one returns one if |bn| equals one and zero otherwise. |
| OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn); |
| |
| // BN_is_word returns one if |bn| is exactly |w| and zero otherwise. |
| OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w); |
| |
| // BN_is_odd returns one if |bn| is odd and zero otherwise. |
| OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn); |
| |
| // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise. |
| OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a); |
| |
| |
| // Bitwise operations. |
| |
| // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the |
| // same |BIGNUM|. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); |
| |
| // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same |
| // pointer. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a); |
| |
| // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same |
| // pointer. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); |
| |
| // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same |
| // pointer. It returns one on success and zero on allocation failure. |
| OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a); |
| |
| // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a| |
| // is 2 then setting bit zero will make it 3. It returns one on success or zero |
| // on allocation failure. |
| OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n); |
| |
| // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if |
| // |a| is 3, clearing bit zero will make it two. It returns one on success or |
| // zero on allocation failure. |
| OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n); |
| |
| // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists |
| // and is set. Otherwise, it returns zero. |
| OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n); |
| |
| // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one |
| // on success or zero if |n| is negative. |
| // |
| // This differs from OpenSSL which additionally returns zero if |a|'s word |
| // length is less than or equal to |n|, rounded down to a number of words. Note |
| // word size is platform-dependent, so this behavior is also difficult to rely |
| // on in OpenSSL and not very useful. |
| OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n); |
| |
| // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or |
| // the number of factors of two which divide it. It returns zero if |bn| is |
| // zero. |
| OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn); |
| |
| |
| // Modulo arithmetic. |
| |
| // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. |
| OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); |
| |
| // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and |
| // 0 on error. |
| OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); |
| |
| // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive. |
| // It returns 1 on success and 0 on error. |
| OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); |
| |
| // BN_mod is a helper macro that calls |BN_div| and discards the quotient. |
| #define BN_mod(rem, numerator, divisor, ctx) \ |
| BN_div(NULL, (rem), (numerator), (divisor), (ctx)) |
| |
| // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <= |
| // |rem| < |divisor| is always true. It returns one on success and zero on |
| // error. |
| OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, |
| const BIGNUM *divisor, BN_CTX *ctx); |
| |
| // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero |
| // on error. |
| OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be |
| // non-negative and less than |m|. |
| OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *m); |
| |
| // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero |
| // on error. |
| OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be |
| // non-negative and less than |m|. |
| OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *m); |
| |
| // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero |
| // on error. |
| OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero |
| // on error. |
| OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
| BN_CTX *ctx); |
| |
| // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the |
| // same pointer. It returns one on success and zero on error. |
| OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be |
| // non-negative and less than |m|. |
| OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, |
| const BIGNUM *m); |
| |
| // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the |
| // same pointer. It returns one on success and zero on error. |
| OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
| BN_CTX *ctx); |
| |
| // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be |
| // non-negative and less than |m|. |
| OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *m); |
| |
| // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that |
| // r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is |
| // not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to |
| // the error queue. |
| OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx); |
| |
| |
| // Random and prime number generation. |
| |
| // The following are values for the |top| parameter of |BN_rand|. |
| #define BN_RAND_TOP_ANY (-1) |
| #define BN_RAND_TOP_ONE 0 |
| #define BN_RAND_TOP_TWO 1 |
| |
| // The following are values for the |bottom| parameter of |BN_rand|. |
| #define BN_RAND_BOTTOM_ANY 0 |
| #define BN_RAND_BOTTOM_ODD 1 |
| |
| // BN_rand sets |rnd| to a random number of length |bits|. It returns one on |
| // success and zero otherwise. |
| // |
| // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the |
| // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two |
| // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra |
| // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most |
| // significant bits randomly ended up as zeros. |
| // |
| // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If |
| // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If |
| // |BN_RAND_BOTTOM_ANY|, no extra action will be taken. |
| OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| |
| // BN_pseudo_rand is an alias for |BN_rand|. |
| OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); |
| |
| // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set |
| // to zero and |max_exclusive| set to |range|. |
| OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); |
| |
| // BN_rand_range_ex sets |rnd| to a random value in |
| // [min_inclusive..max_exclusive). It returns one on success and zero |
| // otherwise. |
| OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, |
| const BIGNUM *max_exclusive); |
| |
| // BN_pseudo_rand_range is an alias for BN_rand_range. |
| OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); |
| |
| #define BN_GENCB_GENERATED 0 |
| #define BN_GENCB_PRIME_TEST 1 |
| |
| // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by |
| // generation functions that can take a very long time to complete. Use |
| // |BN_GENCB_set| to initialise a |BN_GENCB| structure. |
| // |
| // The callback receives the address of that |BN_GENCB| structure as its last |
| // argument and the user is free to put an arbitrary pointer in |arg|. The other |
| // arguments are set as follows: |
| // event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime |
| // number. |
| // event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality |
| // checks. |
| // event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished. |
| // |
| // The callback can return zero to abort the generation progress or one to |
| // allow it to continue. |
| // |
| // When other code needs to call a BN generation function it will often take a |
| // BN_GENCB argument and may call the function with other argument values. |
| struct bn_gencb_st { |
| void *arg; // callback-specific data |
| int (*callback)(int event, int n, struct bn_gencb_st *); |
| }; |
| |
| // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to |
| // |arg|. |
| OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, |
| int (*f)(int event, int n, BN_GENCB *), |
| void *arg); |
| |
| // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of |
| // the callback, or 1 if |callback| is NULL. |
| OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n); |
| |
| // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe |
| // is non-zero then the prime will be such that (ret-1)/2 is also a prime. |
| // (This is needed for Diffie-Hellman groups to ensure that the only subgroups |
| // are of size 2 and (p-1)/2.). |
| // |
| // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| == |
| // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| % |
| // |add| == 1.) |
| // |
| // If |cb| is not NULL, it will be called during processing to give an |
| // indication of progress. See the comments for |BN_GENCB|. It returns one on |
| // success and zero otherwise. |
| OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, |
| const BIGNUM *add, const BIGNUM *rem, |
| BN_GENCB *cb); |
| |
| // BN_prime_checks is magic value that can be used as the |checks| argument to |
| // the primality testing functions in order to automatically select a number of |
| // Miller-Rabin checks that gives a false positive rate of ~2^{-80}. |
| #define BN_prime_checks 0 |
| |
| // bn_primality_result_t enumerates the outcomes of primality-testing. |
| enum bn_primality_result_t { |
| bn_probably_prime, |
| bn_composite, |
| bn_non_prime_power_composite, |
| }; |
| |
| // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime |
| // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with |
| // |iterations| iterations and returns the result in |out_result|. Enhanced |
| // Miller-Rabin tests primality for odd integers greater than 3, returning |
| // |bn_probably_prime| if the number is probably prime, |
| // |bn_non_prime_power_composite| if the number is a composite that is not the |
| // power of a single prime, and |bn_composite| otherwise. It returns one on |
| // success and zero on failure. If |cb| is not NULL, then it is called during |
| // each iteration of the primality test. |
| // |
| // If |iterations| is |BN_prime_checks|, then a value that results in a false |
| // positive rate lower than the number-field sieve security level of |w| is |
| // used, provided |w| was generated randomly. |BN_prime_checks| is not suitable |
| // for inputs potentially crafted by an adversary. |
| OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test( |
| enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations, |
| BN_CTX *ctx, BN_GENCB *cb); |
| |
| // BN_primality_test sets |*is_probably_prime| to one if |candidate| is |
| // probably a prime number by the Miller-Rabin test or zero if it's certainly |
| // not. |
| // |
| // If |do_trial_division| is non-zero then |candidate| will be tested against a |
| // list of small primes before Miller-Rabin tests. The probability of this |
| // function returning a false positive is 2^{2*checks}. If |checks| is |
| // |BN_prime_checks| then a value that results in a false positive rate lower |
| // than the number-field sieve security level of |candidate| is used, provided |
| // |candidate| was generated randomly. |BN_prime_checks| is not suitable for |
| // inputs potentially crafted by an adversary. |
| // |
| // If |cb| is not NULL then it is called during the checking process. See the |
| // comment above |BN_GENCB|. |
| // |
| // The function returns one on success and zero on error. |
| OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, |
| const BIGNUM *candidate, int checks, |
| BN_CTX *ctx, int do_trial_division, |
| BN_GENCB *cb); |
| |
| // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime |
| // number by the Miller-Rabin test, zero if it's certainly not and -1 on error. |
| // |
| // If |do_trial_division| is non-zero then |candidate| will be tested against a |
| // list of small primes before Miller-Rabin tests. The probability of this |
| // function returning one when |candidate| is composite is 2^{2*checks}. If |
| // |checks| is |BN_prime_checks| then a value that results in a false positive |
| // rate lower than the number-field sieve security level of |candidate| is used, |
| // provided |candidate| was generated randomly. |BN_prime_checks| is not |
| // suitable for inputs potentially crafted by an adversary. |
| // |
| // If |cb| is not NULL then it is called during the checking process. See the |
| // comment above |BN_GENCB|. |
| // |
| // WARNING: deprecated. Use |BN_primality_test|. |
| OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, |
| BN_CTX *ctx, int do_trial_division, |
| BN_GENCB *cb); |
| |
| // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with |
| // |do_trial_division| set to zero. |
| // |
| // WARNING: deprecated: Use |BN_primality_test|. |
| OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, |
| BN_CTX *ctx, BN_GENCB *cb); |
| |
| |
| // Number theory functions |
| |
| // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero |
| // otherwise. |
| OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx); |
| |
| // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a |
| // fresh BIGNUM is allocated. It returns the result or NULL on error. |
| // |
| // If |n| is even then the operation is performed using an algorithm that avoids |
| // some branches but which isn't constant-time. This function shouldn't be used |
| // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is |
| // guaranteed to be prime, use |
| // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking |
| // advantage of Fermat's Little Theorem. |
| OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, |
| const BIGNUM *n, BN_CTX *ctx); |
| |
| // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the |
| // Montgomery modulus for |mont|. |a| must be non-negative and must be less |
| // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random |
| // value) to protect it against side-channel attacks. On failure, if the failure |
| // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be |
| // set to one; otherwise it will be set to zero. |
| // |
| // Note this function may incorrectly report |a| has no inverse if the random |
| // blinding value has no inverse. It should only be used when |n| has few |
| // non-invertible elements, such as an RSA modulus. |
| int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BN_MONT_CTX *mont, BN_CTX *ctx); |
| |
| // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be |
| // non-negative and must be less than |n|. |n| must be odd. This function |
| // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead. |
| // Or, if |n| is guaranteed to be prime, use |
| // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking |
| // advantage of Fermat's Little Theorem. It returns one on success or zero on |
| // failure. On failure, if the failure was caused by |a| having no inverse mod |
| // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to |
| // zero. |
| int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BIGNUM *n, BN_CTX *ctx); |
| |
| |
| // Montgomery arithmetic. |
| |
| // BN_MONT_CTX contains the precomputed values needed to work in a specific |
| // Montgomery domain. |
| |
| // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus, |
| // |mod| or NULL on error. Note this function assumes |mod| is public. |
| OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, |
| BN_CTX *ctx); |
| |
| // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but |
| // treats |mod| as secret. |
| OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, |
| BN_CTX *ctx); |
| |
| // BN_MONT_CTX_free frees memory associated with |mont|. |
| OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont); |
| |
| // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or |
| // NULL on error. |
| OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, |
| const BN_MONT_CTX *from); |
| |
| // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If |
| // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It |
| // then stores it as |*pmont|. It returns one on success and zero on error. Note |
| // this function assumes |mod| is public. |
| // |
| // If |*pmont| is already non-NULL then it does nothing and returns one. |
| int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, |
| const BIGNUM *mod, BN_CTX *bn_ctx); |
| |
| // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is |
| // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It |
| // returns one on success or zero on error. |
| OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, |
| const BN_MONT_CTX *mont, BN_CTX *ctx); |
| |
| // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out |
| // of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where |
| // |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n) |
| // are valid. This function returns one on success or zero on error. |
| OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, |
| const BN_MONT_CTX *mont, BN_CTX *ctx); |
| |
| // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain. |
| // Both |a| and |b| must already be in the Montgomery domain (by |
| // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the |
| // range [0, n), where |n| is the Montgomery modulus. It returns one on success |
| // or zero on error. |
| OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, |
| const BN_MONT_CTX *mont, BN_CTX *ctx); |
| |
| |
| // Exponentiation. |
| |
| // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply |
| // algorithm that leaks side-channel information. It returns one on success or |
| // zero otherwise. |
| OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx); |
| |
| // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best |
| // algorithm for the values provided. It returns one on success or zero |
| // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the |
| // exponent is secret. |
| OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx); |
| |
| // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and |
| // requires 0 <= |a| < |m|. |
| OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont); |
| |
| // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and |
| // |m| as secret and requires 0 <= |a| < |m|. |
| OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, |
| const BIGNUM *p, const BIGNUM *m, |
| BN_CTX *ctx, |
| const BN_MONT_CTX *mont); |
| |
| |
| // Deprecated functions |
| |
| // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists |
| // of the number's length in bytes represented as a 4-byte big-endian number, |
| // and the number itself in big-endian format, where the most significant bit |
| // signals a negative number. (The representation of numbers with the MSB set is |
| // prefixed with null byte). |out| must have sufficient space available; to |
| // find the needed amount of space, call the function with |out| set to NULL. |
| OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out); |
| |
| // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The |
| // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|. |
| // |
| // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise |
| // |out| is reused and returned. On error, NULL is returned and the error queue |
| // is updated. |
| OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out); |
| |
| // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is |
| // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success |
| // or zero otherwise. |
| OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont); |
| |
| // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success |
| // or zero otherwise. |
| OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, |
| const BIGNUM *p1, const BIGNUM *a2, |
| const BIGNUM *p2, const BIGNUM *m, |
| BN_CTX *ctx, const BN_MONT_CTX *mont); |
| |
| // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure. |
| // Use |BN_MONT_CTX_new_for_modulus| instead. |
| OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void); |
| |
| // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It |
| // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus| |
| // instead. |
| OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, |
| BN_CTX *ctx); |
| |
| // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success |
| // and -1 on error. |
| // |
| // Use |BN_bn2bin_padded| instead. It is |size_t|-clean. |
| OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len); |
| |
| |
| // Private functions |
| |
| struct bignum_st { |
| // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in |
| // little-endian order. This stores the absolute value of the number. |
| BN_ULONG *d; |
| // width is the number of elements of |d| which are valid. This value is not |
| // necessarily minimal; the most-significant words of |d| may be zero. |
| // |width| determines a potentially loose upper-bound on the absolute value |
| // of the |BIGNUM|. |
| // |
| // Functions taking |BIGNUM| inputs must compute the same answer for all |
| // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other |
| // helpers may be used to recover the minimal width, provided it is not |
| // secret. If it is secret, use a different algorithm. Functions may output |
| // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but |
| // those which cause widths to unboundedly grow beyond the minimal value |
| // should be documented such. |
| // |
| // Note this is different from historical |BIGNUM| semantics. |
| int width; |
| // dmax is number of elements of |d| which are allocated. |
| int dmax; |
| // neg is one if the number if negative and zero otherwise. |
| int neg; |
| // flags is a bitmask of |BN_FLG_*| values |
| int flags; |
| }; |
| |
| struct bn_mont_ctx_st { |
| // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It |
| // is guaranteed to have the same width as |N|. |
| BIGNUM RR; |
| // N is the modulus. It is always stored in minimal form, so |N.width| |
| // determines R. |
| BIGNUM N; |
| BN_ULONG n0[2]; // least significant words of (R*Ri-1)/N |
| }; |
| |
| OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l); |
| |
| #define BN_FLG_MALLOCED 0x01 |
| #define BN_FLG_STATIC_DATA 0x02 |
| // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying |
| // on it will not compile. Consumers outside BoringSSL should use the |
| // higher-level cryptographic algorithms exposed by other modules. Consumers |
| // within the library should call the appropriate timing-sensitive algorithm |
| // directly. |
| |
| |
| #if defined(__cplusplus) |
| } // extern C |
| |
| #if !defined(BORINGSSL_NO_CXX) |
| extern "C++" { |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| BORINGSSL_MAKE_DELETER(BIGNUM, BN_free) |
| BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free) |
| BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free) |
| |
| class BN_CTXScope { |
| public: |
| BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); } |
| ~BN_CTXScope() { BN_CTX_end(ctx_); } |
| |
| private: |
| BN_CTX *ctx_; |
| |
| BN_CTXScope(BN_CTXScope &) = delete; |
| BN_CTXScope &operator=(BN_CTXScope &) = delete; |
| }; |
| |
| BSSL_NAMESPACE_END |
| |
| } // extern C++ |
| #endif |
| |
| #endif |
| |
| #define BN_R_ARG2_LT_ARG3 100 |
| #define BN_R_BAD_RECIPROCAL 101 |
| #define BN_R_BIGNUM_TOO_LONG 102 |
| #define BN_R_BITS_TOO_SMALL 103 |
| #define BN_R_CALLED_WITH_EVEN_MODULUS 104 |
| #define BN_R_DIV_BY_ZERO 105 |
| #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106 |
| #define BN_R_INPUT_NOT_REDUCED 107 |
| #define BN_R_INVALID_RANGE 108 |
| #define BN_R_NEGATIVE_NUMBER 109 |
| #define BN_R_NOT_A_SQUARE 110 |
| #define BN_R_NOT_INITIALIZED 111 |
| #define BN_R_NO_INVERSE 112 |
| #define BN_R_PRIVATE_KEY_TOO_LARGE 113 |
| #define BN_R_P_IS_NOT_PRIME 114 |
| #define BN_R_TOO_MANY_ITERATIONS 115 |
| #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116 |
| #define BN_R_BAD_ENCODING 117 |
| #define BN_R_ENCODE_ERROR 118 |
| #define BN_R_INVALID_INPUT 119 |
| |
| #endif // OPENSSL_HEADER_BN_H |