| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <limits.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include <algorithm> |
| #include <limits> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/base64.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/bio.h> |
| #include <openssl/cipher.h> |
| #include <openssl/crypto.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/hpke.h> |
| #include <openssl/pem.h> |
| #include <openssl/sha.h> |
| #include <openssl/ssl.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| #include "../crypto/test/file_util.h" |
| #include "../crypto/test/test_util.h" |
| |
| #if defined(OPENSSL_WINDOWS) |
| // Windows defines struct timeval in winsock2.h. |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <winsock2.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #else |
| #include <sys/time.h> |
| #endif |
| |
| #if defined(OPENSSL_THREADS) |
| #include <thread> |
| #endif |
| |
| |
| using testing::ElementsAre; |
| using testing::Key; |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| namespace { |
| |
| #define TRACED_CALL(code) \ |
| do { \ |
| SCOPED_TRACE("<- called from here"); \ |
| code; \ |
| if (::testing::Test::HasFatalFailure()) { \ |
| return; \ |
| } \ |
| } while (false) |
| |
| struct VersionParam { |
| uint16_t version; |
| enum { is_tls, is_dtls } ssl_method; |
| const char name[8]; |
| }; |
| |
| static const size_t kTicketKeyLen = 48; |
| |
| static const VersionParam kAllVersions[] = { |
| {TLS1_VERSION, VersionParam::is_tls, "TLS1"}, |
| {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"}, |
| {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"}, |
| {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"}, |
| {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"}, |
| {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"}, |
| {DTLS1_3_EXPERIMENTAL_VERSION, VersionParam::is_dtls, "DTLS1_3"}, |
| }; |
| |
| struct ExpectedCipher { |
| unsigned long id; |
| int in_group_flag; |
| }; |
| |
| struct CipherTest { |
| // The rule string to apply. |
| const char *rule; |
| // The list of expected ciphers, in order. |
| std::vector<ExpectedCipher> expected; |
| // True if this cipher list should fail in strict mode. |
| bool strict_fail; |
| }; |
| |
| struct CurveTest { |
| // The rule string to apply. |
| const char *rule; |
| // The list of expected curves, in order. |
| std::vector<uint16_t> expected; |
| }; |
| |
| template <typename T> |
| class UnownedSSLExData { |
| public: |
| UnownedSSLExData() { |
| index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr); |
| } |
| |
| T *Get(const SSL *ssl) { |
| return index_ < 0 ? nullptr |
| : static_cast<T *>(SSL_get_ex_data(ssl, index_)); |
| } |
| |
| bool Set(SSL *ssl, T *t) { |
| return index_ >= 0 && SSL_set_ex_data(ssl, index_, t); |
| } |
| |
| private: |
| int index_; |
| }; |
| |
| static const CipherTest kCipherTests[] = { |
| // Selecting individual ciphers should work. |
| { |
| "ECDHE-ECDSA-CHACHA20-POLY1305:" |
| "ECDHE-RSA-CHACHA20-POLY1305:" |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // + reorders selected ciphers to the end, keeping their relative order. |
| { |
| "ECDHE-ECDSA-CHACHA20-POLY1305:" |
| "ECDHE-RSA-CHACHA20-POLY1305:" |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "+aRSA", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // ! banishes ciphers from future selections. |
| { |
| "!aRSA:" |
| "ECDHE-ECDSA-CHACHA20-POLY1305:" |
| "ECDHE-RSA-CHACHA20-POLY1305:" |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Multiple masks can be ANDed in a single rule. |
| { |
| "kRSA+AESGCM+AES128", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // - removes selected ciphers, but preserves their order for future |
| // selections. Select AES_128_GCM, but order the key exchanges RSA, |
| // ECDHE_RSA. |
| { |
| "ALL:-kECDHE:" |
| "-kRSA:-ALL:" |
| "AESGCM+AES128+aRSA", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Unknown selectors are no-ops, except in strict mode. |
| { |
| "ECDHE-ECDSA-CHACHA20-POLY1305:" |
| "ECDHE-RSA-CHACHA20-POLY1305:" |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "BOGUS1", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| true, |
| }, |
| // Unknown selectors are no-ops, except in strict mode. |
| { |
| "ECDHE-ECDSA-CHACHA20-POLY1305:" |
| "ECDHE-RSA-CHACHA20-POLY1305:" |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "-BOGUS2:+BOGUS3:!BOGUS4", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| true, |
| }, |
| // Square brackets specify equi-preference groups. |
| { |
| "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:" |
| "[ECDHE-RSA-CHACHA20-POLY1305]:" |
| "ECDHE-RSA-AES128-GCM-SHA256", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Standard names may be used instead of OpenSSL names. |
| { |
| "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|" |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:" |
| "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:" |
| "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // @STRENGTH performs a stable strength-sort of the selected ciphers and |
| // only the selected ciphers. |
| { |
| // To simplify things, banish all but {ECDHE_RSA,RSA} x |
| // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1. |
| "!AESGCM:!3DES:" |
| // Order some ciphers backwards by strength. |
| "ALL:-CHACHA20:-AES256:-AES128:-ALL:" |
| // Select ECDHE ones and sort them by strength. Ties should resolve |
| // based on the order above. |
| "kECDHE:@STRENGTH:-ALL:" |
| // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted |
| // by strength. Then RSA, backwards by strength. |
| "aRSA", |
| { |
| {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0}, |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, |
| }, |
| false, |
| }, |
| // Additional masks after @STRENGTH get silently discarded. |
| // |
| // TODO(davidben): Make this an error. If not silently discarded, they get |
| // interpreted as + opcodes which are very different. |
| { |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES256-GCM-SHA384:" |
| "@STRENGTH+AES256", |
| { |
| {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| { |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES256-GCM-SHA384:" |
| "@STRENGTH+AES256:" |
| "ECDHE-RSA-CHACHA20-POLY1305", |
| { |
| {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Exact ciphers may not be used in multi-part rules; they are treated |
| // as unknown aliases. |
| { |
| "ECDHE-ECDSA-AES128-GCM-SHA256:" |
| "ECDHE-RSA-AES128-GCM-SHA256:" |
| "!ECDHE-RSA-AES128-GCM-SHA256+RSA:" |
| "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| true, |
| }, |
| // SSLv3 matches everything that existed before TLS 1.2. |
| { |
| "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3", |
| { |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // TLSv1.2 matches everything added in TLS 1.2. |
| { |
| "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| }, |
| false, |
| }, |
| // The two directives have no intersection. But each component is valid, so |
| // even in strict mode it is accepted. |
| { |
| "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Spaces, semi-colons and commas are separators. |
| { |
| "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| // …but not in strict mode. |
| true, |
| }, |
| // 3DES ciphers are disabled by default. |
| { |
| "RSA", |
| { |
| {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, 0}, |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, |
| }, |
| false, |
| }, |
| // But 3DES ciphers may be specified by name. |
| { |
| "TLS_RSA_WITH_3DES_EDE_CBC_SHA", |
| { |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, |
| }, |
| false, |
| }, |
| { |
| "DES-CBC3-SHA", |
| { |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, |
| }, |
| false, |
| }, |
| // Or by a selector that specifically includes deprecated ciphers. |
| { |
| "3DES", |
| { |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, |
| }, |
| false, |
| }, |
| // Such selectors may be combined with other selectors that would otherwise |
| // not allow deprecated ciphers. |
| { |
| "RSA+3DES", |
| { |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, |
| }, |
| false, |
| }, |
| // The cipher must still match all combined selectors, however. "ECDHE+3DES" |
| // matches nothing because we do not implement |
| // TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA. (The test includes |
| // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 so the final list is not empty.) |
| { |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:ECDHE+3DES", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // Although alises like "RSA" do not match 3DES when adding ciphers, they do |
| // match it when removing ciphers. |
| { |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:RSA:RSA+3DES:!RSA", |
| { |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, |
| }, |
| false, |
| }, |
| // 3DES still participates in strength sorting. |
| { |
| "RSA:3DES:@STRENGTH", |
| { |
| {TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, 0}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA, 0}, |
| {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0}, |
| {TLS1_CK_RSA_WITH_AES_128_SHA, 0}, |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, 0}, |
| }, |
| false, |
| }, |
| }; |
| |
| static const char *kBadRules[] = { |
| // Invalid brackets. |
| "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256", |
| "RSA]", |
| "[[RSA]]", |
| // Operators inside brackets. |
| "[+RSA]", |
| // Unknown directive. |
| "@BOGUS", |
| // Empty cipher lists error at SSL_CTX_set_cipher_list. |
| "", |
| "BOGUS", |
| // COMPLEMENTOFDEFAULT is empty. |
| "COMPLEMENTOFDEFAULT", |
| // Invalid command. |
| "?BAR", |
| // Special operators are not allowed if equi-preference groups are used. |
| "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO", |
| "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO", |
| "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO", |
| "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH", |
| // Opcode supplied, but missing selector. |
| "+", |
| // Spaces are forbidden in equal-preference groups. |
| "[AES128-SHA | AES128-SHA256]", |
| }; |
| |
| static const char *kMustNotIncludeDeprecated[] = { |
| "ALL", |
| "DEFAULT", |
| "HIGH", |
| "FIPS", |
| "SHA", |
| "SHA1", |
| "RSA", |
| "SSLv3", |
| "TLSv1", |
| "TLSv1.2", |
| }; |
| |
| static const char* kShouldIncludeCBCSHA256[] = { |
| "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", |
| "ALL:TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", |
| }; |
| |
| static const CurveTest kCurveTests[] = { |
| { |
| "P-256", |
| { SSL_GROUP_SECP256R1 }, |
| }, |
| { |
| "P-256:X25519Kyber768Draft00", |
| { SSL_GROUP_SECP256R1, SSL_GROUP_X25519_KYBER768_DRAFT00 }, |
| }, |
| { |
| "P-256:X25519MLKEM768", |
| { SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768 }, |
| }, |
| |
| { |
| "P-256:P-384:P-521:X25519", |
| { |
| SSL_GROUP_SECP256R1, |
| SSL_GROUP_SECP384R1, |
| SSL_GROUP_SECP521R1, |
| SSL_GROUP_X25519, |
| }, |
| }, |
| { |
| "prime256v1:secp384r1:secp521r1:x25519", |
| { |
| SSL_GROUP_SECP256R1, |
| SSL_GROUP_SECP384R1, |
| SSL_GROUP_SECP521R1, |
| SSL_GROUP_X25519, |
| }, |
| }, |
| }; |
| |
| static const char *kBadCurvesLists[] = { |
| "", |
| ":", |
| "::", |
| "P-256::X25519", |
| "RSA:P-256", |
| "P-256:RSA", |
| "X25519:P-256:", |
| ":X25519:P-256", |
| }; |
| |
| static std::string CipherListToString(SSL_CTX *ctx) { |
| bool in_group = false; |
| std::string ret; |
| const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); |
| for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { |
| const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); |
| if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) { |
| ret += "\t[\n"; |
| in_group = true; |
| } |
| ret += "\t"; |
| if (in_group) { |
| ret += " "; |
| } |
| ret += SSL_CIPHER_get_name(cipher); |
| ret += "\n"; |
| if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) { |
| ret += "\t]\n"; |
| in_group = false; |
| } |
| } |
| return ret; |
| } |
| |
| static bool CipherListsEqual(SSL_CTX *ctx, |
| const std::vector<ExpectedCipher> &expected) { |
| const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); |
| if (sk_SSL_CIPHER_num(ciphers) != expected.size()) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < expected.size(); i++) { |
| const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); |
| if (expected[i].id != SSL_CIPHER_get_id(cipher) || |
| expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| TEST(SSLTest, CipherRules) { |
| for (const CipherTest &t : kCipherTests) { |
| SCOPED_TRACE(t.rule); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Test lax mode. |
| ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule)); |
| EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) |
| << "Cipher rule evaluated to:\n" |
| << CipherListToString(ctx.get()); |
| |
| // Test strict mode. |
| if (t.strict_fail) { |
| EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); |
| } else { |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); |
| EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) |
| << "Cipher rule evaluated to:\n" |
| << CipherListToString(ctx.get()); |
| } |
| } |
| |
| for (const char *rule : kBadRules) { |
| SCOPED_TRACE(rule); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule)); |
| ERR_clear_error(); |
| } |
| |
| for (const char *rule : kMustNotIncludeDeprecated) { |
| SCOPED_TRACE(rule); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); |
| for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { |
| EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher)); |
| EXPECT_FALSE(ssl_cipher_is_deprecated(cipher)); |
| } |
| } |
| |
| { |
| for (const char *rule : kShouldIncludeCBCSHA256) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); |
| |
| bool found = false; |
| for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { |
| if ((TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 & 0xffff) == |
| SSL_CIPHER_get_protocol_id(cipher)) { |
| found = true; |
| break; |
| } |
| } |
| EXPECT_TRUE(found); |
| } |
| } |
| } |
| |
| TEST(SSLTest, CurveRules) { |
| for (const CurveTest &t : kCurveTests) { |
| SCOPED_TRACE(t.rule); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), t.rule)); |
| ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size()); |
| for (size_t i = 0; i < t.expected.size(); i++) { |
| EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]); |
| } |
| } |
| |
| for (const char *rule : kBadCurvesLists) { |
| SCOPED_TRACE(rule); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| EXPECT_FALSE(SSL_CTX_set1_groups_list(ctx.get(), rule)); |
| ERR_clear_error(); |
| } |
| } |
| |
| // kOpenSSLSession is a serialized SSL_SESSION. |
| static const char kOpenSSLSession[] = |
| "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" |
| "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" |
| "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ" |
| "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" |
| "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4" |
| "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" |
| "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" |
| "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" |
| "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6" |
| "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e" |
| "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu" |
| "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh" |
| "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg" |
| "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd" |
| "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" |
| "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" |
| "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" |
| "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ" |
| "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" |
| "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" |
| "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa" |
| "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal" |
| "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf" |
| "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St" |
| "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z" |
| "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm" |
| "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S" |
| "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B" |
| "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE" |
| "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA" |
| "i4gv7Y5oliyntgMBAQA="; |
| |
| // kCustomSession is a custom serialized SSL_SESSION generated by |
| // filling in missing fields from |kOpenSSLSession|. This includes |
| // providing |peer_sha256|, so |peer| is not serialized. |
| static const char kCustomSession[] = |
| "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" |
| "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" |
| "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB" |
| "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38" |
| "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd" |
| "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg" |
| "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG" |
| "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; |
| |
| // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client. |
| static const char kBoringSSLSession[] = |
| "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R" |
| "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf" |
| "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ" |
| "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" |
| "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy" |
| "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" |
| "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" |
| "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" |
| "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo" |
| "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU" |
| "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce" |
| "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/" |
| "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL" |
| "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd" |
| "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" |
| "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" |
| "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" |
| "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG" |
| "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" |
| "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" |
| "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb" |
| "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE" |
| "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd" |
| "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+" |
| "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a" |
| "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y" |
| "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH" |
| "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH" |
| "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s" |
| "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE" |
| "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC" |
| "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL" |
| "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds" |
| "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw" |
| "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG" |
| "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE" |
| "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB" |
| "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np" |
| "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If" |
| "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S" |
| "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531" |
| "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn" |
| "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF" |
| "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB" |
| "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB" |
| "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v" |
| "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA" |
| "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK" |
| "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j" |
| "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S" |
| "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+" |
| "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl" |
| "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi" |
| "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95" |
| "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh" |
| "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT" |
| "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i" |
| "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG" |
| "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy" |
| "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB" |
| "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP" |
| "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv" |
| "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE" |
| "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ" |
| "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC" |
| "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7" |
| "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD" |
| "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov" |
| "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig" |
| "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ" |
| "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+" |
| "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI" |
| "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI" |
| "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X" |
| "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm" |
| "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40" |
| "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG" |
| "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg" |
| "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0" |
| "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ" |
| "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP" |
| "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI" |
| "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t" |
| "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN" |
| "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3" |
| "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE" |
| "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW" |
| "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9" |
| "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw" |
| "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j" |
| "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3" |
| "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF" |
| "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV" |
| "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D" |
| "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg=="; |
| |
| // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing |
| // the final (optional) element of |kCustomSession| with tag number 99. |
| static const char kBadSessionExtraField[] = |
| "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" |
| "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" |
| "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" |
| "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" |
| "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" |
| "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" |
| "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" |
| "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBOMDBAEF"; |
| |
| // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing |
| // the version of |kCustomSession| with 2. |
| static const char kBadSessionVersion[] = |
| "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" |
| "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" |
| "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" |
| "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" |
| "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" |
| "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" |
| "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" |
| "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; |
| |
| // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data |
| // appended. |
| static const char kBadSessionTrailingData[] = |
| "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" |
| "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" |
| "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" |
| "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" |
| "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" |
| "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" |
| "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" |
| "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA"; |
| |
| static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) { |
| size_t len; |
| if (!EVP_DecodedLength(&len, strlen(in))) { |
| fprintf(stderr, "EVP_DecodedLength failed\n"); |
| return false; |
| } |
| |
| out->resize(len); |
| if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in, |
| strlen(in))) { |
| fprintf(stderr, "EVP_DecodeBase64 failed\n"); |
| return false; |
| } |
| out->resize(len); |
| return true; |
| } |
| |
| static bool DecodeLowerHex(std::vector<uint8_t> *out, |
| bssl::Span<const char> in) { |
| if (in.size() % 2 != 0) { |
| return false; |
| } |
| out->resize(in.size() / 2); |
| for (size_t i = 0; i < out->size(); i++) { |
| char hi = in[2 * i], lo = in[2 * i + 1]; |
| uint8_t b = 0; |
| if ('0' <= hi && hi <= '9') { |
| b |= hi - '0'; |
| } else if ('a' <= hi && hi <= 'f') { |
| b |= hi - 'a' + 10; |
| } else { |
| return false; |
| } |
| b <<= 4; |
| if ('0' <= lo && lo <= '9') { |
| b |= lo - '0'; |
| } else if ('a' <= lo && lo <= 'f') { |
| b |= lo - 'a' + 10; |
| } else { |
| return false; |
| } |
| (*out)[i] = b; |
| } |
| return true; |
| } |
| |
| TEST(SSLTest, SessionEncoding) { |
| for (const char *input_b64 : { |
| kOpenSSLSession, |
| kCustomSession, |
| kBoringSSLSession, |
| }) { |
| SCOPED_TRACE(std::string(input_b64)); |
| // Decode the input. |
| std::vector<uint8_t> input; |
| ASSERT_TRUE(DecodeBase64(&input, input_b64)); |
| |
| // Verify the SSL_SESSION decodes. |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ssl_ctx); |
| bssl::UniquePtr<SSL_SESSION> session( |
| SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); |
| ASSERT_TRUE(session) << "SSL_SESSION_from_bytes failed"; |
| |
| // Verify the SSL_SESSION encoding round-trips. |
| size_t encoded_len; |
| bssl::UniquePtr<uint8_t> encoded; |
| uint8_t *encoded_raw; |
| ASSERT_TRUE(SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) |
| << "SSL_SESSION_to_bytes failed"; |
| encoded.reset(encoded_raw); |
| EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) |
| << "SSL_SESSION_to_bytes did not round-trip"; |
| |
| // Verify the SSL_SESSION also decodes with the legacy API. |
| const uint8_t *cptr = input.data(); |
| session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size())); |
| ASSERT_TRUE(session) << "d2i_SSL_SESSION failed"; |
| EXPECT_EQ(cptr, input.data() + input.size()); |
| |
| // Verify the SSL_SESSION encoding round-trips via the legacy API. |
| int len = i2d_SSL_SESSION(session.get(), NULL); |
| ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; |
| ASSERT_EQ(static_cast<size_t>(len), input.size()) |
| << "i2d_SSL_SESSION(NULL) returned invalid length"; |
| |
| encoded.reset((uint8_t *)OPENSSL_malloc(input.size())); |
| ASSERT_TRUE(encoded); |
| |
| uint8_t *ptr = encoded.get(); |
| len = i2d_SSL_SESSION(session.get(), &ptr); |
| ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; |
| ASSERT_EQ(static_cast<size_t>(len), input.size()) |
| << "i2d_SSL_SESSION(NULL) returned invalid length"; |
| ASSERT_EQ(ptr, encoded.get() + input.size()) |
| << "i2d_SSL_SESSION did not advance ptr correctly"; |
| EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) |
| << "SSL_SESSION_to_bytes did not round-trip"; |
| } |
| |
| for (const char *input_b64 : { |
| kBadSessionExtraField, |
| kBadSessionVersion, |
| kBadSessionTrailingData, |
| }) { |
| SCOPED_TRACE(std::string(input_b64)); |
| std::vector<uint8_t> input; |
| ASSERT_TRUE(DecodeBase64(&input, input_b64)); |
| |
| // Verify that the SSL_SESSION fails to decode. |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ssl_ctx); |
| bssl::UniquePtr<SSL_SESSION> session( |
| SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); |
| EXPECT_FALSE(session) << "SSL_SESSION_from_bytes unexpectedly succeeded"; |
| ERR_clear_error(); |
| } |
| } |
| |
| static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version, |
| const SSL_METHOD *(*method)(void)) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method())); |
| ASSERT_TRUE(ctx); |
| EXPECT_EQ(min_version, SSL_CTX_get_min_proto_version(ctx.get())); |
| EXPECT_EQ(max_version, SSL_CTX_get_max_proto_version(ctx.get())); |
| } |
| |
| TEST(SSLTest, DefaultVersion) { |
| ExpectDefaultVersion(TLS1_2_VERSION, TLS1_3_VERSION, &TLS_method); |
| ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method); |
| ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method); |
| ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method); |
| ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLS_method); |
| ExpectDefaultVersion(DTLS1_VERSION, DTLS1_VERSION, &DTLSv1_method); |
| ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLSv1_2_method); |
| } |
| |
| TEST(SSLTest, CipherProperties) { |
| static const struct { |
| int id; |
| const char *standard_name; |
| int cipher_nid; |
| int digest_nid; |
| int kx_nid; |
| int auth_nid; |
| int prf_nid; |
| } kTests[] = { |
| { |
| SSL3_CK_RSA_DES_192_CBC3_SHA, |
| "TLS_RSA_WITH_3DES_EDE_CBC_SHA", |
| NID_des_ede3_cbc, |
| NID_sha1, |
| NID_kx_rsa, |
| NID_auth_rsa, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_RSA_WITH_AES_128_SHA, |
| "TLS_RSA_WITH_AES_128_CBC_SHA", |
| NID_aes_128_cbc, |
| NID_sha1, |
| NID_kx_rsa, |
| NID_auth_rsa, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_PSK_WITH_AES_256_CBC_SHA, |
| "TLS_PSK_WITH_AES_256_CBC_SHA", |
| NID_aes_256_cbc, |
| NID_sha1, |
| NID_kx_psk, |
| NID_auth_psk, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
| "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", |
| NID_aes_128_cbc, |
| NID_sha1, |
| NID_kx_ecdhe, |
| NID_auth_rsa, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", |
| NID_aes_256_cbc, |
| NID_sha1, |
| NID_kx_ecdhe, |
| NID_auth_rsa, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", |
| NID_aes_128_gcm, |
| NID_undef, |
| NID_kx_ecdhe, |
| NID_auth_rsa, |
| NID_sha256, |
| }, |
| { |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", |
| NID_aes_128_gcm, |
| NID_undef, |
| NID_kx_ecdhe, |
| NID_auth_ecdsa, |
| NID_sha256, |
| }, |
| { |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", |
| NID_aes_256_gcm, |
| NID_undef, |
| NID_kx_ecdhe, |
| NID_auth_ecdsa, |
| NID_sha384, |
| }, |
| { |
| TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, |
| "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", |
| NID_aes_128_cbc, |
| NID_sha1, |
| NID_kx_ecdhe, |
| NID_auth_psk, |
| NID_md5_sha1, |
| }, |
| { |
| TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, |
| "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", |
| NID_chacha20_poly1305, |
| NID_undef, |
| NID_kx_ecdhe, |
| NID_auth_rsa, |
| NID_sha256, |
| }, |
| { |
| TLS1_3_CK_AES_256_GCM_SHA384, |
| "TLS_AES_256_GCM_SHA384", |
| NID_aes_256_gcm, |
| NID_undef, |
| NID_kx_any, |
| NID_auth_any, |
| NID_sha384, |
| }, |
| { |
| TLS1_3_CK_AES_128_GCM_SHA256, |
| "TLS_AES_128_GCM_SHA256", |
| NID_aes_128_gcm, |
| NID_undef, |
| NID_kx_any, |
| NID_auth_any, |
| NID_sha256, |
| }, |
| { |
| TLS1_3_CK_CHACHA20_POLY1305_SHA256, |
| "TLS_CHACHA20_POLY1305_SHA256", |
| NID_chacha20_poly1305, |
| NID_undef, |
| NID_kx_any, |
| NID_auth_any, |
| NID_sha256, |
| }, |
| }; |
| |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.standard_name); |
| |
| const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff); |
| ASSERT_TRUE(cipher); |
| EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher)); |
| |
| EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher)); |
| EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher)); |
| EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher)); |
| EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher)); |
| EXPECT_EQ(t.prf_nid, EVP_MD_nid(SSL_CIPHER_get_handshake_digest(cipher))); |
| EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher)); |
| } |
| } |
| |
| // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified |
| // version and ticket length or nullptr on failure. |
| static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version, |
| size_t ticket_len) { |
| std::vector<uint8_t> der; |
| if (!DecodeBase64(&der, kOpenSSLSession)) { |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); |
| if (!ssl_ctx) { |
| return nullptr; |
| } |
| // Use a garbage ticket. |
| std::vector<uint8_t> ticket(ticket_len, 'a'); |
| bssl::UniquePtr<SSL_SESSION> session( |
| SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get())); |
| if (!session || |
| !SSL_SESSION_set_protocol_version(session.get(), version) || |
| !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) { |
| return nullptr; |
| } |
| // Fix up the timeout. |
| #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) |
| SSL_SESSION_set_time(session.get(), 1234); |
| #else |
| SSL_SESSION_set_time(session.get(), time(nullptr)); |
| #endif |
| return session; |
| } |
| |
| static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) { |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| if (!bio) { |
| return false; |
| } |
| // Do not configure a reading BIO, but record what's written to a memory BIO. |
| BIO_up_ref(bio.get()); |
| SSL_set_bio(ssl, nullptr /* rbio */, bio.get()); |
| int ret = SSL_connect(ssl); |
| if (ret > 0) { |
| // SSL_connect should fail without a BIO to write to. |
| return false; |
| } |
| ERR_clear_error(); |
| |
| const uint8_t *client_hello; |
| size_t client_hello_len; |
| if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) { |
| return false; |
| } |
| |
| // We did not get far enough to write a ClientHello. |
| if (client_hello_len == 0) { |
| return false; |
| } |
| |
| *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len); |
| return true; |
| } |
| |
| // GetClientHelloLen creates a client SSL connection with the specified version |
| // and ticket length. It returns the length of the ClientHello, not including |
| // the record header, on success and zero on error. |
| static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version, |
| size_t ticket_len) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateSessionWithTicket(session_version, ticket_len); |
| if (!ctx || !session) { |
| return 0; |
| } |
| |
| // Set a one-element cipher list so the baseline ClientHello is unpadded. |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| if (!ssl || !SSL_set_session(ssl.get(), session.get()) || |
| !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") || |
| !SSL_set_max_proto_version(ssl.get(), max_version)) { |
| return 0; |
| } |
| |
| std::vector<uint8_t> client_hello; |
| if (!GetClientHello(ssl.get(), &client_hello) || |
| client_hello.size() <= SSL3_RT_HEADER_LENGTH) { |
| return 0; |
| } |
| |
| return client_hello.size() - SSL3_RT_HEADER_LENGTH; |
| } |
| |
| TEST(SSLTest, Padding) { |
| struct PaddingVersions { |
| uint16_t max_version, session_version; |
| }; |
| static const PaddingVersions kPaddingVersions[] = { |
| // Test the padding extension at TLS 1.2. |
| {TLS1_2_VERSION, TLS1_2_VERSION}, |
| // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there |
| // will be no PSK binder after the padding extension. |
| {TLS1_3_VERSION, TLS1_2_VERSION}, |
| // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there |
| // will be a PSK binder after the padding extension. |
| {TLS1_3_VERSION, TLS1_3_VERSION}, |
| |
| }; |
| |
| struct PaddingTest { |
| size_t input_len, padded_len; |
| }; |
| static const PaddingTest kPaddingTests[] = { |
| // ClientHellos of length below 0x100 do not require padding. |
| {0xfe, 0xfe}, |
| {0xff, 0xff}, |
| // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200. |
| {0x100, 0x200}, |
| {0x123, 0x200}, |
| {0x1fb, 0x200}, |
| // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The |
| // padding extension takes a minimum of four bytes plus one required |
| // content |
| // byte. (To work around yet more server bugs, we avoid empty final |
| // extensions.) |
| {0x1fc, 0x201}, |
| {0x1fd, 0x202}, |
| {0x1fe, 0x203}, |
| {0x1ff, 0x204}, |
| // Finally, larger ClientHellos need no padding. |
| {0x200, 0x200}, |
| {0x201, 0x201}, |
| }; |
| |
| for (const PaddingVersions &versions : kPaddingVersions) { |
| SCOPED_TRACE(versions.max_version); |
| SCOPED_TRACE(versions.session_version); |
| |
| // Sample a baseline length. |
| size_t base_len = |
| GetClientHelloLen(versions.max_version, versions.session_version, 1); |
| ASSERT_NE(base_len, 0u) << "Baseline length could not be sampled"; |
| |
| for (const PaddingTest &test : kPaddingTests) { |
| SCOPED_TRACE(test.input_len); |
| ASSERT_LE(base_len, test.input_len) << "Baseline ClientHello too long"; |
| |
| size_t padded_len = |
| GetClientHelloLen(versions.max_version, versions.session_version, |
| 1 + test.input_len - base_len); |
| EXPECT_EQ(padded_len, test.padded_len) |
| << "ClientHello was not padded to expected length"; |
| } |
| } |
| } |
| |
| static bssl::UniquePtr<X509> CertFromPEM(const char *pem) { |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); |
| if (!bio) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<X509>( |
| PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> KeyFromPEM(const char *pem) { |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); |
| if (!bio) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<EVP_PKEY>( |
| PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) { |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); |
| char *name, *header; |
| uint8_t *data; |
| long data_len; |
| if (!PEM_read_bio(bio.get(), &name, &header, &data, |
| &data_len)) { |
| return nullptr; |
| } |
| OPENSSL_free(name); |
| OPENSSL_free(header); |
| |
| auto ret = bssl::UniquePtr<CRYPTO_BUFFER>( |
| CRYPTO_BUFFER_new(data, data_len, nullptr)); |
| OPENSSL_free(data); |
| return ret; |
| } |
| |
| static bssl::UniquePtr<X509> X509FromBuffer( |
| bssl::UniquePtr<CRYPTO_BUFFER> buffer) { |
| if (!buffer) { |
| return nullptr; |
| } |
| const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get()); |
| return bssl::UniquePtr<X509>( |
| d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get()))); |
| } |
| |
| static bssl::UniquePtr<X509> GetTestCertificate() { |
| static const char kCertPEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" |
| "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" |
| "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" |
| "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" |
| "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" |
| "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" |
| "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" |
| "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" |
| "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" |
| "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" |
| "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" |
| "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" |
| "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" |
| "-----END CERTIFICATE-----\n"; |
| return CertFromPEM(kCertPEM); |
| } |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetTestCertificateBuffer() { |
| static const char kCertPEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" |
| "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" |
| "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" |
| "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" |
| "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" |
| "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" |
| "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" |
| "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" |
| "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" |
| "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" |
| "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" |
| "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" |
| "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" |
| "-----END CERTIFICATE-----\n"; |
| return BufferFromPEM(kCertPEM); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> GetTestKey() { |
| static const char kKeyPEM[] = |
| "-----BEGIN RSA PRIVATE KEY-----\n" |
| "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n" |
| "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n" |
| "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n" |
| "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n" |
| "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n" |
| "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n" |
| "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n" |
| "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n" |
| "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n" |
| "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n" |
| "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n" |
| "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n" |
| "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n" |
| "-----END RSA PRIVATE KEY-----\n"; |
| return KeyFromPEM(kKeyPEM); |
| } |
| |
| static bssl::UniquePtr<SSL_CTX> CreateContextWithTestCertificate( |
| const SSL_METHOD *method) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| if (!ctx || !cert || !key || |
| !SSL_CTX_use_certificate(ctx.get(), cert.get()) || |
| !SSL_CTX_use_PrivateKey(ctx.get(), key.get())) { |
| return nullptr; |
| } |
| return ctx; |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetECDSATestCertificateBuffer() { |
| static const char kCertPEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n" |
| "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n" |
| "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n" |
| "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n" |
| "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n" |
| "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n" |
| "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n" |
| "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n" |
| "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n" |
| "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n" |
| "-----END CERTIFICATE-----\n"; |
| return BufferFromPEM(kCertPEM); |
| } |
| |
| static bssl::UniquePtr<X509> GetECDSATestCertificate() { |
| return X509FromBuffer(GetECDSATestCertificateBuffer()); |
| } |
| |
| |
| static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() { |
| static const char kKeyPEM[] = |
| "-----BEGIN PRIVATE KEY-----\n" |
| "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n" |
| "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n" |
| "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n" |
| "-----END PRIVATE KEY-----\n"; |
| return KeyFromPEM(kKeyPEM); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() { |
| static const char kCertPEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n" |
| "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n" |
| "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n" |
| "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n" |
| "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n" |
| "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n" |
| "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n" |
| "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n" |
| "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n" |
| "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n" |
| "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n" |
| "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n" |
| "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n" |
| "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n" |
| "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n" |
| "1ngWZ7Ih\n" |
| "-----END CERTIFICATE-----\n"; |
| return BufferFromPEM(kCertPEM); |
| } |
| |
| static bssl::UniquePtr<X509> GetChainTestCertificate() { |
| return X509FromBuffer(GetChainTestCertificateBuffer()); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() { |
| static const char kCertPEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n" |
| "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n" |
| "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n" |
| "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n" |
| "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n" |
| "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n" |
| "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n" |
| "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n" |
| "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" |
| "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n" |
| "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n" |
| "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n" |
| "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n" |
| "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n" |
| "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n" |
| "-----END CERTIFICATE-----\n"; |
| return BufferFromPEM(kCertPEM); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateIssuerBuffer() { |
| static const char kSubjectPEM[] = |
| "-----BEGIN SUBJECT-----\n" |
| "MBQxEjAQBgNVBAMMCUMgUm9vdCBDQQ==\n" |
| "-----END SUBJECT-----\n"; |
| return BufferFromPEM(kSubjectPEM); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetTestCertIssuerBuffer() { |
| static const char kSubjectPEM[] = |
| "-----BEGIN SUBJECT-----\n" |
| "MEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJ\n" |
| "bnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQ=\n" |
| "-----END SUBJECT-----\n"; |
| return BufferFromPEM(kSubjectPEM); |
| } |
| |
| static bssl::UniquePtr<CRYPTO_BUFFER> GetBogusIssuerBuffer() { |
| static const char kSubjectPEM[] = |
| "-----BEGIN SUBJECT-----\n" |
| "MBYxFDASBgNVBAMMC0RpZ2lOb3RBRm94\n" |
| "-----END SUBJECT-----\n"; |
| return BufferFromPEM(kSubjectPEM); |
| } |
| |
| static bssl::UniquePtr<X509> GetChainTestIntermediate() { |
| return X509FromBuffer(GetChainTestIntermediateBuffer()); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() { |
| static const char kKeyPEM[] = |
| "-----BEGIN PRIVATE KEY-----\n" |
| "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n" |
| "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n" |
| "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n" |
| "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n" |
| "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n" |
| "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n" |
| "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n" |
| "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n" |
| "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n" |
| "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n" |
| "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n" |
| "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n" |
| "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n" |
| "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n" |
| "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n" |
| "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n" |
| "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n" |
| "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n" |
| "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n" |
| "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n" |
| "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n" |
| "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n" |
| "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n" |
| "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n" |
| "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n" |
| "SxpiPQ8d/hmSGwn4ksrWUsJD\n" |
| "-----END PRIVATE KEY-----\n"; |
| return KeyFromPEM(kKeyPEM); |
| } |
| |
| static bool CompleteHandshakes(SSL *client, SSL *server) { |
| // Drive both their handshakes to completion. |
| for (;;) { |
| int client_ret = SSL_do_handshake(client); |
| int client_err = SSL_get_error(client, client_ret); |
| if (client_err != SSL_ERROR_NONE && |
| client_err != SSL_ERROR_WANT_READ && |
| client_err != SSL_ERROR_WANT_WRITE && |
| client_err != SSL_ERROR_PENDING_TICKET) { |
| fprintf(stderr, "Client error: %s\n", SSL_error_description(client_err)); |
| return false; |
| } |
| |
| int server_ret = SSL_do_handshake(server); |
| int server_err = SSL_get_error(server, server_ret); |
| if (server_err != SSL_ERROR_NONE && |
| server_err != SSL_ERROR_WANT_READ && |
| server_err != SSL_ERROR_WANT_WRITE && |
| server_err != SSL_ERROR_PENDING_TICKET) { |
| fprintf(stderr, "Server error: %s\n", SSL_error_description(server_err)); |
| return false; |
| } |
| |
| if (client_ret == 1 && server_ret == 1) { |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool FlushNewSessionTickets(SSL *client, SSL *server) { |
| // NewSessionTickets are deferred on the server to |SSL_write|, and clients do |
| // not pick them up until |SSL_read|. |
| for (;;) { |
| int server_ret = SSL_write(server, nullptr, 0); |
| int server_err = SSL_get_error(server, server_ret); |
| // The server may either succeed (|server_ret| is zero) or block on write |
| // (|server_ret| is -1 and |server_err| is |SSL_ERROR_WANT_WRITE|). |
| if (server_ret > 0 || |
| (server_ret < 0 && server_err != SSL_ERROR_WANT_WRITE)) { |
| fprintf(stderr, "Unexpected server result: %d %d\n", server_ret, |
| server_err); |
| return false; |
| } |
| |
| int client_ret = SSL_read(client, nullptr, 0); |
| int client_err = SSL_get_error(client, client_ret); |
| // The client must always block on read. |
| if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { |
| fprintf(stderr, "Unexpected client result: %d %d\n", client_ret, |
| client_err); |
| return false; |
| } |
| |
| // The server flushed everything it had to write. |
| if (server_ret == 0) { |
| return true; |
| } |
| } |
| } |
| |
| // CreateClientAndServer creates a client and server |SSL| objects whose |BIO|s |
| // are paired with each other. It does not run the handshake. The caller is |
| // expected to configure the objects and drive the handshake as needed. |
| static bool CreateClientAndServer(bssl::UniquePtr<SSL> *out_client, |
| bssl::UniquePtr<SSL> *out_server, |
| SSL_CTX *client_ctx, SSL_CTX *server_ctx) { |
| bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); |
| if (!client || !server) { |
| return false; |
| } |
| SSL_set_connect_state(client.get()); |
| SSL_set_accept_state(server.get()); |
| |
| BIO *bio1, *bio2; |
| if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) { |
| return false; |
| } |
| // SSL_set_bio takes ownership. |
| SSL_set_bio(client.get(), bio1, bio1); |
| SSL_set_bio(server.get(), bio2, bio2); |
| |
| *out_client = std::move(client); |
| *out_server = std::move(server); |
| return true; |
| } |
| |
| struct ClientConfig { |
| SSL_SESSION *session = nullptr; |
| STACK_OF(CRYPTO_BUFFER) *ca_names = nullptr; |
| std::string servername; |
| std::string verify_hostname; |
| unsigned hostflags = 0; |
| bool early_data = false; |
| }; |
| |
| static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client, |
| bssl::UniquePtr<SSL> *out_server, |
| SSL_CTX *client_ctx, SSL_CTX *server_ctx, |
| const ClientConfig &config = ClientConfig(), |
| bool shed_handshake_config = true) { |
| bssl::UniquePtr<SSL> client, server; |
| if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx)) { |
| return false; |
| } |
| if (config.early_data) { |
| SSL_set_early_data_enabled(client.get(), 1); |
| } |
| if (config.session) { |
| SSL_set_session(client.get(), config.session); |
| } |
| if (!config.servername.empty() && |
| !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) { |
| return false; |
| } |
| if (!config.verify_hostname.empty()) { |
| if (!SSL_set1_host(client.get(), config.verify_hostname.c_str())) { |
| return false; |
| } |
| SSL_set_hostflags(client.get(), config.hostflags); |
| } |
| |
| if (config.ca_names) { |
| SSL_set0_CA_names(client.get(), config.ca_names); |
| } |
| |
| SSL_set_shed_handshake_config(client.get(), shed_handshake_config); |
| SSL_set_shed_handshake_config(server.get(), shed_handshake_config); |
| |
| if (!CompleteHandshakes(client.get(), server.get())) { |
| return false; |
| } |
| |
| *out_client = std::move(client); |
| *out_server = std::move(server); |
| return true; |
| } |
| |
| static bssl::UniquePtr<SSL_SESSION> g_last_session; |
| |
| static int SaveLastSession(SSL *ssl, SSL_SESSION *session) { |
| // Save the most recent session. |
| g_last_session.reset(session); |
| return 1; |
| } |
| |
| static bssl::UniquePtr<SSL_SESSION> CreateClientSession( |
| SSL_CTX *client_ctx, SSL_CTX *server_ctx, |
| const ClientConfig &config = ClientConfig()) { |
| g_last_session = nullptr; |
| SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); |
| |
| // Connect client and server to get a session. |
| bssl::UniquePtr<SSL> client, server; |
| if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, |
| config) || |
| !FlushNewSessionTickets(client.get(), server.get())) { |
| fprintf(stderr, "Failed to connect client and server.\n"); |
| return nullptr; |
| } |
| |
| SSL_CTX_sess_set_new_cb(client_ctx, nullptr); |
| |
| if (!g_last_session) { |
| fprintf(stderr, "Client did not receive a session.\n"); |
| return nullptr; |
| } |
| return std::move(g_last_session); |
| } |
| |
| static void SetUpExpectedNewCodePoint(SSL_CTX *ctx) { |
| SSL_CTX_set_select_certificate_cb( |
| ctx, |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| const uint8_t *data; |
| size_t len; |
| if (!SSL_early_callback_ctx_extension_get( |
| client_hello, TLSEXT_TYPE_application_settings, &data, |
| &len)) { |
| ADD_FAILURE() << "Could not find alps new codepoint."; |
| return ssl_select_cert_error; |
| } |
| return ssl_select_cert_success; |
| }); |
| } |
| |
| static void SetUpExpectedOldCodePoint(SSL_CTX *ctx) { |
| SSL_CTX_set_select_certificate_cb( |
| ctx, |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| const uint8_t *data; |
| size_t len; |
| if (!SSL_early_callback_ctx_extension_get( |
| client_hello, TLSEXT_TYPE_application_settings_old, &data, |
| &len)) { |
| ADD_FAILURE() << "Could not find alps old codepoint."; |
| return ssl_select_cert_error; |
| } |
| return ssl_select_cert_success; |
| }); |
| } |
| |
| // Test that |SSL_get_client_CA_list| echoes back the configured parameter even |
| // before configuring as a server. |
| TEST(SSLTest, ClientCAList) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| |
| bssl::UniquePtr<X509_NAME> name(X509_NAME_new()); |
| ASSERT_TRUE(name); |
| |
| bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get())); |
| ASSERT_TRUE(name_dup); |
| |
| bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); |
| ASSERT_TRUE(stack); |
| ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup))); |
| |
| // |SSL_set_client_CA_list| takes ownership. |
| SSL_set_client_CA_list(ssl.get(), stack.release()); |
| |
| STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get()); |
| ASSERT_TRUE(result); |
| ASSERT_EQ(1u, sk_X509_NAME_num(result)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get())); |
| } |
| |
| TEST(SSLTest, AddClientCA) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| |
| bssl::UniquePtr<X509> cert1 = GetTestCertificate(); |
| bssl::UniquePtr<X509> cert2 = GetChainTestCertificate(); |
| ASSERT_TRUE(cert1 && cert2); |
| X509_NAME *name1 = X509_get_subject_name(cert1.get()); |
| X509_NAME *name2 = X509_get_subject_name(cert2.get()); |
| |
| EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get()))); |
| |
| ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); |
| ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get())); |
| |
| STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get()); |
| ASSERT_EQ(2u, sk_X509_NAME_num(list)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); |
| |
| ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); |
| |
| list = SSL_get_client_CA_list(ssl.get()); |
| ASSERT_EQ(3u, sk_X509_NAME_num(list)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); |
| EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1)); |
| } |
| |
| struct ECHConfigParams { |
| uint16_t version = TLSEXT_TYPE_encrypted_client_hello; |
| uint16_t config_id = 1; |
| std::string public_name = "example.com"; |
| const EVP_HPKE_KEY *key = nullptr; |
| // kem_id, if zero, takes its value from |key|. |
| uint16_t kem_id = 0; |
| // public_key, if empty takes its value from |key|. |
| std::vector<uint8_t> public_key; |
| size_t max_name_len = 16; |
| // cipher_suites is a list of code points which should contain pairs of KDF |
| // and AEAD IDs. |
| std::vector<uint16_t> cipher_suites = {EVP_HPKE_HKDF_SHA256, |
| EVP_HPKE_AES_128_GCM}; |
| std::vector<uint8_t> extensions; |
| }; |
| |
| // MakeECHConfig serializes an ECHConfig from |params| and writes it to |
| // |*out|. |
| bool MakeECHConfig(std::vector<uint8_t> *out, |
| const ECHConfigParams ¶ms) { |
| uint16_t kem_id = params.kem_id == 0 |
| ? EVP_HPKE_KEM_id(EVP_HPKE_KEY_kem(params.key)) |
| : params.kem_id; |
| std::vector<uint8_t> public_key = params.public_key; |
| if (public_key.empty()) { |
| public_key.resize(EVP_HPKE_MAX_PUBLIC_KEY_LENGTH); |
| size_t len; |
| if (!EVP_HPKE_KEY_public_key(params.key, public_key.data(), &len, |
| public_key.size())) { |
| return false; |
| } |
| public_key.resize(len); |
| } |
| |
| bssl::ScopedCBB cbb; |
| CBB contents, child; |
| if (!CBB_init(cbb.get(), 64) || |
| !CBB_add_u16(cbb.get(), params.version) || |
| !CBB_add_u16_length_prefixed(cbb.get(), &contents) || |
| !CBB_add_u8(&contents, params.config_id) || |
| !CBB_add_u16(&contents, kem_id) || |
| !CBB_add_u16_length_prefixed(&contents, &child) || |
| !CBB_add_bytes(&child, public_key.data(), public_key.size()) || |
| !CBB_add_u16_length_prefixed(&contents, &child)) { |
| return false; |
| } |
| for (uint16_t cipher_suite : params.cipher_suites) { |
| if (!CBB_add_u16(&child, cipher_suite)) { |
| return false; |
| } |
| } |
| if (!CBB_add_u8(&contents, params.max_name_len) || |
| !CBB_add_u8_length_prefixed(&contents, &child) || |
| !CBB_add_bytes( |
| &child, reinterpret_cast<const uint8_t *>(params.public_name.data()), |
| params.public_name.size()) || |
| !CBB_add_u16_length_prefixed(&contents, &child) || |
| !CBB_add_bytes(&child, params.extensions.data(), |
| params.extensions.size()) || |
| !CBB_flush(cbb.get())) { |
| return false; |
| } |
| |
| out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); |
| return true; |
| } |
| |
| static bssl::UniquePtr<SSL_ECH_KEYS> MakeTestECHKeys(uint8_t config_id = 1) { |
| bssl::ScopedEVP_HPKE_KEY key; |
| uint8_t *ech_config; |
| size_t ech_config_len; |
| if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || |
| !SSL_marshal_ech_config(&ech_config, &ech_config_len, config_id, |
| key.get(), "public.example", 16)) { |
| return nullptr; |
| } |
| bssl::UniquePtr<uint8_t> free_ech_config(ech_config); |
| |
| // Install a non-retry config. |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, |
| ech_config_len, key.get())) { |
| return nullptr; |
| } |
| return keys; |
| } |
| |
| static bool InstallECHConfigList(SSL *client, const SSL_ECH_KEYS *keys) { |
| uint8_t *ech_config_list; |
| size_t ech_config_list_len; |
| if (!SSL_ECH_KEYS_marshal_retry_configs(keys, &ech_config_list, |
| &ech_config_list_len)) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); |
| return SSL_set1_ech_config_list(client, ech_config_list, ech_config_list_len); |
| } |
| |
| // Test that |SSL_marshal_ech_config| and |SSL_ECH_KEYS_marshal_retry_configs| |
| // output values as expected. |
| TEST(SSLTest, MarshalECHConfig) { |
| static const uint8_t kPrivateKey[X25519_PRIVATE_KEY_LEN] = { |
| 0xbc, 0xb5, 0x51, 0x29, 0x31, 0x10, 0x30, 0xc9, 0xed, 0x26, 0xde, |
| 0xd4, 0xb3, 0xdf, 0x3a, 0xce, 0x06, 0x8a, 0xee, 0x17, 0xab, 0xce, |
| 0xd7, 0xdb, 0xf3, 0x11, 0xe5, 0xa8, 0xf3, 0xb1, 0x8e, 0x24}; |
| bssl::ScopedEVP_HPKE_KEY key; |
| ASSERT_TRUE(EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), |
| kPrivateKey, sizeof(kPrivateKey))); |
| |
| static const uint8_t kECHConfig[] = { |
| // version |
| 0xfe, 0x0d, |
| // length |
| 0x00, 0x41, |
| // contents.config_id |
| 0x01, |
| // contents.kem_id |
| 0x00, 0x20, |
| // contents.public_key |
| 0x00, 0x20, 0xa6, 0x9a, 0x41, 0x48, 0x5d, 0x32, 0x96, 0xa4, 0xe0, 0xc3, |
| 0x6a, 0xee, 0xf6, 0x63, 0x0f, 0x59, 0x32, 0x6f, 0xdc, 0xff, 0x81, 0x29, |
| 0x59, 0xa5, 0x85, 0xd3, 0x9b, 0x3b, 0xde, 0x98, 0x55, 0x5c, |
| // contents.cipher_suites |
| 0x00, 0x08, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x03, |
| // contents.maximum_name_length |
| 0x10, |
| // contents.public_name |
| 0x0e, 0x70, 0x75, 0x62, 0x6c, 0x69, 0x63, 0x2e, 0x65, 0x78, 0x61, 0x6d, |
| 0x70, 0x6c, 0x65, |
| // contents.extensions |
| 0x00, 0x00}; |
| uint8_t *ech_config; |
| size_t ech_config_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, |
| /*config_id=*/1, key.get(), |
| "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config(ech_config); |
| EXPECT_EQ(Bytes(kECHConfig), Bytes(ech_config, ech_config_len)); |
| |
| // Generate a second ECHConfig. |
| bssl::ScopedEVP_HPKE_KEY key2; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t *ech_config2; |
| size_t ech_config2_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, |
| /*config_id=*/2, key2.get(), |
| "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); |
| |
| // Install both ECHConfigs in an |SSL_ECH_KEYS|. |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, |
| ech_config_len, key.get())); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config2, |
| ech_config2_len, key2.get())); |
| |
| // The ECHConfigList should be correctly serialized. |
| uint8_t *ech_config_list; |
| size_t ech_config_list_len; |
| ASSERT_TRUE(SSL_ECH_KEYS_marshal_retry_configs(keys.get(), &ech_config_list, |
| &ech_config_list_len)); |
| bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); |
| |
| // ECHConfigList is just the concatenation with a length prefix. |
| size_t len = ech_config_len + ech_config2_len; |
| std::vector<uint8_t> expected = {uint8_t(len >> 8), uint8_t(len)}; |
| expected.insert(expected.end(), ech_config, ech_config + ech_config_len); |
| expected.insert(expected.end(), ech_config2, ech_config2 + ech_config2_len); |
| EXPECT_EQ(Bytes(expected), Bytes(ech_config_list, ech_config_list_len)); |
| } |
| |
| TEST(SSLTest, ECHHasDuplicateConfigID) { |
| const struct { |
| std::vector<uint8_t> ids; |
| bool has_duplicate; |
| } kTests[] = { |
| {{}, false}, |
| {{1}, false}, |
| {{1, 2, 3, 255}, false}, |
| {{1, 2, 3, 1}, true}, |
| }; |
| for (const auto &test : kTests) { |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys); |
| for (const uint8_t id : test.ids) { |
| bssl::ScopedEVP_HPKE_KEY key; |
| ASSERT_TRUE( |
| EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t *ech_config; |
| size_t ech_config_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, id, |
| key.get(), "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config(ech_config); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config, ech_config_len, key.get())); |
| } |
| |
| EXPECT_EQ(test.has_duplicate ? 1 : 0, |
| SSL_ECH_KEYS_has_duplicate_config_id(keys.get())); |
| } |
| } |
| |
| // Test that |SSL_ECH_KEYS_add| checks consistency between the public and |
| // private key. |
| TEST(SSLTest, ECHKeyConsistency) { |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys); |
| bssl::ScopedEVP_HPKE_KEY key; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t public_key[EVP_HPKE_MAX_PUBLIC_KEY_LENGTH]; |
| size_t public_key_len; |
| ASSERT_TRUE(EVP_HPKE_KEY_public_key(key.get(), public_key, &public_key_len, |
| sizeof(public_key))); |
| |
| // Adding an ECHConfig with the matching public key succeeds. |
| ECHConfigParams params; |
| params.key = key.get(); |
| std::vector<uint8_t> ech_config; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, params)); |
| EXPECT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| |
| // Adding an ECHConfig with the wrong public key is an error. |
| bssl::ScopedEVP_HPKE_KEY wrong_key; |
| ASSERT_TRUE( |
| EVP_HPKE_KEY_generate(wrong_key.get(), EVP_hpke_x25519_hkdf_sha256())); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| wrong_key.get())); |
| |
| // Adding an ECHConfig with a truncated public key is an error. |
| ECHConfigParams truncated; |
| truncated.key = key.get(); |
| truncated.public_key.assign(public_key, public_key + public_key_len - 1); |
| ASSERT_TRUE(MakeECHConfig(&ech_config, truncated)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), key.get())); |
| |
| // Adding an ECHConfig with the right public key, but wrong KEM ID, is an |
| // error. |
| ECHConfigParams wrong_kem; |
| wrong_kem.key = key.get(); |
| wrong_kem.kem_id = 0x0010; // DHKEM(P-256, HKDF-SHA256) |
| ASSERT_TRUE(MakeECHConfig(&ech_config, wrong_kem)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| } |
| |
| // Test that |SSL_CTX_set1_ech_keys| fails when the config list |
| // has no retry configs. |
| TEST(SSLTest, ECHServerConfigsWithoutRetryConfigs) { |
| bssl::ScopedEVP_HPKE_KEY key; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t *ech_config; |
| size_t ech_config_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, |
| /*config_id=*/1, key.get(), |
| "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config(ech_config); |
| |
| // Install a non-retry config. |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/0, ech_config, |
| ech_config_len, key.get())); |
| |
| // |keys| has no retry configs. |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| EXPECT_FALSE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); |
| |
| // Add the same ECHConfig to the list, but this time mark it as a retry |
| // config. |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, |
| ech_config_len, key.get())); |
| EXPECT_TRUE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); |
| } |
| |
| // Test that the server APIs reject ECHConfigs with unsupported features. |
| TEST(SSLTest, UnsupportedECHConfig) { |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys); |
| bssl::ScopedEVP_HPKE_KEY key; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); |
| |
| // Unsupported versions are rejected. |
| ECHConfigParams unsupported_version; |
| unsupported_version.version = 0xffff; |
| unsupported_version.key = key.get(); |
| std::vector<uint8_t> ech_config; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_version)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| |
| // Unsupported cipher suites are rejected. (We only support HKDF-SHA256.) |
| ECHConfigParams unsupported_kdf; |
| unsupported_kdf.key = key.get(); |
| unsupported_kdf.cipher_suites = {0x002 /* HKDF-SHA384 */, |
| EVP_HPKE_AES_128_GCM}; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_kdf)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| ECHConfigParams unsupported_aead; |
| unsupported_aead.key = key.get(); |
| unsupported_aead.cipher_suites = {EVP_HPKE_HKDF_SHA256, 0xffff}; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_aead)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| |
| |
| // Unsupported extensions are rejected. |
| ECHConfigParams extensions; |
| extensions.key = key.get(); |
| extensions.extensions = {0x00, 0x01, 0x00, 0x00}; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, extensions)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| |
| // Invalid public names are rejected. |
| ECHConfigParams invalid_public_name; |
| invalid_public_name.key = key.get(); |
| invalid_public_name.public_name = "dns_names_have_no_underscores.example"; |
| ASSERT_TRUE(MakeECHConfig(&ech_config, invalid_public_name)); |
| EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, |
| ech_config.data(), ech_config.size(), |
| key.get())); |
| } |
| |
| // Test that |SSL_get_client_random| reports the correct value on both client |
| // and server in ECH. The client sends two different random values. When ECH is |
| // accepted, we should report the inner one. |
| TEST(SSLTest, ECHClientRandomsMatch) { |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); |
| ASSERT_TRUE(keys); |
| ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys.get())); |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| EXPECT_TRUE(SSL_ech_accepted(client.get())); |
| EXPECT_TRUE(SSL_ech_accepted(server.get())); |
| |
| // An ECH server will fairly naturally record the inner ClientHello random, |
| // but an ECH client may forget to update the random once ClientHelloInner is |
| // selected. |
| uint8_t client_random1[SSL3_RANDOM_SIZE]; |
| uint8_t client_random2[SSL3_RANDOM_SIZE]; |
| ASSERT_EQ(sizeof(client_random1), |
| SSL_get_client_random(client.get(), client_random1, |
| sizeof(client_random1))); |
| ASSERT_EQ(sizeof(client_random2), |
| SSL_get_client_random(server.get(), client_random2, |
| sizeof(client_random2))); |
| EXPECT_EQ(Bytes(client_random1), Bytes(client_random2)); |
| } |
| |
| // GetECHLength sets |*out_client_hello_len| and |*out_ech_len| to the lengths |
| // of the ClientHello and ECH extension, respectively, when a client created |
| // from |ctx| constructs a ClientHello with name |name| and an ECHConfig with |
| // maximum name length |max_name_len|. |
| static bool GetECHLength(SSL_CTX *ctx, size_t *out_client_hello_len, |
| size_t *out_ech_len, size_t max_name_len, |
| const char *name) { |
| bssl::ScopedEVP_HPKE_KEY key; |
| uint8_t *ech_config; |
| size_t ech_config_len; |
| if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || |
| !SSL_marshal_ech_config(&ech_config, &ech_config_len, |
| /*config_id=*/1, key.get(), "public.example", |
| max_name_len)) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> free_ech_config(ech_config); |
| |
| bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); |
| if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, |
| ech_config_len, key.get())) { |
| return false; |
| } |
| |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx)); |
| if (!ssl || !InstallECHConfigList(ssl.get(), keys.get()) || |
| (name != nullptr && !SSL_set_tlsext_host_name(ssl.get(), name))) { |
| return false; |
| } |
| SSL_set_connect_state(ssl.get()); |
| |
| std::vector<uint8_t> client_hello; |
| SSL_CLIENT_HELLO parsed; |
| const uint8_t *unused; |
| if (!GetClientHello(ssl.get(), &client_hello) || |
| !ssl_client_hello_init( |
| ssl.get(), &parsed, |
| // Skip record and handshake headers. This assumes the ClientHello |
| // fits in one record. |
| MakeConstSpan(client_hello) |
| .subspan(SSL3_RT_HEADER_LENGTH + SSL3_HM_HEADER_LENGTH)) || |
| !SSL_early_callback_ctx_extension_get( |
| &parsed, TLSEXT_TYPE_encrypted_client_hello, &unused, out_ech_len)) { |
| return false; |
| } |
| *out_client_hello_len = client_hello.size(); |
| return true; |
| } |
| |
| TEST(SSLTest, ECHPadding) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Sample lengths with max_name_len = 128 as baseline. |
| size_t client_hello_len_baseline, ech_len_baseline; |
| ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline, |
| &ech_len_baseline, 128, "example.com")); |
| |
| // Check that all name lengths under the server's maximum look the same. |
| for (size_t name_len : {1, 2, 32, 64, 127, 128}) { |
| SCOPED_TRACE(name_len); |
| size_t client_hello_len, ech_len; |
| ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, |
| std::string(name_len, 'a').c_str())); |
| EXPECT_EQ(client_hello_len, client_hello_len_baseline); |
| EXPECT_EQ(ech_len, ech_len_baseline); |
| } |
| |
| // When sending no SNI, we must still pad as if we are sending one. |
| size_t client_hello_len, ech_len; |
| ASSERT_TRUE( |
| GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, nullptr)); |
| EXPECT_EQ(client_hello_len, client_hello_len_baseline); |
| EXPECT_EQ(ech_len, ech_len_baseline); |
| |
| // Name lengths above the maximum do not get named-based padding, but the |
| // overall input is padded to a multiple of 32. |
| size_t client_hello_len_baseline2, ech_len_baseline2; |
| ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline2, |
| &ech_len_baseline2, 128, |
| std::string(128 + 32, 'a').c_str())); |
| EXPECT_EQ(ech_len_baseline2, ech_len_baseline + 32); |
| // The ClientHello lengths may match if we are still under the threshold for |
| // padding extension. |
| EXPECT_GE(client_hello_len_baseline2, client_hello_len_baseline); |
| |
| for (size_t name_len = 128 + 1; name_len < 128 + 32; name_len++) { |
| SCOPED_TRACE(name_len); |
| ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, |
| std::string(name_len, 'a').c_str())); |
| EXPECT_TRUE(ech_len == ech_len_baseline || ech_len == ech_len_baseline2) |
| << ech_len; |
| EXPECT_TRUE(client_hello_len == client_hello_len_baseline || |
| client_hello_len == client_hello_len_baseline2) |
| << client_hello_len; |
| } |
| } |
| |
| TEST(SSLTest, ECHPublicName) { |
| auto str_to_span = [](const char *str) -> Span<const uint8_t> { |
| return MakeConstSpan(reinterpret_cast<const uint8_t *>(str), strlen(str)); |
| }; |
| |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span(""))); |
| EXPECT_TRUE(ssl_is_valid_ech_public_name(str_to_span("example.com"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span(".example.com"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.com."))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example..com"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("www.-example.com"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("www.example-.com"))); |
| EXPECT_FALSE( |
| ssl_is_valid_ech_public_name(str_to_span("no_underscores.example"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("invalid_chars.\x01.example"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("invalid_chars.\xff.example"))); |
| static const uint8_t kWithNUL[] = {'t', 'e', 's', 't', 0}; |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(kWithNUL)); |
| |
| // Test an LDH label with every character and the maximum length. |
| EXPECT_TRUE(ssl_is_valid_ech_public_name(str_to_span( |
| "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-0123456789"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span( |
| "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-01234567899"))); |
| |
| // Inputs with trailing numeric components are rejected. |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("127.0.0.1"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.1"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.01"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.0x01"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("example.0X01"))); |
| // Leading zeros and values that overflow |uint32_t| are still rejected. |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("example.123456789000000000000000"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("example.012345678900000000000000"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("example.0x123456789abcdefABCDEF0"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name( |
| str_to_span("example.0x0123456789abcdefABCDEF"))); |
| // Adding a non-digit or non-hex character makes it a valid DNS name again. |
| // Single-component numbers are rejected. |
| EXPECT_TRUE(ssl_is_valid_ech_public_name( |
| str_to_span("example.1234567890a"))); |
| EXPECT_TRUE(ssl_is_valid_ech_public_name( |
| str_to_span("example.01234567890a"))); |
| EXPECT_TRUE(ssl_is_valid_ech_public_name( |
| str_to_span("example.0x123456789abcdefg"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("1"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("01"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0x01"))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0X01"))); |
| // Numbers with trailing dots are rejected. (They are already rejected by the |
| // LDH label rules, but the WHATWG URL parser additionally rejects them.) |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("1."))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("01."))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0x01."))); |
| EXPECT_FALSE(ssl_is_valid_ech_public_name(str_to_span("0X01."))); |
| } |
| |
| // When using the built-in verifier, test that |SSL_get0_ech_name_override| is |
| // applied automatically. |
| TEST(SSLTest, ECHBuiltinVerifier) { |
| // These test certificates generated with the following Go program. |
| /* clang-format off |
| func main() { |
| notBefore := time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC) |
| notAfter := time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC) |
| rootKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) |
| rootTemplate := &x509.Certificate{ |
| SerialNumber: big.NewInt(1), |
| Subject: pkix.Name{CommonName: "Test CA"}, |
| NotBefore: notBefore, |
| NotAfter: notAfter, |
| BasicConstraintsValid: true, |
| IsCA: true, |
| } |
| rootDER, _ := x509.CreateCertificate(rand.Reader, rootTemplate, rootTemplate, &rootKey.PublicKey, rootKey) |
| root, _ := x509.ParseCertificate(rootDER) |
| pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: rootDER}) |
| leafKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) |
| leafKeyDER, _ := x509.MarshalPKCS8PrivateKey(leafKey) |
| pem.Encode(os.Stdout, &pem.Block{Type: "PRIVATE KEY", Bytes: leafKeyDER}) |
| for i, name := range []string{"public.example", "secret.example"} { |
| leafTemplate := &x509.Certificate{ |
| SerialNumber: big.NewInt(int64(i) + 2), |
| Subject: pkix.Name{CommonName: name}, |
| NotBefore: notBefore, |
| NotAfter: notAfter, |
| BasicConstraintsValid: true, |
| DNSNames: []string{name}, |
| } |
| leafDER, _ := x509.CreateCertificate(rand.Reader, leafTemplate, root, &leafKey.PublicKey, rootKey) |
| pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: leafDER}) |
| } |
| } |
| clang-format on */ |
| bssl::UniquePtr<X509> root = CertFromPEM(R"( |
| -----BEGIN CERTIFICATE----- |
| MIIBRzCB7aADAgECAgEBMAoGCCqGSM49BAMCMBIxEDAOBgNVBAMTB1Rlc3QgQ0Ew |
| IBcNMDAwMTAxMDAwMDAwWhgPMjA5OTAxMDEwMDAwMDBaMBIxEDAOBgNVBAMTB1Rl |
| c3QgQ0EwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT5JUjrI1DAxSpEl88UkmJw |
| tAJqxo/YrSFo9V3MkcNkfTixi5p6MUtO8DazhEgekBcd2+tBAWtl7dy0qpvTqx92 |
| ozIwMDAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTw6ftkexAI6o4r5FntJIfL |
| GU5F4zAKBggqhkjOPQQDAgNJADBGAiEAiiNowddQeHZaZFIygwe6RW5/WG4sUXWC |
| dkyl9CQzRaYCIQCFS1EvwZbZtMny27fYm1eeYciY0TkJTEi34H1KwyzzIA== |
| -----END CERTIFICATE----- |
| )"); |
| ASSERT_TRUE(root); |
| bssl::UniquePtr<EVP_PKEY> leaf_key = KeyFromPEM(R"( |
| -----BEGIN PRIVATE KEY----- |
| MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgj5WKHwHnziiyPauf |
| 7QukxTwtTyGZkk8qNdms4puJfxqhRANCAARNrkhxabALDlJrHtvkuDwvCWUF/oVC |
| hr6PDITHi1lDlJzvVT4aXBH87sH2n2UV5zpx13NHkq1bIC8eRT8eOIe0 |
| -----END PRIVATE KEY----- |
| )"); |
| ASSERT_TRUE(leaf_key); |
| bssl::UniquePtr<X509> leaf_public = CertFromPEM(R"( |
| -----BEGIN CERTIFICATE----- |
| MIIBaDCCAQ6gAwIBAgIBAjAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB |
| MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5w |
| dWJsaWMuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO |
| Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg |
| Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO |
| K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOcHVibGljLmV4YW1wbGUwCgYIKoZIzj0E |
| AwIDSAAwRQIhANqZRhDR/+QL05hsWXMYEwaiHifd9iakKoFEhKFchcF3AiBRAeXw |
| wRGGT6+iPmTYM6N5/IDyAb5B9Ke38O6lLEsUwA== |
| -----END CERTIFICATE----- |
| )"); |
| ASSERT_TRUE(leaf_public); |
| bssl::UniquePtr<X509> leaf_secret = CertFromPEM(R"( |
| -----BEGIN CERTIFICATE----- |
| MIIBaTCCAQ6gAwIBAgIBAzAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB |
| MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5z |
| ZWNyZXQuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO |
| Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg |
| Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO |
| K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOc2VjcmV0LmV4YW1wbGUwCgYIKoZIzj0E |
| AwIDSQAwRgIhAPQdIz1xCFkc9WuSkxOxJDpywZiEp9SnKcxJ9nwrlRp3AiEA+O3+ |
| XRqE7XFhHL+7TNC2a9OOAjQsEF137YPWo+rhgko= |
| -----END CERTIFICATE----- |
| )"); |
| ASSERT_TRUE(leaf_secret); |
| |
| // Use different config IDs so that fuzzer mode, which breaks trial |
| // decryption, will observe the key mismatch. |
| bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(/*config_id=*/1); |
| ASSERT_TRUE(keys); |
| bssl::UniquePtr<SSL_ECH_KEYS> wrong_keys = MakeTestECHKeys(/*config_id=*/2); |
| ASSERT_TRUE(wrong_keys); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| |
| // Configure the client to verify certificates and expect the secret name. |
| // This is the name the client is trying to connect to. If ECH is rejected, |
| // BoringSSL will internally override this setting with the public name. |
| bssl::UniquePtr<X509_STORE> store(X509_STORE_new()); |
| ASSERT_TRUE(store); |
| ASSERT_TRUE(X509_STORE_add_cert(store.get(), root.get())); |
| SSL_CTX_set_cert_store(client_ctx.get(), store.release()); |
| SSL_CTX_set_verify(client_ctx.get(), SSL_VERIFY_PEER, nullptr); |
| X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), |
| X509_V_FLAG_NO_CHECK_TIME); |
| static const char kSecretName[] = "secret.example"; |
| ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(SSL_CTX_get0_param(client_ctx.get()), |
| kSecretName, strlen(kSecretName))); |
| |
| // For simplicity, we only run through a pair of representative scenarios here |
| // and rely on runner.go to verify that |SSL_get0_ech_name_override| behaves |
| // correctly. |
| for (bool accept_ech : {false, true}) { |
| SCOPED_TRACE(accept_ech); |
| for (bool use_leaf_secret : {false, true}) { |
| SCOPED_TRACE(use_leaf_secret); |
| |
| // The server will reject ECH when configured with the wrong keys. |
| ASSERT_TRUE(SSL_CTX_set1_ech_keys( |
| server_ctx.get(), accept_ech ? keys.get() : wrong_keys.get())); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); |
| |
| // Configure the server with the selected certificate. |
| ASSERT_TRUE(SSL_use_certificate(server.get(), use_leaf_secret |
| ? leaf_secret.get() |
| : leaf_public.get())); |
| ASSERT_TRUE(SSL_use_PrivateKey(server.get(), leaf_key.get())); |
| |
| // The handshake may fail due to name mismatch or ECH reject. We check |
| // |SSL_get_verify_result| to confirm the handshake got far enough. |
| CompleteHandshakes(client.get(), server.get()); |
| EXPECT_EQ(accept_ech == use_leaf_secret ? X509_V_OK |
| : X509_V_ERR_HOSTNAME_MISMATCH, |
| SSL_get_verify_result(client.get())); |
| } |
| } |
| } |
| |
| #if defined(OPENSSL_THREADS) |
| // Test that the server ECH config can be swapped out while the |SSL_CTX| is |
| // in use on other threads. This test is intended to be run with TSan. |
| TEST(SSLTest, ECHThreads) { |
| // Generate a pair of ECHConfigs. |
| bssl::ScopedEVP_HPKE_KEY key1; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key1.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t *ech_config1; |
| size_t ech_config1_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config1, &ech_config1_len, |
| /*config_id=*/1, key1.get(), |
| "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config1(ech_config1); |
| bssl::ScopedEVP_HPKE_KEY key2; |
| ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); |
| uint8_t *ech_config2; |
| size_t ech_config2_len; |
| ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, |
| /*config_id=*/2, key2.get(), |
| "public.example", 16)); |
| bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); |
| |
| // |keys1| contains the first config. |keys12| contains both. |
| bssl::UniquePtr<SSL_ECH_KEYS> keys1(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys1); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys1.get(), /*is_retry_config=*/1, ech_config1, |
| ech_config1_len, key1.get())); |
| bssl::UniquePtr<SSL_ECH_KEYS> keys12(SSL_ECH_KEYS_new()); |
| ASSERT_TRUE(keys12); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/1, ech_config2, |
| ech_config2_len, key2.get())); |
| ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/0, ech_config1, |
| ech_config1_len, key1.get())); |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys1.get())); |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| ASSERT_TRUE(InstallECHConfigList(client.get(), keys1.get())); |
| |
| // In parallel, complete the connection and reconfigure the ECHConfig. Note |
| // |keys12| supports all the keys in |keys1|, so the handshake should complete |
| // the same whichever the server uses. |
| std::vector<std::thread> threads; |
| threads.emplace_back([&] { |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| EXPECT_TRUE(SSL_ech_accepted(client.get())); |
| EXPECT_TRUE(SSL_ech_accepted(server.get())); |
| }); |
| threads.emplace_back([&] { |
| EXPECT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys12.get())); |
| }); |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| #endif // OPENSSL_THREADS |
| |
| TEST(SSLTest, TLS13ExporterAvailability) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| // Configure only TLS 1.3. |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| std::vector<uint8_t> buffer(32); |
| const char *label = "EXPORTER-test-label"; |
| |
| // The exporters are not available before the handshake starts. |
| EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| |
| // Send the client's first flight of handshake messages. |
| int client_ret = SSL_do_handshake(client.get()); |
| EXPECT_EQ(SSL_get_error(client.get(), client_ret), SSL_ERROR_WANT_READ); |
| |
| // The handshake isn't far enough for the exporters to work. |
| EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| |
| // Send all the server's handshake messages. |
| int server_ret = SSL_do_handshake(server.get()); |
| EXPECT_EQ(SSL_get_error(server.get(), server_ret), SSL_ERROR_WANT_READ); |
| |
| // At this point in the handshake, the server should have the exporter key |
| // derived since it's sent its Finished message. The client hasn't yet |
| // processed the server's handshake messages, so the exporter shouldn't be |
| // available to the client. |
| EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| |
| // Finish the handshake on the client. |
| EXPECT_EQ(SSL_do_handshake(client.get()), 1); |
| |
| // The exporter should be available on both endpoints. |
| EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| |
| // Finish the handshake on the server. |
| EXPECT_EQ(SSL_do_handshake(server.get()), 1); |
| |
| // The exporter should still be available on both endpoints. |
| EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), |
| buffer.size(), label, strlen(label), |
| nullptr, 0, 0)); |
| } |
| |
| static void AppendSession(SSL_SESSION *session, void *arg) { |
| std::vector<SSL_SESSION*> *out = |
| reinterpret_cast<std::vector<SSL_SESSION*>*>(arg); |
| out->push_back(session); |
| } |
| |
| // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in |
| // order. |
| static bool CacheEquals(SSL_CTX *ctx, |
| const std::vector<SSL_SESSION*> &expected) { |
| // Check the linked list. |
| SSL_SESSION *ptr = ctx->session_cache_head; |
| for (SSL_SESSION *session : expected) { |
| if (ptr != session) { |
| return false; |
| } |
| // TODO(davidben): This is an absurd way to denote the end of the list. |
| if (ptr->next == |
| reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) { |
| ptr = nullptr; |
| } else { |
| ptr = ptr->next; |
| } |
| } |
| if (ptr != nullptr) { |
| return false; |
| } |
| |
| // Check the hash table. |
| std::vector<SSL_SESSION*> actual, expected_copy; |
| lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual); |
| expected_copy = expected; |
| |
| std::sort(actual.begin(), actual.end()); |
| std::sort(expected_copy.begin(), expected_copy.end()); |
| |
| return actual == expected_copy; |
| } |
| |
| static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) { |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); |
| if (!ssl_ctx) { |
| return nullptr; |
| } |
| bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get())); |
| if (!ret) { |
| return nullptr; |
| } |
| |
| uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0}; |
| OPENSSL_memcpy(id, &number, sizeof(number)); |
| if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) { |
| return nullptr; |
| } |
| return ret; |
| } |
| |
| // Test that the internal session cache behaves as expected. |
| TEST(SSLTest, InternalSessionCache) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Prepare 10 test sessions. |
| std::vector<bssl::UniquePtr<SSL_SESSION>> sessions; |
| for (int i = 0; i < 10; i++) { |
| bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i); |
| ASSERT_TRUE(session); |
| sessions.push_back(std::move(session)); |
| } |
| |
| SSL_CTX_sess_set_cache_size(ctx.get(), 5); |
| |
| // Insert all the test sessions. |
| for (const auto &session : sessions) { |
| ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get())); |
| } |
| |
| // Only the last five should be in the list. |
| ASSERT_TRUE(CacheEquals( |
| ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), |
| sessions[6].get(), sessions[5].get()})); |
| |
| // Inserting an element already in the cache should fail and leave the cache |
| // unchanged. |
| ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get())); |
| ASSERT_TRUE(CacheEquals( |
| ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), |
| sessions[6].get(), sessions[5].get()})); |
| |
| // Although collisions should be impossible (256-bit session IDs), the cache |
| // must handle them gracefully. |
| bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7)); |
| ASSERT_TRUE(collision); |
| ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get())); |
| ASSERT_TRUE(CacheEquals( |
| ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), |
| sessions[6].get(), sessions[5].get()})); |
| |
| // Removing sessions behaves correctly. |
| ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get())); |
| ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), |
| sessions[8].get(), sessions[5].get()})); |
| |
| // Removing sessions requires an exact match. |
| ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get())); |
| ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get())); |
| |
| // The cache remains unchanged. |
| ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), |
| sessions[8].get(), sessions[5].get()})); |
| } |
| |
| static uint16_t EpochFromSequence(uint64_t seq) { |
| return static_cast<uint16_t>(seq >> 48); |
| } |
| |
| static const uint8_t kTestName[] = { |
| 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, |
| 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, |
| 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, |
| 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, |
| 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, |
| 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, |
| }; |
| |
| // SSLVersionTest executes its test cases under all available protocol versions. |
| // Test cases call |Connect| to create a connection using context objects with |
| // the protocol version fixed to the current version under test. |
| class SSLVersionTest : public ::testing::TestWithParam<VersionParam> { |
| protected: |
| SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {} |
| |
| void SetUp() { ResetContexts(); } |
| |
| bssl::UniquePtr<SSL_CTX> CreateContext() const { |
| const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method(); |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method)); |
| if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) || |
| !SSL_CTX_set_max_proto_version(ctx.get(), version())) { |
| return nullptr; |
| } |
| return ctx; |
| } |
| |
| void ResetContexts() { |
| ASSERT_TRUE(cert_); |
| ASSERT_TRUE(key_); |
| client_ctx_ = CreateContext(); |
| ASSERT_TRUE(client_ctx_); |
| server_ctx_ = CreateContext(); |
| ASSERT_TRUE(server_ctx_); |
| // Set up a server cert. Client certs can be set up explicitly. |
| ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); |
| } |
| |
| bool UseCertAndKey(SSL_CTX *ctx) const { |
| return SSL_CTX_use_certificate(ctx, cert_.get()) && |
| SSL_CTX_use_PrivateKey(ctx, key_.get()); |
| } |
| |
| bool Connect(const ClientConfig &config = ClientConfig()) { |
| return ConnectClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get(), config, |
| shed_handshake_config_); |
| } |
| |
| uint16_t version() const { return GetParam().version; } |
| |
| bool is_tls13() const { |
| return version() == TLS1_3_VERSION || |
| version() == DTLS1_3_EXPERIMENTAL_VERSION; |
| } |
| |
| bool is_dtls() const { |
| return GetParam().ssl_method == VersionParam::is_dtls; |
| } |
| |
| bool shed_handshake_config_ = true; |
| bssl::UniquePtr<SSL> client_, server_; |
| bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_; |
| bssl::UniquePtr<X509> cert_; |
| bssl::UniquePtr<EVP_PKEY> key_; |
| }; |
| |
| INSTANTIATE_TEST_SUITE_P(WithVersion, SSLVersionTest, |
| testing::ValuesIn(kAllVersions), |
| [](const testing::TestParamInfo<VersionParam> &i) { |
| return i.param.name; |
| }); |
| |
| TEST_P(SSLVersionTest, SequenceNumber) { |
| ASSERT_TRUE(Connect()); |
| |
| // Drain any post-handshake messages to ensure there are no unread records |
| // on either end. |
| ASSERT_TRUE(FlushNewSessionTickets(client_.get(), server_.get())); |
| |
| uint64_t client_read_seq = SSL_get_read_sequence(client_.get()); |
| uint64_t client_write_seq = SSL_get_write_sequence(client_.get()); |
| uint64_t server_read_seq = SSL_get_read_sequence(server_.get()); |
| uint64_t server_write_seq = SSL_get_write_sequence(server_.get()); |
| |
| if (is_dtls()) { |
| if (version() == DTLS1_3_EXPERIMENTAL_VERSION) { |
| // Both client and server must be at epoch 3 (application data). |
| EXPECT_EQ(EpochFromSequence(client_read_seq), 3); |
| EXPECT_EQ(EpochFromSequence(client_write_seq), 3); |
| EXPECT_EQ(EpochFromSequence(server_read_seq), 3); |
| EXPECT_EQ(EpochFromSequence(server_write_seq), 3); |
| |
| // TODO(crbug.com/42290608): The next record to be written should exceed |
| // the largest received, but they'll actually be equal because the |
| // |SSL_get_read_sequence| API cannot represent DTLS key transitions. |
| EXPECT_GE(client_write_seq, server_read_seq); |
| EXPECT_GE(server_write_seq, client_read_seq); |
| } else { |
| // Both client and server must be at epoch 1. |
| EXPECT_EQ(EpochFromSequence(client_read_seq), 1); |
| EXPECT_EQ(EpochFromSequence(client_write_seq), 1); |
| EXPECT_EQ(EpochFromSequence(server_read_seq), 1); |
| EXPECT_EQ(EpochFromSequence(server_write_seq), 1); |
| |
| // The next record to be written should exceed the largest received. |
| EXPECT_GT(client_write_seq, server_read_seq); |
| EXPECT_GT(server_write_seq, client_read_seq); |
| } |
| } else { |
| // The next record to be written should equal the next to be received. |
| EXPECT_EQ(client_write_seq, server_read_seq); |
| EXPECT_EQ(server_write_seq, client_read_seq); |
| } |
| |
| // Send a record from client to server. |
| uint8_t byte = 0; |
| EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1); |
| EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1); |
| |
| if (version() == DTLS1_3_EXPERIMENTAL_VERSION) { |
| // TODO(crbug.com/42290608): Write an appropriate test for incrementing both |
| // sequence number and epoch in the following test. The server read seq was |
| // in epoch 2, but after the write it's in epoch 3, so adding 1 doesn't work |
| // any more. |
| return; |
| } |
| |
| // The client write and server read sequence numbers should have |
| // incremented. |
| EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get())); |
| EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get())); |
| } |
| |
| TEST_P(SSLVersionTest, OneSidedShutdown) { |
| // SSL_shutdown is a no-op in DTLS. |
| if (is_dtls()) { |
| return; |
| } |
| ASSERT_TRUE(Connect()); |
| |
| // Shut down half the connection. |SSL_shutdown| will return 0 to signal only |
| // one side has shut down. |
| ASSERT_EQ(SSL_shutdown(client_.get()), 0); |
| |
| // Reading from the server should consume the EOF. |
| uint8_t byte; |
| ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0); |
| ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN); |
| |
| // However, the server may continue to write data and then shut down the |
| // connection. |
| byte = 42; |
| ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1); |
| ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1); |
| ASSERT_EQ(byte, 42); |
| |
| // The server may then shutdown the connection. |
| EXPECT_EQ(SSL_shutdown(server_.get()), 1); |
| EXPECT_EQ(SSL_shutdown(client_.get()), 1); |
| } |
| |
| // Test that, after calling |SSL_shutdown|, |SSL_write| fails. |
| TEST_P(SSLVersionTest, WriteAfterShutdown) { |
| ASSERT_TRUE(Connect()); |
| |
| for (SSL *ssl : {client_.get(), server_.get()}) { |
| SCOPED_TRACE(SSL_is_server(ssl) ? "server" : "client"); |
| |
| bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(mem); |
| SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); |
| |
| // Shut down half the connection. |SSL_shutdown| will return 0 to signal |
| // only one side has shut down. |
| ASSERT_EQ(SSL_shutdown(ssl), 0); |
| |
| // |ssl| should have written an alert to the transport. |
| const uint8_t *unused; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_NE(0u, len); |
| EXPECT_TRUE(BIO_reset(mem.get())); |
| |
| // Writing should fail. |
| EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); |
| |
| // Nothing should be written to the transport. |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_EQ(0u, len); |
| } |
| } |
| |
| // Test that, after sending a fatal alert in a failed |SSL_read|, |SSL_write| |
| // fails. |
| TEST_P(SSLVersionTest, WriteAfterReadSentFatalAlert) { |
| // Decryption failures are not fatal in DTLS. |
| if (is_dtls()) { |
| return; |
| } |
| |
| ASSERT_TRUE(Connect()); |
| |
| // Save the write |BIO|s as the test will overwrite them. |
| bssl::UniquePtr<BIO> client_wbio = bssl::UpRef(SSL_get_wbio(client_.get())); |
| bssl::UniquePtr<BIO> server_wbio = bssl::UpRef(SSL_get_wbio(server_.get())); |
| |
| for (bool test_server : {false, true}) { |
| SCOPED_TRACE(test_server ? "server" : "client"); |
| SSL *ssl = test_server ? server_.get() : client_.get(); |
| BIO *other_wbio = test_server ? client_wbio.get() : server_wbio.get(); |
| |
| bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(mem); |
| SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); |
| |
| // Read an invalid record from the peer. |
| static const uint8_t kInvalidRecord[] = "invalid record"; |
| EXPECT_EQ(int{sizeof(kInvalidRecord)}, |
| BIO_write(other_wbio, kInvalidRecord, sizeof(kInvalidRecord))); |
| char buf[256]; |
| EXPECT_EQ(-1, SSL_read(ssl, buf, sizeof(buf))); |
| |
| // |ssl| should have written an alert to the transport. |
| const uint8_t *unused; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_NE(0u, len); |
| EXPECT_TRUE(BIO_reset(mem.get())); |
| |
| // Writing should fail. |
| EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); |
| |
| // Nothing should be written to the transport. |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_EQ(0u, len); |
| } |
| } |
| |
| // Test that, after sending a fatal alert from the handshake, |SSL_write| fails. |
| TEST_P(SSLVersionTest, WriteAfterHandshakeSentFatalAlert) { |
| for (bool test_server : {false, true}) { |
| SCOPED_TRACE(test_server ? "server" : "client"); |
| |
| bssl::UniquePtr<SSL> ssl( |
| SSL_new(test_server ? server_ctx_.get() : client_ctx_.get())); |
| ASSERT_TRUE(ssl); |
| if (test_server) { |
| SSL_set_accept_state(ssl.get()); |
| } else { |
| SSL_set_connect_state(ssl.get()); |
| } |
| |
| std::vector<uint8_t> invalid; |
| if (is_dtls()) { |
| // In DTLS, invalid records are discarded. To cause the handshake to fail, |
| // use a valid handshake record with invalid contents. |
| invalid.push_back(SSL3_RT_HANDSHAKE); |
| invalid.push_back(DTLS1_VERSION >> 8); |
| invalid.push_back(DTLS1_VERSION & 0xff); |
| // epoch and sequence_number |
| for (int i = 0; i < 8; i++) { |
| invalid.push_back(0); |
| } |
| // A one-byte fragment is invalid. |
| invalid.push_back(0); |
| invalid.push_back(1); |
| // Arbitrary contents. |
| invalid.push_back(0); |
| } else { |
| invalid = {'i', 'n', 'v', 'a', 'l', 'i', 'd'}; |
| } |
| bssl::UniquePtr<BIO> rbio( |
| BIO_new_mem_buf(invalid.data(), invalid.size())); |
| ASSERT_TRUE(rbio); |
| SSL_set0_rbio(ssl.get(), rbio.release()); |
| |
| bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(mem); |
| SSL_set0_wbio(ssl.get(), bssl::UpRef(mem).release()); |
| |
| // The handshake should fail. |
| EXPECT_EQ(-1, SSL_do_handshake(ssl.get())); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); |
| uint32_t err = ERR_get_error(); |
| |
| // |ssl| should have written an alert (and, in the client's case, a |
| // ClientHello) to the transport. |
| const uint8_t *unused; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_NE(0u, len); |
| EXPECT_TRUE(BIO_reset(mem.get())); |
| |
| // Writing should fail, with the same error as the handshake. |
| EXPECT_EQ(-1, SSL_write(ssl.get(), "a", 1)); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); |
| EXPECT_EQ(err, ERR_get_error()); |
| |
| // Nothing should be written to the transport. |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_EQ(0u, len); |
| } |
| } |
| |
| // Test that, after seeing TLS 1.2 in response to early data, |SSL_write| |
| // continues to report |SSL_R_WRONG_VERSION_ON_EARLY_DATA|. See |
| // https://crbug.com/1078515. |
| TEST(SSLTest, WriteAfterWrongVersionOnEarlyData) { |
| // Set up some 0-RTT-enabled contexts. |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); |
| |
| // Get an early-data-capable session. |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx.get(), server_ctx.get()); |
| ASSERT_TRUE(session); |
| EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); |
| |
| // Offer the session to the server, but now the server speaks TLS 1.2. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session.get()); |
| EXPECT_TRUE(SSL_set_max_proto_version(server.get(), TLS1_2_VERSION)); |
| |
| // The client handshake initially succeeds in the early data state. |
| EXPECT_EQ(1, SSL_do_handshake(client.get())); |
| EXPECT_TRUE(SSL_in_early_data(client.get())); |
| |
| // The server processes the ClientHello and negotiates TLS 1.2. |
| EXPECT_EQ(-1, SSL_do_handshake(server.get())); |
| EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server.get(), -1)); |
| EXPECT_EQ(TLS1_2_VERSION, SSL_version(server.get())); |
| |
| // Capture the client's output. |
| bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(mem); |
| SSL_set0_wbio(client.get(), bssl::UpRef(mem).release()); |
| |
| // The client processes the ServerHello and fails. |
| EXPECT_EQ(-1, SSL_do_handshake(client.get())); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); |
| EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, |
| SSL_R_WRONG_VERSION_ON_EARLY_DATA)); |
| |
| // The client should have written an alert to the transport. |
| const uint8_t *unused; |
| size_t len; |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_NE(0u, len); |
| EXPECT_TRUE(BIO_reset(mem.get())); |
| |
| // Writing should fail, with the same error as the handshake. |
| EXPECT_EQ(-1, SSL_write(client.get(), "a", 1)); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); |
| EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, |
| SSL_R_WRONG_VERSION_ON_EARLY_DATA)); |
| |
| // Nothing should be written to the transport. |
| ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); |
| EXPECT_EQ(0u, len); |
| } |
| |
| TEST(SSLTest, SessionDuplication) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| SSL_SESSION *session0 = SSL_get_session(client.get()); |
| bssl::UniquePtr<SSL_SESSION> session1 = |
| bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL); |
| ASSERT_TRUE(session1); |
| |
| session1->not_resumable = false; |
| |
| uint8_t *s0_bytes, *s1_bytes; |
| size_t s0_len, s1_len; |
| |
| ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len)); |
| bssl::UniquePtr<uint8_t> free_s0(s0_bytes); |
| |
| ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len)); |
| bssl::UniquePtr<uint8_t> free_s1(s1_bytes); |
| |
| EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len)); |
| } |
| |
| static void ExpectFDs(const SSL *ssl, int rfd, int wfd) { |
| EXPECT_EQ(rfd, SSL_get_fd(ssl)); |
| EXPECT_EQ(rfd, SSL_get_rfd(ssl)); |
| EXPECT_EQ(wfd, SSL_get_wfd(ssl)); |
| |
| // The wrapper BIOs are always equal when fds are equal, even if set |
| // individually. |
| if (rfd == wfd) { |
| EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl)); |
| } |
| } |
| |
| TEST(SSLTest, SetFD) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Test setting different read and write FDs. |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); |
| ExpectFDs(ssl.get(), 1, 2); |
| |
| // Test setting the same FD. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); |
| ExpectFDs(ssl.get(), 1, 1); |
| |
| // Test setting the same FD one side at a time. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); |
| ExpectFDs(ssl.get(), 1, 1); |
| |
| // Test setting the same FD in the other order. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); |
| ExpectFDs(ssl.get(), 1, 1); |
| |
| // Test changing the read FD partway through. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2)); |
| ExpectFDs(ssl.get(), 2, 1); |
| |
| // Test changing the write FD partway through. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); |
| ExpectFDs(ssl.get(), 1, 2); |
| |
| // Test a no-op change to the read FD partway through. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); |
| ExpectFDs(ssl.get(), 1, 1); |
| |
| // Test a no-op change to the write FD partway through. |
| ssl.reset(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); |
| EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); |
| ExpectFDs(ssl.get(), 1, 1); |
| |
| // ASan builds will implicitly test that the internal |BIO| reference-counting |
| // is correct. |
| } |
| |
| TEST(SSLTest, SetBIO) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())), |
| bio3(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(ssl); |
| ASSERT_TRUE(bio1); |
| ASSERT_TRUE(bio2); |
| ASSERT_TRUE(bio3); |
| |
| // SSL_set_bio takes one reference when the parameters are the same. |
| BIO_up_ref(bio1.get()); |
| SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); |
| |
| // Repeating the call does nothing. |
| SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); |
| |
| // It takes one reference each when the parameters are different. |
| BIO_up_ref(bio2.get()); |
| BIO_up_ref(bio3.get()); |
| SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); |
| |
| // Repeating the call does nothing. |
| SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); |
| |
| // It takes one reference when changing only wbio. |
| BIO_up_ref(bio1.get()); |
| SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); |
| |
| // It takes one reference when changing only rbio and the two are different. |
| BIO_up_ref(bio3.get()); |
| SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); |
| |
| // If setting wbio to rbio, it takes no additional references. |
| SSL_set_bio(ssl.get(), bio3.get(), bio3.get()); |
| |
| // From there, wbio may be switched to something else. |
| BIO_up_ref(bio1.get()); |
| SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); |
| |
| // If setting rbio to wbio, it takes no additional references. |
| SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); |
| |
| // From there, rbio may be switched to something else, but, for historical |
| // reasons, it takes a reference to both parameters. |
| BIO_up_ref(bio1.get()); |
| BIO_up_ref(bio2.get()); |
| SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); |
| |
| // ASAN builds will implicitly test that the internal |BIO| reference-counting |
| // is correct. |
| } |
| |
| static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; } |
| |
| TEST_P(SSLVersionTest, GetPeerCertificate) { |
| ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); |
| |
| // Configure both client and server to accept any certificate. |
| SSL_CTX_set_verify(client_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); |
| SSL_CTX_set_verify(server_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); |
| |
| ASSERT_TRUE(Connect()); |
| |
| // Client and server should both see the leaf certificate. |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); |
| ASSERT_TRUE(peer); |
| ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); |
| |
| peer.reset(SSL_get_peer_certificate(client_.get())); |
| ASSERT_TRUE(peer); |
| ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); |
| |
| // However, for historical reasons, the X509 chain includes the leaf on the |
| // client, but does not on the server. |
| EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u); |
| EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())), |
| 1u); |
| |
| EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u); |
| EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())), |
| 1u); |
| } |
| |
| TEST_P(SSLVersionTest, NoPeerCertificate) { |
| SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); |
| SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); |
| SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); |
| |
| ASSERT_TRUE(Connect()); |
| |
| // Server should not see a peer certificate. |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); |
| ASSERT_FALSE(peer); |
| ASSERT_FALSE(SSL_get0_peer_certificates(server_.get())); |
| } |
| |
| TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) { |
| uint8_t *cert_der = NULL; |
| int cert_der_len = i2d_X509(cert_.get(), &cert_der); |
| ASSERT_GE(cert_der_len, 0); |
| bssl::UniquePtr<uint8_t> free_cert_der(cert_der); |
| |
| uint8_t cert_sha256[SHA256_DIGEST_LENGTH]; |
| SHA256(cert_der, cert_der_len, cert_sha256); |
| |
| ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); |
| |
| // Configure both client and server to accept any certificate, but the |
| // server must retain only the SHA-256 of the peer. |
| SSL_CTX_set_verify(client_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_verify(server_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); |
| SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); |
| SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1); |
| |
| ASSERT_TRUE(Connect()); |
| |
| // The peer certificate has been dropped. |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); |
| EXPECT_FALSE(peer); |
| |
| SSL_SESSION *session = SSL_get_session(server_.get()); |
| EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session)); |
| |
| const uint8_t *peer_sha256; |
| size_t peer_sha256_len; |
| SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len); |
| EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len)); |
| } |
| |
| // Tests that our ClientHellos do not change unexpectedly. These are purely |
| // change detection tests. If they fail as part of an intentional ClientHello |
| // change, update the test vector. |
| TEST(SSLTest, ClientHello) { |
| struct { |
| uint16_t max_version; |
| std::vector<uint8_t> expected; |
| } kTests[] = { |
| {TLS1_VERSION, |
| {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x01, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, |
| 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, |
| 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, |
| 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, |
| 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, |
| {TLS1_1_VERSION, |
| {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x02, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, |
| 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, |
| 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, |
| 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, |
| 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, |
| {TLS1_2_VERSION, |
| {0x16, 0x03, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x7c, 0x03, 0x03, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0xcc, 0xa9, |
| 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09, |
| 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, |
| 0x00, 0x35, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, |
| 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, |
| 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, |
| 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, |
| 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, |
| 0x01}}, |
| // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our |
| // implementation has settled enough that it won't change. |
| }; |
| |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.max_version); |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| // Our default cipher list varies by CPU capabilities, so manually place the |
| // ChaCha20 ciphers in front. |
| const char *cipher_list = "CHACHA20:ALL"; |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version)); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list)); |
| |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| std::vector<uint8_t> client_hello; |
| ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello)); |
| |
| // Zero the client_random. |
| constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header |
| 1 + 3 + // handshake message header |
| 2; // client_version |
| ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE); |
| OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE); |
| |
| if (client_hello != t.expected) { |
| ADD_FAILURE() << "ClientHellos did not match."; |
| // Print the value manually so it is easier to update the test vector. |
| for (size_t i = 0; i < client_hello.size(); i += 12) { |
| printf(" %c", i == 0 ? '{' : ' '); |
| for (size_t j = i; j < client_hello.size() && j < i + 12; j++) { |
| if (j > i) { |
| printf(" "); |
| } |
| printf("0x%02x", client_hello[j]); |
| if (j < client_hello.size() - 1) { |
| printf(","); |
| } |
| } |
| if (i + 12 >= client_hello.size()) { |
| printf("}},"); |
| } |
| printf("\n"); |
| } |
| } |
| } |
| } |
| |
| static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx, |
| SSL_SESSION *session, bool want_reused) { |
| bssl::UniquePtr<SSL> client, server; |
| ClientConfig config; |
| config.session = session; |
| ASSERT_TRUE( |
| ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config)); |
| |
| EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get())); |
| |
| bool was_reused = !!SSL_session_reused(client.get()); |
| EXPECT_EQ(was_reused, want_reused); |
| } |
| |
| static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx, |
| SSL_CTX *server_ctx, |
| SSL_SESSION *session) { |
| g_last_session = nullptr; |
| SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ClientConfig config; |
| config.session = session; |
| if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, |
| config) || |
| !FlushNewSessionTickets(client.get(), server.get())) { |
| fprintf(stderr, "Failed to connect client and server.\n"); |
| return nullptr; |
| } |
| |
| if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) { |
| fprintf(stderr, "Client and server were inconsistent.\n"); |
| return nullptr; |
| } |
| |
| if (!SSL_session_reused(client.get())) { |
| fprintf(stderr, "Session was not reused.\n"); |
| return nullptr; |
| } |
| |
| SSL_CTX_sess_set_new_cb(client_ctx, nullptr); |
| |
| if (!g_last_session) { |
| fprintf(stderr, "Client did not receive a renewed session.\n"); |
| return nullptr; |
| } |
| return std::move(g_last_session); |
| } |
| |
| static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key, |
| bool changed) { |
| uint8_t new_key[kTicketKeyLen]; |
| // May return 0, 1 or 48. |
| ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1); |
| if (changed) { |
| ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); |
| } else { |
| ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); |
| } |
| OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen); |
| } |
| |
| static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) { |
| static const uint8_t kContext[] = {3}; |
| |
| if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) { |
| return SSL_TLSEXT_ERR_ALERT_FATAL; |
| } |
| |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| TEST_P(SSLVersionTest, SessionIDContext) { |
| static const uint8_t kContext1[] = {1}; |
| static const uint8_t kContext2[] = {2}; |
| |
| ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, |
| sizeof(kContext1))); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| true /* expect session reused */)); |
| |
| // Change the session ID context. |
| ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2, |
| sizeof(kContext2))); |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| false /* expect session not reused */)); |
| |
| // Change the session ID context back and install an SNI callback to switch |
| // it. |
| ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, |
| sizeof(kContext1))); |
| |
| SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), |
| SwitchSessionIDContextSNI); |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| false /* expect session not reused */)); |
| |
| // Switch the session ID context with the early callback instead. |
| SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr); |
| SSL_CTX_set_select_certificate_cb( |
| server_ctx_.get(), |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| static const uint8_t kContext[] = {3}; |
| |
| if (!SSL_set_session_id_context(client_hello->ssl, kContext, |
| sizeof(kContext))) { |
| return ssl_select_cert_error; |
| } |
| |
| return ssl_select_cert_success; |
| }); |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| false /* expect session not reused */)); |
| } |
| |
| static timeval g_current_time; |
| |
| static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { |
| *out_clock = g_current_time; |
| } |
| |
| static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) { |
| out_clock->tv_sec = 1000; |
| out_clock->tv_usec = 0; |
| } |
| |
| static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, |
| EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, |
| int encrypt) { |
| static const uint8_t kZeros[16] = {0}; |
| |
| if (encrypt) { |
| OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); |
| RAND_bytes(iv, 16); |
| } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { |
| return 0; |
| } |
| |
| if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || |
| !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { |
| return -1; |
| } |
| |
| // Returning two from the callback in decrypt mode renews the |
| // session in TLS 1.2 and below. |
| return encrypt ? 1 : 2; |
| } |
| |
| static bool GetServerTicketTime(long *out, const SSL_SESSION *session) { |
| const uint8_t *ticket; |
| size_t ticket_len; |
| SSL_SESSION_get0_ticket(session, &ticket, &ticket_len); |
| if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) { |
| return false; |
| } |
| |
| const uint8_t *ciphertext = ticket + 16 + 16; |
| size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH; |
| auto plaintext = std::make_unique<uint8_t[]>(len); |
| |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| // Fuzzer-mode tickets are unencrypted. |
| OPENSSL_memcpy(plaintext.get(), ciphertext, len); |
| #else |
| static const uint8_t kZeros[16] = {0}; |
| const uint8_t *iv = ticket + 16; |
| bssl::ScopedEVP_CIPHER_CTX ctx; |
| int len1, len2; |
| if (len > INT_MAX || |
| !EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) || |
| !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, |
| static_cast<int>(len)) || |
| !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) { |
| return false; |
| } |
| |
| len = static_cast<size_t>(len1 + len2); |
| #endif |
| |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); |
| if (!ssl_ctx) { |
| return false; |
| } |
| bssl::UniquePtr<SSL_SESSION> server_session( |
| SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get())); |
| if (!server_session) { |
| return false; |
| } |
| |
| *out = SSL_SESSION_get_time(server_session.get()); |
| return true; |
| } |
| |
| TEST_P(SSLVersionTest, SessionTimeout) { |
| for (bool server_test : {false, true}) { |
| SCOPED_TRACE(server_test); |
| |
| ASSERT_NO_FATAL_FAILURE(ResetContexts()); |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| static const time_t kStartTime = 1000; |
| g_current_time.tv_sec = kStartTime; |
| |
| // We are willing to use a longer lifetime for TLS 1.3 sessions as |
| // resumptions still perform ECDHE. |
| const time_t timeout = is_tls13() ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT |
| : SSL_DEFAULT_SESSION_TIMEOUT; |
| |
| // Both client and server must enforce session timeouts. We configure the |
| // other side with a frozen clock so it never expires tickets. |
| if (server_test) { |
| SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); |
| SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); |
| } else { |
| SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback); |
| SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback); |
| } |
| |
| // Configure a ticket callback which renews tickets. |
| SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| |
| // Advance the clock just behind the timeout. |
| g_current_time.tv_sec += timeout - 1; |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| true /* expect session reused */)); |
| |
| // Advance the clock one more second. |
| g_current_time.tv_sec++; |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| false /* expect session not reused */)); |
| |
| // Rewind the clock to before the session was minted. |
| g_current_time.tv_sec = kStartTime - 1; |
| |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), |
| false /* expect session not reused */)); |
| |
| // Renew the session 10 seconds before expiration. |
| time_t new_start_time = kStartTime + timeout - 10; |
| g_current_time.tv_sec = new_start_time; |
| bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed( |
| client_ctx_.get(), server_ctx_.get(), session.get()); |
| ASSERT_TRUE(new_session); |
| |
| // This new session is not the same object as before. |
| EXPECT_NE(session.get(), new_session.get()); |
| |
| // Check the sessions have timestamps measured from issuance. |
| long session_time = 0; |
| if (server_test) { |
| ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get())); |
| } else { |
| session_time = SSL_SESSION_get_time(new_session.get()); |
| } |
| |
| ASSERT_EQ(session_time, g_current_time.tv_sec); |
| |
| if (is_tls13()) { |
| // Renewal incorporates fresh key material in TLS 1.3, so we extend the |
| // lifetime TLS 1.3. |
| g_current_time.tv_sec = new_start_time + timeout - 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| true /* expect session reused */)); |
| |
| // The new session expires after the new timeout. |
| g_current_time.tv_sec = new_start_time + timeout + 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| false /* expect session ot reused */)); |
| |
| // Renew the session until it begins just past the auth timeout. |
| time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT; |
| while (new_start_time < auth_end_time - 1000) { |
| // Get as close as possible to target start time. |
| new_start_time = |
| std::min(auth_end_time - 1000, new_start_time + timeout - 1); |
| g_current_time.tv_sec = new_start_time; |
| new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(), |
| new_session.get()); |
| ASSERT_TRUE(new_session); |
| } |
| |
| // Now the session's lifetime is bound by the auth timeout. |
| g_current_time.tv_sec = auth_end_time - 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| true /* expect session reused */)); |
| |
| g_current_time.tv_sec = auth_end_time + 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| false /* expect session ot reused */)); |
| } else { |
| // The new session is usable just before the old expiration. |
| g_current_time.tv_sec = kStartTime + timeout - 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| true /* expect session reused */)); |
| |
| // Renewal does not extend the lifetime, so it is not usable beyond the |
| // old expiration. |
| g_current_time.tv_sec = kStartTime + timeout + 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), |
| false /* expect session not reused */)); |
| } |
| } |
| } |
| |
| TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) { |
| static const uint8_t kZeroKey[kTicketKeyLen] = {}; |
| uint8_t ticket_key[kTicketKeyLen]; |
| ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key, |
| kTicketKeyLen)); |
| ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen)); |
| } |
| |
| TEST_P(SSLVersionTest, DefaultTicketKeyRotation) { |
| static const time_t kStartTime = 1001; |
| g_current_time.tv_sec = kStartTime; |
| |
| // We use session reuse as a proxy for ticket decryption success, hence |
| // disable session timeouts. |
| SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max()); |
| SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(), |
| std::numeric_limits<uint32_t>::max()); |
| |
| SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); |
| SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF); |
| |
| // Initialize ticket_key with the current key and check that it was |
| // initialized to something, not all zeros. |
| uint8_t ticket_key[kTicketKeyLen] = {0}; |
| TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, |
| true /* changed */)); |
| |
| // Verify ticket resumption actually works. |
| bssl::UniquePtr<SSL> client, server; |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), true /* reused */)); |
| |
| // Advance time to just before key rotation. |
| g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), true /* reused */)); |
| TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, |
| false /* NOT changed */)); |
| |
| // Force key rotation. |
| g_current_time.tv_sec += 1; |
| bssl::UniquePtr<SSL_SESSION> new_session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, |
| true /* changed */)); |
| |
| // Resumption with both old and new ticket should work. |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), true /* reused */)); |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), true /* reused */)); |
| TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, |
| false /* NOT changed */)); |
| |
| // Force key rotation again. Resumption with the old ticket now fails. |
| g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| session.get(), false /* NOT reused */)); |
| TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, |
| true /* changed */)); |
| |
| // But resumption with the newer session still works. |
| TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), |
| new_session.get(), true /* reused */)); |
| } |
| |
| static int SwitchContext(SSL *ssl, int *out_alert, void *arg) { |
| SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg); |
| SSL_set_SSL_CTX(ssl, ctx); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| TEST_P(SSLVersionTest, SNICallback) { |
| bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate(); |
| ASSERT_TRUE(cert2); |
| bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey(); |
| ASSERT_TRUE(key2); |
| |
| // Test that switching the |SSL_CTX| at the SNI callback behaves correctly. |
| static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256; |
| |
| static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8}; |
| static const uint8_t kOCSPResponse[] = {1, 2, 3, 4}; |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); |
| ASSERT_TRUE(server_ctx2); |
| ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get())); |
| ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list( |
| server_ctx2.get(), kSCTList, sizeof(kSCTList))); |
| ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse, |
| sizeof(kOCSPResponse))); |
| // Historically signing preferences would be lost in some cases with the |
| // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure |
| // this doesn't happen when |version| is TLS 1.2, configure the private |
| // key to only sign SHA-256. |
| ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), |
| &kECDSAWithSHA256, 1)); |
| |
| SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext); |
| SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get()); |
| |
| SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get()); |
| SSL_CTX_enable_ocsp_stapling(client_ctx_.get()); |
| |
| ASSERT_TRUE(Connect()); |
| |
| // The client should have received |cert2|. |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get())); |
| ASSERT_TRUE(peer); |
| EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0); |
| |
| // The client should have received |server_ctx2|'s SCT list. |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len); |
| EXPECT_EQ(Bytes(kSCTList), Bytes(data, len)); |
| |
| // The client should have received |server_ctx2|'s OCSP response. |
| SSL_get0_ocsp_response(client_.get(), &data, &len); |
| EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len)); |
| } |
| |
| // Test that the early callback can swap the maximum version. |
| TEST(SSLTest, EarlyCallbackVersionSwitch) { |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| |
| SSL_CTX_set_select_certificate_cb( |
| server_ctx.get(), |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) { |
| return ssl_select_cert_error; |
| } |
| |
| return ssl_select_cert_success; |
| }); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get())); |
| } |
| |
| TEST(SSLTest, SetVersion) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Set valid TLS versions. |
| for (const auto &vers : kAllVersions) { |
| SCOPED_TRACE(vers.name); |
| if (vers.ssl_method == VersionParam::is_tls) { |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); |
| EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); |
| EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); |
| } |
| } |
| |
| // Invalid TLS versions are rejected. |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION)); |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200)); |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); |
| |
| // Zero is the default version. |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); |
| EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); |
| EXPECT_EQ(TLS1_2_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); |
| |
| // SSL 3.0 is not available. |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION)); |
| |
| ctx.reset(SSL_CTX_new(DTLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Set valid DTLS versions. |
| for (const auto &vers : kAllVersions) { |
| SCOPED_TRACE(vers.name); |
| if (vers.ssl_method == VersionParam::is_dtls) { |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); |
| EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); |
| EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); |
| } |
| } |
| |
| // Invalid DTLS versions are rejected. |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION)); |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); |
| EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); |
| EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); |
| |
| // Zero is the default version. |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); |
| EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); |
| EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); |
| } |
| |
| static const char *GetVersionName(uint16_t version) { |
| switch (version) { |
| case TLS1_VERSION: |
| return "TLSv1"; |
| case TLS1_1_VERSION: |
| return "TLSv1.1"; |
| case TLS1_2_VERSION: |
| return "TLSv1.2"; |
| case TLS1_3_VERSION: |
| return "TLSv1.3"; |
| case DTLS1_VERSION: |
| return "DTLSv1"; |
| case DTLS1_2_VERSION: |
| return "DTLSv1.2"; |
| case DTLS1_3_EXPERIMENTAL_VERSION: |
| return "DTLSv1.3"; |
| default: |
| return "???"; |
| } |
| } |
| |
| TEST_P(SSLVersionTest, Version) { |
| ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get())); |
| // Before the handshake, |SSL_version| reports some placeholder value. |
| const uint16_t placeholder = is_dtls() ? DTLS1_2_VERSION : TLS1_2_VERSION; |
| EXPECT_EQ(SSL_version(client_.get()), placeholder); |
| EXPECT_EQ(SSL_version(server_.get()), placeholder); |
| |
| // After the handshake, |SSL_version| reports the version. |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| EXPECT_EQ(SSL_version(client_.get()), version()); |
| EXPECT_EQ(SSL_version(server_.get()), version()); |
| |
| // Test the version name is reported as expected. |
| const char *version_name = GetVersionName(version()); |
| EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0); |
| EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0); |
| |
| // Test SSL_SESSION reports the same name. |
| const char *client_name = |
| SSL_SESSION_get_version(SSL_get_session(client_.get())); |
| const char *server_name = |
| SSL_SESSION_get_version(SSL_get_session(server_.get())); |
| EXPECT_EQ(strcmp(version_name, client_name), 0); |
| EXPECT_EQ(strcmp(version_name, server_name), 0); |
| |
| // |SSL_clear| should reset the |SSL|s to the original state. |
| ASSERT_TRUE(SSL_clear(client_.get())); |
| ASSERT_TRUE(SSL_clear(server_.get())); |
| EXPECT_EQ(SSL_version(client_.get()), placeholder); |
| EXPECT_EQ(SSL_version(server_.get()), placeholder); |
| } |
| |
| // Tests that that |SSL_get_pending_cipher| is available during the ALPN |
| // selection callback. |
| TEST_P(SSLVersionTest, ALPNCipherAvailable) { |
| ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); |
| |
| static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; |
| ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, |
| sizeof(kALPNProtos)), |
| 0); |
| |
| // The ALPN callback does not fail the handshake on error, so have the |
| // callback write a boolean. |
| std::pair<uint16_t, bool> callback_state(version(), false); |
| SSL_CTX_set_alpn_select_cb( |
| server_ctx_.get(), |
| [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg) -> int { |
| auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg); |
| if (SSL_get_pending_cipher(ssl) != nullptr && |
| SSL_version(ssl) == state->first) { |
| state->second = true; |
| } |
| return SSL_TLSEXT_ERR_NOACK; |
| }, |
| &callback_state); |
| |
| ASSERT_TRUE(Connect()); |
| |
| ASSERT_TRUE(callback_state.second); |
| } |
| |
| TEST_P(SSLVersionTest, SSLClearSessionResumption) { |
| // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this |
| // API pattern. |
| if (is_tls13()) { |
| return; |
| } |
| |
| shed_handshake_config_ = false; |
| ASSERT_TRUE(Connect()); |
| |
| EXPECT_FALSE(SSL_session_reused(client_.get())); |
| EXPECT_FALSE(SSL_session_reused(server_.get())); |
| |
| // Reset everything. |
| ASSERT_TRUE(SSL_clear(client_.get())); |
| ASSERT_TRUE(SSL_clear(server_.get())); |
| |
| // Attempt to connect a second time. |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| |
| // |SSL_clear| should implicitly offer the previous session to the server. |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| } |
| |
| TEST_P(SSLVersionTest, SSLClearFailsWithShedding) { |
| shed_handshake_config_ = false; |
| ASSERT_TRUE(Connect()); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| |
| // Reset everything. |
| ASSERT_TRUE(SSL_clear(client_.get())); |
| ASSERT_TRUE(SSL_clear(server_.get())); |
| |
| // Now enable shedding, and connect a second time. |
| shed_handshake_config_ = true; |
| ASSERT_TRUE(Connect()); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| |
| // |SSL_clear| should now fail. |
| ASSERT_FALSE(SSL_clear(client_.get())); |
| ASSERT_FALSE(SSL_clear(server_.get())); |
| } |
| |
| static bool ChainsEqual(const STACK_OF(X509) *chain, |
| const std::vector<X509 *> &expected) { |
| if (sk_X509_num(chain) != expected.size()) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < expected.size(); i++) { |
| if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool BuffersEqual(const STACK_OF(CRYPTO_BUFFER) *chain, |
| const std::vector<CRYPTO_BUFFER *> &expected) { |
| if (sk_CRYPTO_BUFFER_num(chain) != expected.size()) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < expected.size(); i++) { |
| const CRYPTO_BUFFER *buf = sk_CRYPTO_BUFFER_value(chain, i); |
| if (Bytes(CRYPTO_BUFFER_data(buf), CRYPTO_BUFFER_len(buf)) != |
| Bytes(CRYPTO_BUFFER_data(expected[i]), |
| CRYPTO_BUFFER_len(expected[i]))) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| TEST_P(SSLVersionTest, AutoChain) { |
| cert_ = GetChainTestCertificate(); |
| ASSERT_TRUE(cert_); |
| key_ = GetChainTestKey(); |
| ASSERT_TRUE(key_); |
| bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate(); |
| ASSERT_TRUE(intermediate); |
| |
| ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); |
| ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); |
| |
| // Configure both client and server to accept any certificate. Add |
| // |intermediate| to the cert store. |
| ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()), |
| intermediate.get())); |
| ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()), |
| intermediate.get())); |
| SSL_CTX_set_verify(client_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_verify(server_ctx_.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL); |
| SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL); |
| |
| // By default, the client and server should each only send the leaf. |
| ASSERT_TRUE(Connect()); |
| |
| EXPECT_TRUE( |
| ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()})); |
| EXPECT_TRUE( |
| ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()})); |
| |
| // If auto-chaining is enabled, then the intermediate is sent. |
| SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); |
| SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); |
| ASSERT_TRUE(Connect()); |
| |
| EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), |
| {cert_.get(), intermediate.get()})); |
| EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), |
| {cert_.get(), intermediate.get()})); |
| |
| // Auto-chaining does not override explicitly-configured intermediates. |
| ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get())); |
| ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get())); |
| ASSERT_TRUE(Connect()); |
| |
| EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), |
| {cert_.get(), cert_.get()})); |
| |
| EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), |
| {cert_.get(), cert_.get()})); |
| } |
| |
| static bool ExpectSingleError(int lib, int reason) { |
| const char *expected = ERR_reason_error_string(ERR_PACK(lib, reason)); |
| int err = ERR_get_error(); |
| if (ERR_GET_LIB(err) != lib || ERR_GET_REASON(err) != reason) { |
| char buf[ERR_ERROR_STRING_BUF_LEN]; |
| ERR_error_string_n(err, buf, sizeof(buf)); |
| fprintf(stderr, "Wanted %s, got: %s.\n", expected, buf); |
| return false; |
| } |
| |
| if (ERR_peek_error() != 0) { |
| fprintf(stderr, "Unexpected error following %s.\n", expected); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| TEST_P(SSLVersionTest, SSLWriteRetry) { |
| if (is_dtls()) { |
| return; |
| } |
| |
| for (bool enable_partial_write : {false, true}) { |
| SCOPED_TRACE(enable_partial_write); |
| |
| // Connect a client and server. |
| ASSERT_TRUE(Connect()); |
| |
| if (enable_partial_write) { |
| SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); |
| } |
| |
| // Write without reading until the buffer is full and we have an unfinished |
| // write. Keep a count so we may reread it again later. "hello!" will be |
| // written in two chunks, "hello" and "!". |
| char data[] = "hello!"; |
| static const int kChunkLen = 5; // The length of "hello". |
| unsigned count = 0; |
| for (;;) { |
| int ret = SSL_write(client_.get(), data, kChunkLen); |
| if (ret <= 0) { |
| ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); |
| break; |
| } |
| ASSERT_EQ(ret, 5); |
| count++; |
| } |
| |
| // Retrying with the same parameters is legal. |
| ASSERT_EQ( |
| SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)), |
| SSL_ERROR_WANT_WRITE); |
| |
| // Retrying with the same buffer but shorter length is not legal. |
| ASSERT_EQ(SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data, kChunkLen - 1)), |
| SSL_ERROR_SSL); |
| ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); |
| |
| // Retrying with a different buffer pointer is not legal. |
| char data2[] = "hello"; |
| ASSERT_EQ(SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data2, kChunkLen)), |
| SSL_ERROR_SSL); |
| ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); |
| |
| // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move. |
| SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); |
| ASSERT_EQ(SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data2, kChunkLen)), |
| SSL_ERROR_WANT_WRITE); |
| |
| // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks. |
| ASSERT_EQ(SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data2, kChunkLen - 1)), |
| SSL_ERROR_SSL); |
| ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); |
| |
| // Retrying with a larger buffer is legal. |
| ASSERT_EQ(SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data, kChunkLen + 1)), |
| SSL_ERROR_WANT_WRITE); |
| |
| // Drain the buffer. |
| char buf[20]; |
| for (unsigned i = 0; i < count; i++) { |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| } |
| |
| // Now that there is space, a retry with a larger buffer should flush the |
| // pending record, skip over that many bytes of input (on assumption they |
| // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE |
| // is set, this will complete in two steps. |
| char data_longer[] = "_____!!!!!"; |
| if (enable_partial_write) { |
| ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), |
| kChunkLen); |
| ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), |
| kChunkLen); |
| } else { |
| ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), |
| 2 * kChunkLen); |
| } |
| |
| // Check the last write was correct. The data will be spread over two |
| // records, so SSL_read returns twice. |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); |
| |
| // Fill the transport buffer again. This time only leave room for one |
| // record. |
| count = 0; |
| for (;;) { |
| int ret = SSL_write(client_.get(), data, kChunkLen); |
| if (ret <= 0) { |
| ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); |
| break; |
| } |
| ASSERT_EQ(ret, 5); |
| count++; |
| } |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| count--; |
| |
| // Retry the last write, with a longer input. The first half is the most |
| // recently failed write, from filling the buffer. |SSL_write| should write |
| // that to the transport, and then attempt to write the second half. |
| int ret = SSL_write(client_.get(), data_longer, 2 * kChunkLen); |
| if (enable_partial_write) { |
| // If partial writes are allowed, the write will succeed partially. |
| ASSERT_EQ(ret, kChunkLen); |
| |
| // Check the first half and make room for another record. |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| count--; |
| |
| // Finish writing the input. |
| ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), |
| kChunkLen); |
| } else { |
| // Otherwise, although the first half made it to the transport, the second |
| // half is blocked. |
| ASSERT_EQ(ret, -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_WRITE); |
| |
| // Check the first half and make room for another record. |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| count--; |
| |
| // Retrying with fewer bytes than previously attempted is an error. If the |
| // input length is less than the number of bytes successfully written, the |
| // check happens at a different point, with a different error. |
| // |
| // TODO(davidben): Should these cases use the same error? |
| ASSERT_EQ( |
| SSL_get_error(client_.get(), |
| SSL_write(client_.get(), data_longer, kChunkLen - 1)), |
| SSL_ERROR_SSL); |
| ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_LENGTH)); |
| |
| // Complete the write with the correct retry. |
| ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), |
| 2 * kChunkLen); |
| } |
| |
| // Drain the input and ensure everything was written correctly. |
| for (unsigned i = 0; i < count; i++) { |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| } |
| |
| // The final write is spread over two records. |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); |
| ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); |
| ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); |
| } |
| } |
| |
| TEST_P(SSLVersionTest, RecordCallback) { |
| if (version() == DTLS1_3_EXPERIMENTAL_VERSION) { |
| // The DTLS 1.3 record header is vastly different than the TLS or DTLS < 1.3 |
| // header format. Instead of checking that the record header is formatted as |
| // expected here, the runner implementation in dtls.go is strict about what |
| // it accepts. |
| return; |
| } |
| for (bool test_server : {true, false}) { |
| SCOPED_TRACE(test_server); |
| ASSERT_NO_FATAL_FAILURE(ResetContexts()); |
| |
| bool read_seen = false; |
| bool write_seen = false; |
| auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf, |
| size_t len, SSL *ssl) { |
| if (cb_type != SSL3_RT_HEADER) { |
| return; |
| } |
| |
| // The callback does not report a version for records. |
| EXPECT_EQ(0, cb_version); |
| |
| if (is_write) { |
| write_seen = true; |
| } else { |
| read_seen = true; |
| } |
| |
| // Sanity-check that the record header is plausible. |
| CBS cbs; |
| CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len); |
| uint8_t type; |
| uint16_t record_version, length; |
| ASSERT_TRUE(CBS_get_u8(&cbs, &type)); |
| ASSERT_TRUE(CBS_get_u16(&cbs, &record_version)); |
| EXPECT_EQ(record_version >> 8, is_dtls() ? 0xfe : 0x03); |
| if (is_dtls()) { |
| uint16_t epoch; |
| ASSERT_TRUE(CBS_get_u16(&cbs, &epoch)); |
| uint16_t max_epoch = 1; |
| EXPECT_LE(epoch, max_epoch) << "Invalid epoch: " << epoch; |
| ASSERT_TRUE(CBS_skip(&cbs, 6)); |
| } |
| ASSERT_TRUE(CBS_get_u16(&cbs, &length)); |
| EXPECT_EQ(0u, CBS_len(&cbs)); |
| }; |
| using CallbackType = decltype(cb); |
| SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get(); |
| SSL_CTX_set_msg_callback( |
| ctx, [](int is_write, int cb_version, int cb_type, const void *buf, |
| size_t len, SSL *ssl, void *arg) { |
| CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg); |
| (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl); |
| }); |
| SSL_CTX_set_msg_callback_arg(ctx, &cb); |
| |
| ASSERT_TRUE(Connect()); |
| |
| EXPECT_TRUE(read_seen); |
| EXPECT_TRUE(write_seen); |
| } |
| } |
| |
| TEST_P(SSLVersionTest, GetServerName) { |
| ClientConfig config; |
| config.servername = "host1"; |
| |
| SSL_CTX_set_tlsext_servername_callback( |
| server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { |
| // During the handshake, |SSL_get_servername| must match |config|. |
| ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg); |
| EXPECT_STREQ(config_p->servername.c_str(), |
| SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name)); |
| return SSL_TLSEXT_ERR_OK; |
| }); |
| SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config); |
| |
| ASSERT_TRUE(Connect(config)); |
| // After the handshake, it must also be available. |
| EXPECT_STREQ(config.servername.c_str(), |
| SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); |
| |
| // Establish a session under host1. |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get(), config); |
| |
| // If the client resumes a session with a different name, |SSL_get_servername| |
| // must return the new name. |
| ASSERT_TRUE(session); |
| config.session = session.get(); |
| config.servername = "host2"; |
| ASSERT_TRUE(Connect(config)); |
| EXPECT_STREQ(config.servername.c_str(), |
| SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); |
| } |
| |
| // Test that session cache mode bits are honored in the client session callback. |
| TEST_P(SSLVersionTest, ClientSessionCacheMode) { |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF); |
| EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT); |
| EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER); |
| EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); |
| } |
| |
| // Test that all versions survive tiny write buffers. In particular, TLS 1.3 |
| // NewSessionTickets are written post-handshake. Servers that block |
| // |SSL_do_handshake| on writing them will deadlock if clients are not draining |
| // the buffer. Test that we do not do this. |
| TEST_P(SSLVersionTest, SmallBuffer) { |
| // DTLS is a datagram protocol and requires packet-sized buffers. |
| if (is_dtls()) { |
| return; |
| } |
| |
| // Test both flushing NewSessionTickets with a zero-sized write and |
| // non-zero-sized write. |
| for (bool use_zero_write : {false, true}) { |
| SCOPED_TRACE(use_zero_write); |
| |
| g_last_session = nullptr; |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| |
| bssl::UniquePtr<SSL> client(SSL_new(client_ctx_.get())), |
| server(SSL_new(server_ctx_.get())); |
| ASSERT_TRUE(client); |
| ASSERT_TRUE(server); |
| SSL_set_connect_state(client.get()); |
| SSL_set_accept_state(server.get()); |
| |
| // Use a tiny buffer. |
| BIO *bio1, *bio2; |
| ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); |
| |
| // SSL_set_bio takes ownership. |
| SSL_set_bio(client.get(), bio1, bio1); |
| SSL_set_bio(server.get(), bio2, bio2); |
| |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| if (version() >= TLS1_3_VERSION) { |
| // The post-handshake ticket should not have been processed yet. |
| EXPECT_FALSE(g_last_session); |
| } |
| |
| if (use_zero_write) { |
| ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); |
| EXPECT_TRUE(g_last_session); |
| } |
| |
| // Send some data from server to client. If |use_zero_write| is false, this |
| // will also flush the NewSessionTickets. |
| static const char kMessage[] = "hello world"; |
| char buf[sizeof(kMessage)]; |
| for (;;) { |
| int server_ret = SSL_write(server.get(), kMessage, sizeof(kMessage)); |
| int server_err = SSL_get_error(server.get(), server_ret); |
| int client_ret = SSL_read(client.get(), buf, sizeof(buf)); |
| int client_err = SSL_get_error(client.get(), client_ret); |
| |
| // The server will write a single record, so every iteration should see |
| // |SSL_ERROR_WANT_WRITE| and |SSL_ERROR_WANT_READ|, until the final |
| // iteration, where both will complete. |
| if (server_ret > 0) { |
| EXPECT_EQ(server_ret, static_cast<int>(sizeof(kMessage))); |
| EXPECT_EQ(client_ret, static_cast<int>(sizeof(kMessage))); |
| EXPECT_EQ(Bytes(buf), Bytes(kMessage)); |
| break; |
| } |
| |
| ASSERT_EQ(server_ret, -1); |
| ASSERT_EQ(server_err, SSL_ERROR_WANT_WRITE); |
| ASSERT_EQ(client_ret, -1); |
| ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); |
| } |
| |
| // The NewSessionTickets should have been flushed and processed. |
| EXPECT_TRUE(g_last_session); |
| } |
| } |
| |
| TEST(SSLTest, AddChainCertHack) { |
| // Ensure that we don't accidently break the hack that we have in place to |
| // keep curl and serf happy when they use an |X509| even after transfering |
| // ownership. |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| X509 *cert = GetTestCertificate().release(); |
| ASSERT_TRUE(cert); |
| SSL_CTX_add0_chain_cert(ctx.get(), cert); |
| |
| // This should not trigger a use-after-free. |
| X509_cmp(cert, cert); |
| } |
| |
| TEST(SSLTest, GetCertificate) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| ASSERT_TRUE(cert); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| |
| X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); |
| ASSERT_TRUE(cert2); |
| X509 *cert3 = SSL_get_certificate(ssl.get()); |
| ASSERT_TRUE(cert3); |
| |
| // The old and new certificates must be identical. |
| EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); |
| EXPECT_EQ(0, X509_cmp(cert.get(), cert3)); |
| |
| uint8_t *der = nullptr; |
| long der_len = i2d_X509(cert.get(), &der); |
| ASSERT_LT(0, der_len); |
| bssl::UniquePtr<uint8_t> free_der(der); |
| |
| uint8_t *der2 = nullptr; |
| long der2_len = i2d_X509(cert2, &der2); |
| ASSERT_LT(0, der2_len); |
| bssl::UniquePtr<uint8_t> free_der2(der2); |
| |
| uint8_t *der3 = nullptr; |
| long der3_len = i2d_X509(cert3, &der3); |
| ASSERT_LT(0, der3_len); |
| bssl::UniquePtr<uint8_t> free_der3(der3); |
| |
| // They must also encode identically. |
| EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len)); |
| EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len)); |
| } |
| |
| TEST(SSLTest, SetChainAndKeyMismatch) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| std::vector<CRYPTO_BUFFER*> chain = { |
| leaf.get(), |
| }; |
| |
| // Should fail because |GetTestKey| doesn't match the chain-test certificate. |
| ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), chain.data(), chain.size(), |
| key.get(), nullptr)); |
| ERR_clear_error(); |
| } |
| |
| TEST(SSLTest, CertThenKeyMismatch) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); |
| ASSERT_TRUE(leaf); |
| |
| // There is no key or certificate, so |SSL_CTX_check_private_key| fails. |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| |
| // With only a certificate, |SSL_CTX_check_private_key| still fails. |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| |
| // The private key does not match the certificate, so it should fail. |
| EXPECT_FALSE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| |
| // Checking the private key fails, but this is really because there is still |
| // no private key. |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| EXPECT_EQ(nullptr, SSL_CTX_get0_privatekey(ctx.get())); |
| } |
| |
| TEST(SSLTest, KeyThenCertMismatch) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); |
| ASSERT_TRUE(leaf); |
| |
| // There is no key or certificate, so |SSL_CTX_check_private_key| fails. |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| |
| // With only a key, |SSL_CTX_check_private_key| still fails. |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| |
| // If configuring a certificate that doesn't match the key, configuration |
| // actually succeeds. We just silently drop the private key. |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); |
| EXPECT_EQ(nullptr, SSL_CTX_get0_privatekey(ctx.get())); |
| |
| // Some callers configure the private key, then the certificate, and then |
| // expect |SSL_CTX_check_private_key| to check consistency. It does, but only |
| // by way of noticing there is no private key. The actual consistency check |
| // happened in |SSL_CTX_use_certificate|. |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); |
| } |
| |
| TEST(SSLTest, OverrideCertAndKey) { |
| // It is possible to override an existing certificate by configuring |
| // certificate, then key, due to |SSL_CTX_use_certificate|'s above silent |
| // dropping behavior. |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> leaf = GetTestCertificate(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<EVP_PKEY> key2 = GetChainTestKey(); |
| ASSERT_TRUE(key2); |
| bssl::UniquePtr<X509> leaf2 = GetChainTestCertificate(); |
| ASSERT_TRUE(leaf2); |
| |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf2.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key2.get())); |
| } |
| |
| TEST(SSLTest, OverrideKeyMethodWithKey) { |
| // Make an SSL_PRIVATE_KEY_METHOD that should never be called. |
| static const SSL_PRIVATE_KEY_METHOD kErrorMethod = { |
| [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint16_t signature_algorithm, const uint8_t *in, |
| size_t in_len) { return ssl_private_key_failure; }, |
| [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len) { return ssl_private_key_failure; }, |
| [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_oun) { |
| return ssl_private_key_failure; |
| }, |
| }; |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> leaf = GetTestCertificate(); |
| ASSERT_TRUE(leaf); |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); |
| |
| // Configuring an |SSL_PRIVATE_KEY_METHOD| and then overwriting it with an |
| // |EVP_PKEY| should clear the |SSL_PRIVATE_KEY_METHOD|. |
| SSL_CTX_set_private_key_method(ctx.get(), &kErrorMethod); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| } |
| |
| // Configuring a chain and then overwriting it with a different chain should |
| // clear the old one. |
| TEST(SSLTest, OverrideChain) { |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<X509> ca = GetChainTestIntermediate(); |
| ASSERT_TRUE(ca); |
| |
| bssl::UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null()); |
| ASSERT_TRUE(chain); |
| ASSERT_TRUE(bssl::PushToStack(chain.get(), bssl::UpRef(ca))); |
| |
| bssl::UniquePtr<STACK_OF(X509)> wrong_chain(sk_X509_new_null()); |
| ASSERT_TRUE(wrong_chain); |
| ASSERT_TRUE(bssl::PushToStack(wrong_chain.get(), bssl::UpRef(leaf))); |
| ASSERT_TRUE(bssl::PushToStack(wrong_chain.get(), bssl::UpRef(leaf))); |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| |
| // Configure one chain, then replace it with another. Note this API considers |
| // the chain to exclude the leaf. |
| ASSERT_TRUE(SSL_CTX_set1_chain(ctx.get(), wrong_chain.get())); |
| ASSERT_TRUE(SSL_CTX_set1_chain(ctx.get(), chain.get())); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client.get()), |
| {leaf.get(), ca.get()})); |
| } |
| |
| TEST(SSLTest, OverrideChainAndKey) { |
| bssl::UniquePtr<EVP_PKEY> key1 = GetChainTestKey(); |
| ASSERT_TRUE(key1); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf1 = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf1); |
| bssl::UniquePtr<CRYPTO_BUFFER> ca1 = GetChainTestIntermediateBuffer(); |
| ASSERT_TRUE(ca1); |
| bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey(); |
| ASSERT_TRUE(key2); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf2 = GetECDSATestCertificateBuffer(); |
| ASSERT_TRUE(leaf2); |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Configure one cert and key pair, then replace it with noather. |
| std::vector<CRYPTO_BUFFER *> certs = {leaf1.get(), ca1.get()}; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(ctx.get(), certs.data(), certs.size(), |
| key1.get(), nullptr)); |
| certs = {leaf2.get()}; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(ctx.get(), certs.data(), certs.size(), |
| key2.get(), nullptr)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| EXPECT_TRUE( |
| BuffersEqual(SSL_get0_peer_certificates(client.get()), {leaf2.get()})); |
| } |
| |
| TEST(SSLTest, CredentialChains) { |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<CRYPTO_BUFFER> ca = GetChainTestIntermediateBuffer(); |
| ASSERT_TRUE(ca); |
| bssl::UniquePtr<CRYPTO_BUFFER> ca_subject = |
| GetChainTestIntermediateIssuerBuffer(); |
| ASSERT_TRUE(ca_subject); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> testcert = GetTestCertificateBuffer(); |
| ASSERT_TRUE(testcert); |
| bssl::UniquePtr<EVP_PKEY> testkey = GetTestKey(); |
| ASSERT_TRUE(testkey); |
| |
| std::vector<CRYPTO_BUFFER *> test_chain = {testcert.get()}; |
| std::vector<CRYPTO_BUFFER *> chain = {leaf.get(), ca.get()}; |
| std::vector<CRYPTO_BUFFER *> wrong_chain = {leaf.get(), leaf.get(), |
| leaf.get()}; |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<SSL_CREDENTIAL> cred(SSL_CREDENTIAL_new_x509()); |
| ASSERT_TRUE(cred); |
| bssl::UniquePtr<SSL_CREDENTIAL> cred2(SSL_CREDENTIAL_new_x509()); |
| ASSERT_TRUE(cred2); |
| |
| // Configure one chain (including the leaf), then replace it with another. |
| ASSERT_TRUE(SSL_CREDENTIAL_set1_cert_chain(cred.get(), wrong_chain.data(), |
| wrong_chain.size())); |
| CBS ca_subject_cbs, ca_cbs; |
| CRYPTO_BUFFER_init_CBS(ca.get(), &ca_cbs); |
| ASSERT_TRUE(ssl_cert_extract_issuer(&ca_cbs, &ca_subject_cbs)); |
| bssl::UniquePtr<CRYPTO_BUFFER> subject_buf( |
| CRYPTO_BUFFER_new_from_CBS(&ca_subject_cbs, nullptr)); |
| EXPECT_EQ(Bytes(CRYPTO_BUFFER_data(ca_subject.get()), |
| CRYPTO_BUFFER_len(ca_subject.get())), |
| Bytes(CRYPTO_BUFFER_data(subject_buf.get()), |
| CRYPTO_BUFFER_len(subject_buf.get()))); |
| #if !defined(BORINGSSL_SHARED_LIBRARY) |
| ASSERT_FALSE(cred->ChainContainsIssuer( |
| MakeConstSpan(CRYPTO_BUFFER_data(subject_buf.get()), |
| CRYPTO_BUFFER_len(subject_buf.get())))); |
| #endif |
| |
| ASSERT_TRUE( |
| SSL_CREDENTIAL_set1_cert_chain(cred.get(), chain.data(), chain.size())); |
| |
| #if !defined(BORINGSSL_SHARED_LIBRARY) |
| ASSERT_TRUE(cred->ChainContainsIssuer( |
| MakeConstSpan(CRYPTO_BUFFER_data(subject_buf.get()), |
| CRYPTO_BUFFER_len(subject_buf.get())))); |
| #endif |
| |
| ASSERT_TRUE(SSL_CREDENTIAL_set1_cert_chain(cred2.get(), test_chain.data(), |
| test_chain.size())); |
| |
| ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred.get(), key.get())); |
| ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred2.get(), testkey.get())); |
| SSL_CREDENTIAL_set_must_match_issuer(cred.get()); |
| SSL_CREDENTIAL_set_must_match_issuer(cred2.get()); |
| ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred.get())); |
| ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred2.get())); |
| |
| bssl::UniquePtr<SSL> client, server; |
| |
| // With no CA requested by client, we should fail with only cred1 and cred2 |
| ASSERT_FALSE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| |
| //EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client.get()), |
| // {leaf.get(), ca.get()})); |
| |
| // Have the client request a bogus name that will not match |
| bssl::UniquePtr<CRYPTO_BUFFER> bogus_subject = GetBogusIssuerBuffer(); |
| ASSERT_TRUE(bogus_subject); |
| bssl::UniquePtr<SSL> client2, server2; |
| ClientConfig bogus_subject_config; |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> bogus_subjects( |
| sk_CRYPTO_BUFFER_new_null()); |
| ASSERT_TRUE(bogus_subjects); |
| ASSERT_TRUE(PushToStack(bogus_subjects.get(), std::move(bogus_subject))); |
| bogus_subject_config.ca_names = bogus_subjects.get(); |
| bogus_subjects.release(); |
| // A bogus issuer that does not match should fail |
| ASSERT_FALSE(ConnectClientAndServer(&client2, &server2, ctx.get(), ctx.get(), |
| bogus_subject_config)); |
| |
| // Have the client request the name of the chain ca. |
| bssl::UniquePtr<CRYPTO_BUFFER> chain_subject = |
| GetChainTestIntermediateIssuerBuffer(); |
| ASSERT_TRUE(chain_subject); |
| bssl::UniquePtr<SSL> client3, server3; |
| ClientConfig chain_subject_config; |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain_subjects( |
| sk_CRYPTO_BUFFER_new_null()); |
| ASSERT_TRUE(chain_subjects); |
| ASSERT_TRUE(PushToStack(chain_subjects.get(), std::move(chain_subject))); |
| chain_subject_config.ca_names = chain_subjects.get(); |
| chain_subjects.release(); |
| // If we ask for the chain ca subject, we should get it |
| ASSERT_TRUE(ConnectClientAndServer(&client3, &server3, ctx.get(), ctx.get(), |
| chain_subject_config)); |
| EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client3.get()), |
| {leaf.get(), ca.get()})); |
| |
| // Have the client request the name of the test ca. |
| bssl::UniquePtr<CRYPTO_BUFFER> test_subject = GetTestCertIssuerBuffer(); |
| ASSERT_TRUE(test_subject); |
| bssl::UniquePtr<SSL> client4, server4; |
| ClientConfig test_subject_config; |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> test_subjects( |
| sk_CRYPTO_BUFFER_new_null()); |
| ASSERT_TRUE(test_subjects); |
| ASSERT_TRUE(PushToStack(test_subjects.get(), std::move(test_subject))); |
| test_subject_config.ca_names = test_subjects.get(); |
| test_subjects.release(); |
| // If we ask for the test ca subject, we should get it |
| ASSERT_TRUE(ConnectClientAndServer(&client4, &server4, ctx.get(), ctx.get(), |
| test_subject_config)); |
| EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client4.get()), |
| {testcert.get()})); |
| |
| // Add cred3 to the CTX so we have an ubiquitous credential |
| bssl::UniquePtr<SSL_CREDENTIAL> cred3(SSL_CREDENTIAL_new_x509()); |
| ASSERT_TRUE(cred3); |
| ASSERT_TRUE( |
| SSL_CREDENTIAL_set1_cert_chain(cred3.get(), chain.data(), chain.size())); |
| ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred3.get(), key.get())); |
| ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred3.get())); |
| |
| // With no CA sent, we should now succeed. |
| bssl::UniquePtr<SSL> client5, server5; |
| ASSERT_TRUE(ConnectClientAndServer(&client5, &server5, ctx.get(), ctx.get())); |
| EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client5.get()), |
| {leaf.get(), ca.get()})); |
| |
| } |
| |
| TEST(SSLTest, SetChainAndKeyCtx) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(server_ctx); |
| |
| ASSERT_EQ(nullptr, SSL_CTX_get0_chain(server_ctx.get())); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<CRYPTO_BUFFER> intermediate = |
| GetChainTestIntermediateBuffer(); |
| ASSERT_TRUE(intermediate); |
| std::vector<CRYPTO_BUFFER*> chain = { |
| leaf.get(), intermediate.get(), |
| }; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), |
| chain.size(), key.get(), nullptr)); |
| |
| ASSERT_EQ(chain.size(), |
| sk_CRYPTO_BUFFER_num(SSL_CTX_get0_chain(server_ctx.get()))); |
| |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| } |
| |
| TEST(SSLTest, SetChainAndKeySSL) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(server_ctx); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_shed_handshake_config(client.get(), true); |
| SSL_set_shed_handshake_config(server.get(), true); |
| |
| ASSERT_EQ(nullptr, SSL_get0_chain(server.get())); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<CRYPTO_BUFFER> intermediate = |
| GetChainTestIntermediateBuffer(); |
| ASSERT_TRUE(intermediate); |
| std::vector<CRYPTO_BUFFER*> chain = { |
| leaf.get(), intermediate.get(), |
| }; |
| ASSERT_TRUE(SSL_set_chain_and_key(server.get(), chain.data(), |
| chain.size(), key.get(), nullptr)); |
| |
| ASSERT_EQ(chain.size(), |
| sk_CRYPTO_BUFFER_num(SSL_get0_chain(server.get()))); |
| |
| SSL_set_custom_verify( |
| client.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| // The server is configured to shed handshake config, so the certificate is no |
| // longer available after the handshake. |
| ASSERT_EQ(nullptr, SSL_get0_chain(server.get())); |
| } |
| |
| TEST(SSLTest, BuffersFailWithoutCustomVerify) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(server_ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| std::vector<CRYPTO_BUFFER*> chain = { leaf.get() }; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), |
| chain.size(), key.get(), nullptr)); |
| |
| // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default |
| // configuration, certificate verification should fail. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // Whereas with a verifier, the connection should succeed. |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| } |
| |
| TEST(SSLTest, CustomVerify) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(server_ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| std::vector<CRYPTO_BUFFER*> chain = { leaf.get() }; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), |
| chain.size(), key.get(), nullptr)); |
| |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped |
| // connection. |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_invalid; |
| }); |
| |
| ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped |
| // connection. |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_NONE, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_invalid; |
| }); |
| |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| } |
| |
| TEST(SSLTest, ClientCABuffers) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); |
| ASSERT_TRUE(server_ctx); |
| |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); |
| ASSERT_TRUE(leaf); |
| bssl::UniquePtr<CRYPTO_BUFFER> intermediate = |
| GetChainTestIntermediateBuffer(); |
| ASSERT_TRUE(intermediate); |
| std::vector<CRYPTO_BUFFER *> chain = { |
| leaf.get(), |
| intermediate.get(), |
| }; |
| ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), |
| chain.size(), key.get(), nullptr)); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> ca_name( |
| CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr)); |
| ASSERT_TRUE(ca_name); |
| bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names( |
| sk_CRYPTO_BUFFER_new_null()); |
| ASSERT_TRUE(ca_names); |
| ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name))); |
| SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release()); |
| |
| // Configure client and server to accept all certificates. |
| SSL_CTX_set_custom_verify( |
| client_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| SSL_CTX_set_custom_verify( |
| server_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| |
| bool cert_cb_called = false; |
| SSL_CTX_set_cert_cb( |
| client_ctx.get(), |
| [](SSL *ssl, void *arg) -> int { |
| const STACK_OF(CRYPTO_BUFFER) *peer_names = |
| SSL_get0_server_requested_CAs(ssl); |
| EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names)); |
| CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0); |
| EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name), |
| CRYPTO_BUFFER_len(peer_name))); |
| *reinterpret_cast<bool *>(arg) = true; |
| return 1; |
| }, |
| &cert_cb_called); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| EXPECT_TRUE(cert_cb_called); |
| } |
| |
| // Configuring the empty cipher list, though an error, should still modify the |
| // configuration. |
| TEST(SSLTest, EmptyCipherList) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Initially, the cipher list is not empty. |
| EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); |
| |
| // Configuring the empty cipher list fails. |
| EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), "")); |
| ERR_clear_error(); |
| |
| // But the cipher list is still updated to empty. |
| EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); |
| } |
| |
| // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the |
| // test |SSL_TICKET_AEAD_METHOD| can fail. |
| enum ssl_test_ticket_aead_failure_mode { |
| ssl_test_ticket_aead_ok = 0, |
| ssl_test_ticket_aead_seal_fail, |
| ssl_test_ticket_aead_open_soft_fail, |
| ssl_test_ticket_aead_open_hard_fail, |
| }; |
| |
| struct ssl_test_ticket_aead_state { |
| unsigned retry_count = 0; |
| ssl_test_ticket_aead_failure_mode failure_mode = ssl_test_ticket_aead_ok; |
| }; |
| |
| static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to, |
| const CRYPTO_EX_DATA *from, |
| void **from_d, int index, |
| long argl, void *argp) { |
| abort(); |
| } |
| |
| static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr, |
| CRYPTO_EX_DATA *ad, int index, |
| long argl, void *argp) { |
| delete reinterpret_cast<ssl_test_ticket_aead_state*>(ptr); |
| } |
| |
| static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT; |
| static int g_ssl_test_ticket_aead_ex_index; |
| |
| static int ssl_test_ticket_aead_get_ex_index() { |
| CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] { |
| g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index( |
| 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup, |
| ssl_test_ticket_aead_ex_index_free); |
| }); |
| return g_ssl_test_ticket_aead_ex_index; |
| } |
| |
| static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) { |
| return 1; |
| } |
| |
| static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, |
| size_t in_len) { |
| auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( |
| SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); |
| |
| if (state->failure_mode == ssl_test_ticket_aead_seal_fail || |
| max_out_len < in_len + 1) { |
| return 0; |
| } |
| |
| OPENSSL_memmove(out, in, in_len); |
| out[in_len] = 0xff; |
| *out_len = in_len + 1; |
| |
| return 1; |
| } |
| |
| static ssl_ticket_aead_result_t ssl_test_ticket_aead_open( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, |
| const uint8_t *in, size_t in_len) { |
| auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( |
| SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); |
| |
| if (state->retry_count > 0) { |
| state->retry_count--; |
| return ssl_ticket_aead_retry; |
| } |
| |
| switch (state->failure_mode) { |
| case ssl_test_ticket_aead_ok: |
| break; |
| case ssl_test_ticket_aead_seal_fail: |
| // If |seal| failed then there shouldn't be any ticket to try and |
| // decrypt. |
| abort(); |
| break; |
| case ssl_test_ticket_aead_open_soft_fail: |
| return ssl_ticket_aead_ignore_ticket; |
| case ssl_test_ticket_aead_open_hard_fail: |
| return ssl_ticket_aead_error; |
| } |
| |
| if (in_len == 0 || in[in_len - 1] != 0xff) { |
| return ssl_ticket_aead_ignore_ticket; |
| } |
| |
| if (max_out_len < in_len - 1) { |
| return ssl_ticket_aead_error; |
| } |
| |
| OPENSSL_memmove(out, in, in_len - 1); |
| *out_len = in_len - 1; |
| return ssl_ticket_aead_success; |
| } |
| |
| static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = { |
| ssl_test_ticket_aead_max_overhead, |
| ssl_test_ticket_aead_seal, |
| ssl_test_ticket_aead_open, |
| }; |
| |
| static void ConnectClientAndServerWithTicketMethod( |
| bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server, |
| SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count, |
| ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) { |
| bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); |
| ASSERT_TRUE(client); |
| ASSERT_TRUE(server); |
| SSL_set_connect_state(client.get()); |
| SSL_set_accept_state(server.get()); |
| |
| auto state = new ssl_test_ticket_aead_state; |
| state->retry_count = retry_count; |
| state->failure_mode = failure_mode; |
| |
| ASSERT_GE(ssl_test_ticket_aead_get_ex_index(), 0); |
| ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(), |
| state)); |
| |
| SSL_set_session(client.get(), session); |
| |
| BIO *bio1, *bio2; |
| ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); |
| |
| // SSL_set_bio takes ownership. |
| SSL_set_bio(client.get(), bio1, bio1); |
| SSL_set_bio(server.get(), bio2, bio2); |
| |
| if (CompleteHandshakes(client.get(), server.get())) { |
| *out_client = std::move(client); |
| *out_server = std::move(server); |
| } else { |
| out_client->reset(); |
| out_server->reset(); |
| } |
| } |
| |
| using TicketAEADMethodParam = |
| testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>; |
| |
| class TicketAEADMethodTest |
| : public ::testing::TestWithParam<TicketAEADMethodParam> {}; |
| |
| TEST_P(TicketAEADMethodTest, Resume) { |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| |
| const uint16_t version = testing::get<0>(GetParam()); |
| const unsigned retry_count = testing::get<1>(GetParam()); |
| const ssl_test_ticket_aead_failure_mode failure_mode = |
| testing::get<2>(GetParam()); |
| |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version)); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version)); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback); |
| SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback); |
| SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); |
| |
| SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( |
| &client, &server, client_ctx.get(), server_ctx.get(), retry_count, |
| failure_mode, nullptr)); |
| switch (failure_mode) { |
| case ssl_test_ticket_aead_ok: |
| case ssl_test_ticket_aead_open_hard_fail: |
| case ssl_test_ticket_aead_open_soft_fail: |
| ASSERT_TRUE(client); |
| break; |
| case ssl_test_ticket_aead_seal_fail: |
| EXPECT_FALSE(client); |
| return; |
| } |
| EXPECT_FALSE(SSL_session_reused(client.get())); |
| EXPECT_FALSE(SSL_session_reused(server.get())); |
| |
| ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); |
| bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); |
| ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( |
| &client, &server, client_ctx.get(), server_ctx.get(), retry_count, |
| failure_mode, session.get())); |
| switch (failure_mode) { |
| case ssl_test_ticket_aead_ok: |
| ASSERT_TRUE(client); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| break; |
| case ssl_test_ticket_aead_seal_fail: |
| abort(); |
| break; |
| case ssl_test_ticket_aead_open_hard_fail: |
| EXPECT_FALSE(client); |
| break; |
| case ssl_test_ticket_aead_open_soft_fail: |
| ASSERT_TRUE(client); |
| EXPECT_FALSE(SSL_session_reused(client.get())); |
| EXPECT_FALSE(SSL_session_reused(server.get())); |
| } |
| } |
| |
| std::string TicketAEADMethodParamToString( |
| const testing::TestParamInfo<TicketAEADMethodParam> ¶ms) { |
| std::string ret = GetVersionName(std::get<0>(params.param)); |
| // GTest only allows alphanumeric characters and '_' in the parameter |
| // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13". |
| for (auto it = ret.begin(); it != ret.end();) { |
| if (*it == '.' || *it == 'v') { |
| it = ret.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| char retry_count[256]; |
| snprintf(retry_count, sizeof(retry_count), "%u", std::get<1>(params.param)); |
| ret += "_"; |
| ret += retry_count; |
| ret += "Retries_"; |
| switch (std::get<2>(params.param)) { |
| case ssl_test_ticket_aead_ok: |
| ret += "OK"; |
| break; |
| case ssl_test_ticket_aead_seal_fail: |
| ret += "SealFail"; |
| break; |
| case ssl_test_ticket_aead_open_soft_fail: |
| ret += "OpenSoftFail"; |
| break; |
| case ssl_test_ticket_aead_open_hard_fail: |
| ret += "OpenHardFail"; |
| break; |
| } |
| return ret; |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| TicketAEADMethodTests, TicketAEADMethodTest, |
| testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION), |
| testing::Values(0, 1, 2), |
| testing::Values(ssl_test_ticket_aead_ok, |
| ssl_test_ticket_aead_seal_fail, |
| ssl_test_ticket_aead_open_soft_fail, |
| ssl_test_ticket_aead_open_hard_fail)), |
| TicketAEADMethodParamToString); |
| |
| TEST(SSLTest, SelectNextProto) { |
| uint8_t *result; |
| uint8_t result_len; |
| |
| // If there is an overlap, it should be returned. |
| EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\1x\1y\1a\1z", 8)); |
| EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); |
| |
| EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\1x\1y\2bb\1z", 9)); |
| EXPECT_EQ(Bytes("bb"), Bytes(result, result_len)); |
| |
| EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\1x\1y\3ccc\1z", 10)); |
| EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len)); |
| |
| // Peer preference order takes precedence over local. |
| EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\3ccc\2bb\1a", 9)); |
| EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); |
| |
| // If there is no overlap, opportunistically select the first local protocol. |
| // ALPN callers should ignore this, but NPN callers may use this per |
| // draft-agl-tls-nextprotoneg-03, section 6. |
| EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\1x\2yy\3zzz", 9)); |
| EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); |
| |
| // The peer preference order may be empty in NPN. This should be treated as no |
| // overlap and continue to select an opportunistic protocol. |
| EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, nullptr, 0, |
| (const uint8_t *)"\1x\2yy\3zzz", 9)); |
| EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); |
| |
| // Although calling this function with no local protocols is a caller error, |
| // it should cleanly return an empty protocol. |
| EXPECT_EQ( |
| OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, nullptr, 0)); |
| EXPECT_EQ(Bytes(""), Bytes(result, result_len)); |
| |
| // Syntax errors are similarly caller errors. |
| EXPECT_EQ( |
| OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\4aaa", 4, |
| (const uint8_t *)"\1a\2bb\3ccc", 9)); |
| EXPECT_EQ(Bytes(""), Bytes(result, result_len)); |
| EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\4aaa", 4)); |
| EXPECT_EQ(Bytes(""), Bytes(result, result_len)); |
| |
| // Protocols in protocol lists may not be empty. |
| EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\0\2bb\3ccc", 8, |
| (const uint8_t *)"\1a\2bb\3ccc", 9)); |
| EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, |
| SSL_select_next_proto(&result, &result_len, |
| (const uint8_t *)"\1a\2bb\3ccc", 9, |
| (const uint8_t *)"\0\2bb\3ccc", 8)); |
| EXPECT_EQ(Bytes(""), Bytes(result, result_len)); |
| } |
| |
| // The client should gracefully handle no suitable ciphers being enabled. |
| TEST(SSLTest, NoCiphersAvailable) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Configure |client_ctx| with a cipher list that does not intersect with its |
| // version configuration. |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( |
| ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION)); |
| |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| SSL_set_connect_state(ssl.get()); |
| |
| UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(rbio); |
| ASSERT_TRUE(wbio); |
| SSL_set0_rbio(ssl.get(), rbio.release()); |
| SSL_set0_wbio(ssl.get(), wbio.release()); |
| |
| int ret = SSL_do_handshake(ssl.get()); |
| EXPECT_EQ(-1, ret); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret)); |
| EXPECT_TRUE( |
| ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_NO_CIPHERS_AVAILABLE)); |
| } |
| |
| TEST_P(SSLVersionTest, SessionVersion) { |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); |
| |
| // Sessions in TLS 1.3 and later should be single-use. |
| EXPECT_EQ(is_tls13(), !!SSL_SESSION_should_be_single_use(session.get())); |
| |
| // Making fake sessions for testing works. |
| session.reset(SSL_SESSION_new(client_ctx_.get())); |
| ASSERT_TRUE(session); |
| ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version())); |
| EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); |
| } |
| |
| TEST_P(SSLVersionTest, SSLPending) { |
| UniquePtr<SSL> ssl(SSL_new(client_ctx_.get())); |
| ASSERT_TRUE(ssl); |
| EXPECT_EQ(0, SSL_pending(ssl.get())); |
| |
| ASSERT_TRUE(Connect()); |
| EXPECT_EQ(0, SSL_pending(client_.get())); |
| EXPECT_EQ(0, SSL_has_pending(client_.get())); |
| |
| ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5)); |
| ASSERT_EQ(5, SSL_write(server_.get(), "world", 5)); |
| EXPECT_EQ(0, SSL_pending(client_.get())); |
| EXPECT_EQ(0, SSL_has_pending(client_.get())); |
| |
| char buf[10]; |
| ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1)); |
| EXPECT_EQ(5, SSL_pending(client_.get())); |
| EXPECT_EQ(1, SSL_has_pending(client_.get())); |
| |
| ASSERT_EQ(1, SSL_read(client_.get(), buf, 1)); |
| EXPECT_EQ(4, SSL_pending(client_.get())); |
| EXPECT_EQ(1, SSL_has_pending(client_.get())); |
| |
| ASSERT_EQ(4, SSL_read(client_.get(), buf, 10)); |
| EXPECT_EQ(0, SSL_pending(client_.get())); |
| if (is_dtls()) { |
| // In DTLS, the two records would have been read as a single datagram and |
| // buffered inside |client_|. Thus, |SSL_has_pending| should return true. |
| // |
| // This test is slightly unrealistic. It relies on |ConnectClientAndServer| |
| // using a |BIO| pair, which does not preserve datagram boundaries. Reading |
| // 1 byte, then 4 bytes, from the first record also relies on |
| // https://crbug.com/boringssl/65. But it does test the codepaths. When |
| // fixing either of these bugs, this test may need to be redone. |
| EXPECT_EQ(1, SSL_has_pending(client_.get())); |
| } else { |
| // In TLS, we do not overread, so |SSL_has_pending| should report no data is |
| // buffered. |
| EXPECT_EQ(0, SSL_has_pending(client_.get())); |
| } |
| |
| ASSERT_EQ(2, SSL_read(client_.get(), buf, 2)); |
| EXPECT_EQ(3, SSL_pending(client_.get())); |
| EXPECT_EQ(1, SSL_has_pending(client_.get())); |
| } |
| |
| // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored. |
| TEST(SSLTest, ShutdownIgnoresTickets) { |
| bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); |
| |
| SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| |
| SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int { |
| ADD_FAILURE() << "New session callback called during SSL_shutdown"; |
| return 0; |
| }); |
| |
| // Send close_notify. |
| EXPECT_EQ(0, SSL_shutdown(server.get())); |
| EXPECT_EQ(0, SSL_shutdown(client.get())); |
| |
| // Receive close_notify. |
| EXPECT_EQ(1, SSL_shutdown(server.get())); |
| EXPECT_EQ(1, SSL_shutdown(client.get())); |
| } |
| |
| TEST(SSLTest, SignatureAlgorithmProperties) { |
| EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234)); |
| EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234)); |
| EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234)); |
| |
| EXPECT_EQ(EVP_PKEY_RSA, |
| SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); |
| EXPECT_EQ(EVP_md5_sha1(), |
| SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); |
| EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); |
| |
| EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type( |
| SSL_SIGN_ECDSA_SECP256R1_SHA256)); |
| EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest( |
| SSL_SIGN_ECDSA_SECP256R1_SHA256)); |
| EXPECT_FALSE( |
| SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256)); |
| |
| EXPECT_EQ(EVP_PKEY_RSA, |
| SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384)); |
| EXPECT_EQ(EVP_sha384(), |
| SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384)); |
| EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384)); |
| } |
| |
| static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in, |
| size_t in_len) { |
| for (size_t i = 0; i < in_len; i++) { |
| if (!CBB_add_u8(out, in[i] ^ 0x55)) { |
| return 0; |
| } |
| } |
| |
| SSL_set_app_data(ssl, XORCompressFunc); |
| |
| return 1; |
| } |
| |
| static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out, |
| size_t uncompressed_len, const uint8_t *in, |
| size_t in_len) { |
| if (in_len != uncompressed_len) { |
| return 0; |
| } |
| |
| uint8_t *data; |
| *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len); |
| if (*out == nullptr) { |
| return 0; |
| } |
| |
| for (size_t i = 0; i < in_len; i++) { |
| data[i] = in[i] ^ 0x55; |
| } |
| |
| SSL_set_app_data(ssl, XORDecompressFunc); |
| |
| return 1; |
| } |
| |
| TEST(SSLTest, CertCompression) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( |
| client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); |
| ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( |
| server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc); |
| EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc); |
| } |
| |
| void MoveBIOs(SSL *dest, SSL *src) { |
| BIO *rbio = SSL_get_rbio(src); |
| BIO_up_ref(rbio); |
| SSL_set0_rbio(dest, rbio); |
| |
| BIO *wbio = SSL_get_wbio(src); |
| BIO_up_ref(wbio); |
| SSL_set0_wbio(dest, wbio); |
| |
| SSL_set0_rbio(src, nullptr); |
| SSL_set0_wbio(src, nullptr); |
| } |
| |
| void VerifyHandoff(bool use_new_alps_codepoint) { |
| static const uint8_t alpn[] = {0x03, 'f', 'o', 'o'}; |
| static const uint8_t proto[] = {'f', 'o', 'o'}; |
| static const uint8_t alps[] = {0x04, 'a', 'l', 'p', 's'}; |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> handshaker_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE(handshaker_ctx); |
| |
| if (!use_new_alps_codepoint) { |
| SetUpExpectedOldCodePoint(server_ctx.get()); |
| } else { |
| SetUpExpectedNewCodePoint(server_ctx.get()); |
| } |
| |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_CLIENT); |
| SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); |
| SSL_CTX_set_handoff_mode(server_ctx.get(), true); |
| uint8_t keys[48]; |
| SSL_CTX_get_tlsext_ticket_keys(server_ctx.get(), &keys, sizeof(keys)); |
| SSL_CTX_set_tlsext_ticket_keys(handshaker_ctx.get(), &keys, sizeof(keys)); |
| |
| for (bool early_data : {false, true}) { |
| SCOPED_TRACE(early_data); |
| for (bool is_resume : {false, true}) { |
| SCOPED_TRACE(is_resume); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_early_data_enabled(client.get(), early_data); |
| |
| // Set up client ALPS settings. |
| SSL_set_alps_use_new_codepoint(client.get(), use_new_alps_codepoint); |
| ASSERT_TRUE(SSL_set_alpn_protos(client.get(), alpn, sizeof(alpn)) == 0); |
| ASSERT_TRUE(SSL_add_application_settings(client.get(), proto, |
| sizeof(proto), nullptr, 0)); |
| if (is_resume) { |
| ASSERT_TRUE(g_last_session); |
| SSL_set_session(client.get(), g_last_session.get()); |
| if (early_data) { |
| EXPECT_GT(g_last_session->ticket_max_early_data, 0u); |
| } |
| } |
| |
| |
| int client_ret = SSL_do_handshake(client.get()); |
| int client_err = SSL_get_error(client.get(), client_ret); |
| |
| uint8_t byte_written; |
| if (early_data && is_resume) { |
| ASSERT_EQ(client_err, 0); |
| EXPECT_TRUE(SSL_in_early_data(client.get())); |
| // Attempt to write early data. |
| byte_written = 43; |
| EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); |
| } else { |
| ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); |
| } |
| |
| int server_ret = SSL_do_handshake(server.get()); |
| int server_err = SSL_get_error(server.get(), server_ret); |
| ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); |
| |
| ScopedCBB cbb; |
| Array<uint8_t> handoff; |
| SSL_CLIENT_HELLO hello; |
| ASSERT_TRUE(CBB_init(cbb.get(), 256)); |
| ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); |
| ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff)); |
| |
| bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get())); |
| ASSERT_TRUE(handshaker); |
| // Note split handshakes determines 0-RTT support, for both the current |
| // handshake and newly-issued tickets, entirely by |handshaker|. There is |
| // no need to call |SSL_set_early_data_enabled| on |server|. |
| SSL_set_early_data_enabled(handshaker.get(), 1); |
| |
| // Set up handshaker ALPS settings. |
| SSL_set_alps_use_new_codepoint(handshaker.get(), use_new_alps_codepoint); |
| SSL_CTX_set_alpn_select_cb( |
| handshaker_ctx.get(), |
| [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg) -> int { |
| return SSL_select_next_proto( |
| const_cast<uint8_t **>(out), out_len, in, in_len, |
| alpn, sizeof(alpn)) == OPENSSL_NPN_NEGOTIATED |
| ? SSL_TLSEXT_ERR_OK |
| : SSL_TLSEXT_ERR_NOACK; |
| }, |
| nullptr); |
| ASSERT_TRUE(SSL_add_application_settings(handshaker.get(), proto, |
| sizeof(proto), alps, sizeof(alps))); |
| |
| ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff)); |
| |
| MoveBIOs(handshaker.get(), server.get()); |
| |
| int handshake_ret = SSL_do_handshake(handshaker.get()); |
| int handshake_err = SSL_get_error(handshaker.get(), handshake_ret); |
| ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); |
| |
| // Double-check that additional calls to |SSL_do_handshake| continue |
| // to get |SSL_ERROR_HANDBACK|. |
| handshake_ret = SSL_do_handshake(handshaker.get()); |
| handshake_err = SSL_get_error(handshaker.get(), handshake_ret); |
| ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); |
| |
| ScopedCBB cbb_handback; |
| Array<uint8_t> handback; |
| ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024)); |
| ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get())); |
| ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback)); |
| |
| bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get())); |
| ASSERT_TRUE(server2); |
| ASSERT_TRUE(SSL_apply_handback(server2.get(), handback)); |
| |
| MoveBIOs(server2.get(), handshaker.get()); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get())); |
| EXPECT_EQ(is_resume, SSL_session_reused(client.get())); |
| // Verify application settings. |
| ASSERT_TRUE(SSL_has_application_settings(client.get())); |
| |
| if (early_data && is_resume) { |
| // In this case, one byte of early data has already been written above. |
| EXPECT_TRUE(SSL_early_data_accepted(client.get())); |
| } else { |
| byte_written = 42; |
| EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); |
| } |
| uint8_t byte; |
| EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1); |
| EXPECT_EQ(byte_written, byte); |
| |
| byte = 44; |
| EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1); |
| EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); |
| EXPECT_EQ(44, byte); |
| } |
| } |
| } |
| |
| TEST(SSLTest, Handoff) { |
| for (bool use_new_alps_codepoint : {false, true}) { |
| SCOPED_TRACE(use_new_alps_codepoint); |
| VerifyHandoff(use_new_alps_codepoint); |
| } |
| } |
| |
| TEST(SSLTest, HandoffDeclined) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| |
| SSL_CTX_set_handoff_mode(server_ctx.get(), true); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| int client_ret = SSL_do_handshake(client.get()); |
| int client_err = SSL_get_error(client.get(), client_ret); |
| ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); |
| |
| int server_ret = SSL_do_handshake(server.get()); |
| int server_err = SSL_get_error(server.get(), server_ret); |
| ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); |
| |
| ScopedCBB cbb; |
| SSL_CLIENT_HELLO hello; |
| ASSERT_TRUE(CBB_init(cbb.get(), 256)); |
| ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); |
| |
| ASSERT_TRUE(SSL_decline_handoff(server.get())); |
| |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| uint8_t byte = 42; |
| EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1); |
| EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1); |
| EXPECT_EQ(42, byte); |
| |
| byte = 43; |
| EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1); |
| EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); |
| EXPECT_EQ(43, byte); |
| } |
| |
| static std::string SigAlgsToString(Span<const uint16_t> sigalgs) { |
| std::string ret = "{"; |
| |
| for (uint16_t v : sigalgs) { |
| if (ret.size() > 1) { |
| ret += ", "; |
| } |
| |
| char buf[8]; |
| snprintf(buf, sizeof(buf) - 1, "0x%02x", v); |
| buf[sizeof(buf)-1] = 0; |
| ret += std::string(buf); |
| } |
| |
| ret += "}"; |
| return ret; |
| } |
| |
| void ExpectSigAlgsEqual(Span<const uint16_t> expected, |
| Span<const uint16_t> actual) { |
| bool matches = false; |
| if (expected.size() == actual.size()) { |
| matches = true; |
| |
| for (size_t i = 0; i < expected.size(); i++) { |
| if (expected[i] != actual[i]) { |
| matches = false; |
| break; |
| } |
| } |
| } |
| |
| if (!matches) { |
| ADD_FAILURE() << "expected: " << SigAlgsToString(expected) |
| << " got: " << SigAlgsToString(actual); |
| } |
| } |
| |
| TEST(SSLTest, SigAlgs) { |
| static const struct { |
| std::vector<int> input; |
| bool ok; |
| std::vector<uint16_t> expected; |
| } kTests[] = { |
| {{}, true, {}}, |
| {{1}, false, {}}, |
| {{1, 2, 3}, false, {}}, |
| {{NID_sha256, EVP_PKEY_ED25519}, false, {}}, |
| {{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}}, |
| |
| {{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}}, |
| {{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}}, |
| {{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, |
| {{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}}, |
| {{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC}, |
| true, |
| {SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}}, |
| }; |
| |
| UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| unsigned n = 1; |
| for (const auto &test : kTests) { |
| SCOPED_TRACE(n++); |
| |
| const bool ok = |
| SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size()); |
| EXPECT_EQ(ok, test.ok); |
| |
| if (!ok) { |
| ERR_clear_error(); |
| } |
| |
| if (!test.ok) { |
| continue; |
| } |
| |
| ExpectSigAlgsEqual(test.expected, ctx->cert->legacy_credential->sigalgs); |
| } |
| } |
| |
| TEST(SSLTest, SigAlgsList) { |
| static const struct { |
| const char *input; |
| bool ok; |
| std::vector<uint16_t> expected; |
| } kTests[] = { |
| {"", false, {}}, |
| {":", false, {}}, |
| {"+", false, {}}, |
| {"RSA", false, {}}, |
| {"RSA+", false, {}}, |
| {"RSA+SHA256:", false, {}}, |
| {":RSA+SHA256:", false, {}}, |
| {":RSA+SHA256+:", false, {}}, |
| {"!", false, {}}, |
| {"\x01", false, {}}, |
| {"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}}, |
| {"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}}, |
| |
| {"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}}, |
| {"RSA+SHA256:ed25519", |
| true, |
| {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}}, |
| {"ECDSA+SHA256:RSA+SHA512", |
| true, |
| {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}}, |
| {"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256", |
| true, |
| {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}}, |
| {"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, |
| {"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, |
| }; |
| |
| UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| unsigned n = 1; |
| for (const auto &test : kTests) { |
| SCOPED_TRACE(n++); |
| |
| const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input); |
| EXPECT_EQ(ok, test.ok); |
| |
| if (!ok) { |
| if (test.ok) { |
| ERR_print_errors_fp(stderr); |
| } |
| ERR_clear_error(); |
| } |
| |
| if (!test.ok) { |
| continue; |
| } |
| |
| ExpectSigAlgsEqual(test.expected, ctx->cert->legacy_credential->sigalgs); |
| } |
| } |
| |
| TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) { |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); |
| ASSERT_TRUE(server); |
| |
| // handoff is a handoff message that has been artificially modified to pretend |
| // that only TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) is supported. When |
| // it is applied to |server|, all ciphers but that one should be removed. |
| // |
| // To make a new one of these, try sticking this in the |Handoff| test above: |
| // |
| // hexdump(stderr, "", handoff.data(), handoff.size()); |
| // sed -e 's/\(..\)/0x\1, /g' |
| // |
| // and modify serialize_features() to emit only cipher 0x0A. |
| |
| uint8_t handoff[] = { |
| 0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, |
| 0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39, |
| 0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62, |
| 0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24, |
| 0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, |
| 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, |
| 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, |
| 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, |
| 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, |
| 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, |
| 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, |
| 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0xc0, |
| 0x2f, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, |
| 0x1d, |
| }; |
| |
| EXPECT_LT(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); |
| ASSERT_TRUE( |
| SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); |
| EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); |
| } |
| |
| TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) { |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); |
| ASSERT_TRUE(server); |
| |
| // handoff is a handoff message that has been artificially modified to pretend |
| // that only one ECDH group is supported. When it is applied to |server|, all |
| // groups but that one should be removed. |
| // |
| // See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of |
| // these. |
| uint8_t handoff[] = { |
| 0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, |
| 0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f, |
| 0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e, |
| 0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc, |
| 0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, |
| 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, |
| 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, |
| 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, |
| 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, |
| 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, |
| 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, |
| 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00, |
| 0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00, |
| 0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0, |
| 0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0, |
| 0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04, |
| 0x02, 0x00, 0x17, |
| }; |
| |
| // The zero length means that the default list of groups is used. |
| EXPECT_EQ(0u, server->config->supported_group_list.size()); |
| ASSERT_TRUE( |
| SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)})); |
| EXPECT_EQ(1u, server->config->supported_group_list.size()); |
| } |
| |
| TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) { |
| // If there are pending handshake mesages, an |SSL_write| of zero bytes should |
| // flush them. |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| BIO *client_wbio = SSL_get_wbio(client.get()); |
| EXPECT_EQ(0u, BIO_wpending(client_wbio)); |
| EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED)); |
| EXPECT_EQ(0u, BIO_wpending(client_wbio)); |
| EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0)); |
| EXPECT_NE(0u, BIO_wpending(client_wbio)); |
| } |
| |
| TEST_P(SSLVersionTest, VerifyBeforeCertRequest) { |
| // Configure the server to request client certificates. |
| SSL_CTX_set_custom_verify( |
| server_ctx_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); |
| |
| // Configure the client to reject the server certificate. |
| SSL_CTX_set_custom_verify( |
| client_ctx_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; }); |
| |
| // cert_cb should not be called. Verification should fail first. |
| SSL_CTX_set_cert_cb(client_ctx_.get(), |
| [](SSL *ssl, void *arg) { |
| ADD_FAILURE() << "cert_cb unexpectedly called"; |
| return 0; |
| }, |
| nullptr); |
| |
| bssl::UniquePtr<SSL> client, server; |
| EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get())); |
| } |
| |
| // Test that ticket-based sessions on the client get fake session IDs. |
| TEST_P(SSLVersionTest, FakeIDsForTickets) { |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| |
| EXPECT_TRUE(SSL_SESSION_has_ticket(session.get())); |
| unsigned session_id_length; |
| SSL_SESSION_get_id(session.get(), &session_id_length); |
| EXPECT_NE(session_id_length, 0u); |
| } |
| |
| // These tests test multi-threaded behavior. They are intended to run with |
| // ThreadSanitizer. |
| #if defined(OPENSSL_THREADS) |
| TEST_P(SSLVersionTest, SessionCacheThreads) { |
| SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| if (is_tls13()) { |
| // Our TLS 1.3 implementation does not support stateful resumption. |
| ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); |
| return; |
| } |
| |
| // Establish two client sessions to test with. |
| bssl::UniquePtr<SSL_SESSION> session1 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session1); |
| bssl::UniquePtr<SSL_SESSION> session2 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session2); |
| |
| auto connect_with_session = [&](SSL_SESSION *session) { |
| ClientConfig config; |
| config.session = session; |
| UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| }; |
| |
| // Resume sessions in parallel with establishing new ones. |
| { |
| std::vector<std::thread> threads; |
| threads.emplace_back([&] { connect_with_session(nullptr); }); |
| threads.emplace_back([&] { connect_with_session(nullptr); }); |
| threads.emplace_back([&] { connect_with_session(session1.get()); }); |
| threads.emplace_back([&] { connect_with_session(session1.get()); }); |
| threads.emplace_back([&] { connect_with_session(session2.get()); }); |
| threads.emplace_back([&] { connect_with_session(session2.get()); }); |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| |
| // Hit the maximum session cache size across multiple threads, to test the |
| // size enforcement logic. |
| size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2; |
| SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit); |
| { |
| std::vector<std::thread> threads; |
| for (int i = 0; i < 4; i++) { |
| threads.emplace_back([&]() { |
| connect_with_session(nullptr); |
| EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit); |
| }); |
| } |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit); |
| } |
| |
| // Reset the session cache, this time with a mock clock. |
| ASSERT_NO_FATAL_FAILURE(ResetContexts()); |
| SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); |
| |
| // Make some sessions at an arbitrary start time. Then expire them. |
| g_current_time.tv_sec = 1000; |
| bssl::UniquePtr<SSL_SESSION> expired_session1 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(expired_session1); |
| bssl::UniquePtr<SSL_SESSION> expired_session2 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(expired_session2); |
| g_current_time.tv_sec += 100 * SSL_DEFAULT_SESSION_TIMEOUT; |
| |
| session1 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session1); |
| |
| // Every 256 connections, we flush stale sessions from the session cache. Test |
| // this logic is correctly synchronized with other connection attempts. |
| static const int kNumConnections = 256; |
| { |
| std::vector<std::thread> threads; |
| threads.emplace_back([&] { |
| for (int i = 0; i < kNumConnections; i++) { |
| connect_with_session(nullptr); |
| } |
| }); |
| threads.emplace_back([&] { |
| for (int i = 0; i < kNumConnections; i++) { |
| connect_with_session(nullptr); |
| } |
| }); |
| threads.emplace_back([&] { |
| // Never connect with |expired_session2|. The session cache eagerly |
| // removes expired sessions when it sees them. Leaving |expired_session2| |
| // untouched ensures it is instead cleared by periodic flushing. |
| for (int i = 0; i < kNumConnections; i++) { |
| connect_with_session(expired_session1.get()); |
| } |
| }); |
| threads.emplace_back([&] { |
| for (int i = 0; i < kNumConnections; i++) { |
| connect_with_session(session1.get()); |
| } |
| }); |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| } |
| |
| TEST_P(SSLVersionTest, SessionTicketThreads) { |
| for (bool renew_ticket : {false, true}) { |
| SCOPED_TRACE(renew_ticket); |
| ASSERT_NO_FATAL_FAILURE(ResetContexts()); |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| if (renew_ticket) { |
| SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); |
| } |
| |
| // Establish two client sessions to test with. |
| bssl::UniquePtr<SSL_SESSION> session1 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session1); |
| bssl::UniquePtr<SSL_SESSION> session2 = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session2); |
| |
| auto connect_with_session = [&](SSL_SESSION *session) { |
| ClientConfig config; |
| config.session = session; |
| UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| }; |
| |
| // Resume sessions in parallel with establishing new ones. |
| { |
| std::vector<std::thread> threads; |
| threads.emplace_back([&] { connect_with_session(nullptr); }); |
| threads.emplace_back([&] { connect_with_session(nullptr); }); |
| threads.emplace_back([&] { connect_with_session(session1.get()); }); |
| threads.emplace_back([&] { connect_with_session(session1.get()); }); |
| threads.emplace_back([&] { connect_with_session(session2.get()); }); |
| threads.emplace_back([&] { connect_with_session(session2.get()); }); |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| } |
| } |
| |
| // SSL_CTX_get0_certificate needs to lock internally. Test this works. |
| TEST(SSLTest, GetCertificateThreads) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| ASSERT_TRUE(cert); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); |
| |
| // Existing code expects |SSL_CTX_get0_certificate| to be callable from two |
| // threads concurrently. It originally was an immutable operation. Now we |
| // implement it with a thread-safe cache, so it is worth testing. |
| X509 *cert2_thread; |
| std::thread thread( |
| [&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); }); |
| X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); |
| thread.join(); |
| |
| ASSERT_TRUE(cert2); |
| ASSERT_TRUE(cert2_thread); |
| EXPECT_EQ(cert2, cert2_thread); |
| EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); |
| } |
| |
| // Functions which access properties on the negotiated session are thread-safe |
| // where needed. Prior to TLS 1.3, clients resuming sessions and servers |
| // performing stateful resumption will share an underlying SSL_SESSION object, |
| // potentially across threads. |
| TEST_P(SSLVersionTest, SessionPropertiesThreads) { |
| if (is_tls13()) { |
| // Our TLS 1.3 implementation does not support stateful resumption. |
| ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); |
| return; |
| } |
| |
| SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); |
| ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); |
| |
| // Configure mutual authentication, so we have more session state. |
| SSL_CTX_set_custom_verify( |
| client_ctx_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); |
| SSL_CTX_set_custom_verify( |
| server_ctx_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); |
| |
| // Establish a client session to test with. |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| |
| // Resume with it twice. |
| UniquePtr<SSL> ssls[4]; |
| ClientConfig config; |
| config.session = session.get(); |
| ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(), |
| server_ctx_.get(), config)); |
| ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(), |
| server_ctx_.get(), config)); |
| |
| // Read properties in parallel. |
| auto read_properties = [](const SSL *ssl) { |
| EXPECT_TRUE(SSL_get_peer_cert_chain(ssl)); |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl)); |
| EXPECT_TRUE(peer); |
| EXPECT_TRUE(SSL_get_current_cipher(ssl)); |
| EXPECT_TRUE(SSL_get_group_id(ssl)); |
| }; |
| |
| std::vector<std::thread> threads; |
| for (const auto &ssl_ptr : ssls) { |
| const SSL *ssl = ssl_ptr.get(); |
| threads.emplace_back([=] { read_properties(ssl); }); |
| } |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| |
| static void SetValueOnFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, |
| int index, long argl, void *argp) { |
| if (ptr != nullptr) { |
| *static_cast<long *>(ptr) = argl; |
| } |
| } |
| |
| // Test that one thread can register ex_data while another thread is destroying |
| // an object that uses it. |
| TEST(SSLTest, ExDataThreads) { |
| static bool already_run = false; |
| if (already_run) { |
| GTEST_SKIP() << "This test consumes process-global resources and can only " |
| "be run once in a process. It is not compatible with " |
| "--gtest_repeat."; |
| } |
| already_run = true; |
| |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| // Register an initial index, so the threads can exercise having any ex_data. |
| int first_index = |
| SSL_get_ex_new_index(-1, nullptr, nullptr, nullptr, SetValueOnFree); |
| ASSERT_GE(first_index, 0); |
| |
| // Callers may register indices concurrently with using other indices. This |
| // may happen if one part of an application is initializing while another part |
| // is already running. |
| static constexpr int kNumIndices = 3; |
| static constexpr int kNumSSLs = 10; |
| int index[kNumIndices]; |
| long values[kNumSSLs]; |
| std::fill(std::begin(values), std::end(values), -2); |
| std::vector<std::thread> threads; |
| for (size_t i = 0; i < kNumIndices; i++) { |
| threads.emplace_back([&, i] { |
| index[i] = SSL_get_ex_new_index(static_cast<long>(i), nullptr, nullptr, |
| nullptr, SetValueOnFree); |
| ASSERT_GE(index[i], 0); |
| }); |
| } |
| for (size_t i = 0; i < kNumSSLs; i++) { |
| threads.emplace_back([&, i] { |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| ASSERT_TRUE(SSL_set_ex_data(ssl.get(), first_index, &values[i])); |
| }); |
| } |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| |
| // Each of the SSL threads should have set their flag via ex_data. |
| for (size_t i = 0; i < kNumSSLs; i++) { |
| EXPECT_EQ(values[i], -1); |
| } |
| |
| // Each of the newly-registered indices should be distinct and work correctly. |
| static_assert(kNumIndices <= kNumSSLs, "values buffer too small"); |
| std::fill(std::begin(values), std::end(values), -2); |
| bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl); |
| for (size_t i = 0; i < kNumIndices; i++) { |
| for (size_t j = 0; j < i; j++) { |
| EXPECT_NE(index[i], index[j]); |
| } |
| ASSERT_TRUE(SSL_set_ex_data(ssl.get(), index[i], &values[i])); |
| } |
| ssl = nullptr; |
| for (size_t i = 0; i < kNumIndices; i++) { |
| EXPECT_EQ(values[i], static_cast<long>(i)); |
| } |
| } |
| #endif // OPENSSL_THREADS |
| |
| constexpr size_t kNumQUICLevels = 4; |
| static_assert(ssl_encryption_initial < kNumQUICLevels, |
| "kNumQUICLevels is wrong"); |
| static_assert(ssl_encryption_early_data < kNumQUICLevels, |
| "kNumQUICLevels is wrong"); |
| static_assert(ssl_encryption_handshake < kNumQUICLevels, |
| "kNumQUICLevels is wrong"); |
| static_assert(ssl_encryption_application < kNumQUICLevels, |
| "kNumQUICLevels is wrong"); |
| |
| const char *LevelToString(ssl_encryption_level_t level) { |
| switch (level) { |
| case ssl_encryption_initial: |
| return "initial"; |
| case ssl_encryption_early_data: |
| return "early data"; |
| case ssl_encryption_handshake: |
| return "handshake"; |
| case ssl_encryption_application: |
| return "application"; |
| } |
| return "<unknown>"; |
| } |
| |
| class MockQUICTransport { |
| public: |
| enum class Role { kClient, kServer }; |
| |
| explicit MockQUICTransport(Role role) : role_(role) { |
| // The caller is expected to configure initial secrets. |
| levels_[ssl_encryption_initial].write_secret = {1}; |
| levels_[ssl_encryption_initial].read_secret = {1}; |
| } |
| |
| void set_peer(MockQUICTransport *peer) { peer_ = peer; } |
| |
| bool has_alert() const { return has_alert_; } |
| ssl_encryption_level_t alert_level() const { return alert_level_; } |
| uint8_t alert() const { return alert_; } |
| |
| bool PeerSecretsMatch(ssl_encryption_level_t level) const { |
| return levels_[level].write_secret == peer_->levels_[level].read_secret && |
| levels_[level].read_secret == peer_->levels_[level].write_secret && |
| levels_[level].cipher == peer_->levels_[level].cipher; |
| } |
| |
| bool HasReadSecret(ssl_encryption_level_t level) const { |
| return !levels_[level].read_secret.empty(); |
| } |
| |
| bool HasWriteSecret(ssl_encryption_level_t level) const { |
| return !levels_[level].write_secret.empty(); |
| } |
| |
| void AllowOutOfOrderWrites() { allow_out_of_order_writes_ = true; } |
| |
| bool SetReadSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, |
| Span<const uint8_t> secret) { |
| if (HasReadSecret(level)) { |
| ADD_FAILURE() << LevelToString(level) << " read secret configured twice"; |
| return false; |
| } |
| |
| if (role_ == Role::kClient && level == ssl_encryption_early_data) { |
| ADD_FAILURE() << "Unexpected early data read secret"; |
| return false; |
| } |
| |
| ssl_encryption_level_t ack_level = |
| level == ssl_encryption_early_data ? ssl_encryption_application : level; |
| if (!HasWriteSecret(ack_level)) { |
| ADD_FAILURE() << LevelToString(level) |
| << " read secret configured before ACK write secret"; |
| return false; |
| } |
| |
| if (cipher == nullptr) { |
| ADD_FAILURE() << "Unexpected null cipher"; |
| return false; |
| } |
| |
| if (level != ssl_encryption_early_data && |
| SSL_CIPHER_get_id(cipher) != levels_[level].cipher) { |
| ADD_FAILURE() << "Cipher suite inconsistent"; |
| return false; |
| } |
| |
| levels_[level].read_secret.assign(secret.begin(), secret.end()); |
| levels_[level].cipher = SSL_CIPHER_get_id(cipher); |
| return true; |
| } |
| |
| bool SetWriteSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, |
| Span<const uint8_t> secret) { |
| if (HasWriteSecret(level)) { |
| ADD_FAILURE() << LevelToString(level) << " write secret configured twice"; |
| return false; |
| } |
| |
| if (role_ == Role::kServer && level == ssl_encryption_early_data) { |
| ADD_FAILURE() << "Unexpected early data write secret"; |
| return false; |
| } |
| |
| if (cipher == nullptr) { |
| ADD_FAILURE() << "Unexpected null cipher"; |
| return false; |
| } |
| |
| levels_[level].write_secret.assign(secret.begin(), secret.end()); |
| levels_[level].cipher = SSL_CIPHER_get_id(cipher); |
| return true; |
| } |
| |
| bool WriteHandshakeData(ssl_encryption_level_t level, |
| Span<const uint8_t> data) { |
| if (levels_[level].write_secret.empty()) { |
| ADD_FAILURE() << LevelToString(level) |
| << " write secret not yet configured"; |
| return false; |
| } |
| |
| // Although the levels are conceptually separate, BoringSSL finishes writing |
| // data from a previous level before installing keys for the next level. |
| if (!allow_out_of_order_writes_) { |
| switch (level) { |
| case ssl_encryption_early_data: |
| ADD_FAILURE() << "unexpected handshake data at early data level"; |
| return false; |
| case ssl_encryption_initial: |
| if (!levels_[ssl_encryption_handshake].write_secret.empty()) { |
| ADD_FAILURE() |
| << LevelToString(level) |
| << " handshake data written after handshake keys installed"; |
| return false; |
| } |
| OPENSSL_FALLTHROUGH; |
| case ssl_encryption_handshake: |
| if (!levels_[ssl_encryption_application].write_secret.empty()) { |
| ADD_FAILURE() |
| << LevelToString(level) |
| << " handshake data written after application keys installed"; |
| return false; |
| } |
| OPENSSL_FALLTHROUGH; |
| case ssl_encryption_application: |
| break; |
| } |
| } |
| |
| levels_[level].write_data.insert(levels_[level].write_data.end(), |
| data.begin(), data.end()); |
| return true; |
| } |
| |
| bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) { |
| if (has_alert_) { |
| ADD_FAILURE() << "duplicate alert sent"; |
| return false; |
| } |
| |
| if (levels_[level].write_secret.empty()) { |
| ADD_FAILURE() << LevelToString(level) |
| << " write secret not yet configured"; |
| return false; |
| } |
| |
| has_alert_ = true; |
| alert_level_ = level; |
| alert_ = alert_value; |
| return true; |
| } |
| |
| bool ReadHandshakeData(std::vector<uint8_t> *out, |
| ssl_encryption_level_t level, |
| size_t num = std::numeric_limits<size_t>::max()) { |
| if (levels_[level].read_secret.empty()) { |
| ADD_FAILURE() << "data read before keys configured in level " << level; |
| return false; |
| } |
| // The peer may not have configured any keys yet. |
| if (peer_->levels_[level].write_secret.empty()) { |
| out->clear(); |
| return true; |
| } |
| // Check the peer computed the same key. |
| if (peer_->levels_[level].write_secret != levels_[level].read_secret) { |
| ADD_FAILURE() << "peer write key does not match read key in level " |
| << level; |
| return false; |
| } |
| if (peer_->levels_[level].cipher != levels_[level].cipher) { |
| ADD_FAILURE() << "peer cipher does not match in level " << level; |
| return false; |
| } |
| std::vector<uint8_t> *peer_data = &peer_->levels_[level].write_data; |
| num = std::min(num, peer_data->size()); |
| out->assign(peer_data->begin(), peer_data->begin() + num); |
| peer_data->erase(peer_data->begin(), peer_data->begin() + num); |
| return true; |
| } |
| |
| private: |
| Role role_; |
| MockQUICTransport *peer_ = nullptr; |
| |
| bool allow_out_of_order_writes_ = false; |
| bool has_alert_ = false; |
| ssl_encryption_level_t alert_level_ = ssl_encryption_initial; |
| uint8_t alert_ = 0; |
| |
| struct Level { |
| std::vector<uint8_t> write_data; |
| std::vector<uint8_t> write_secret; |
| std::vector<uint8_t> read_secret; |
| uint32_t cipher = 0; |
| }; |
| Level levels_[kNumQUICLevels]; |
| }; |
| |
| class MockQUICTransportPair { |
| public: |
| MockQUICTransportPair() |
| : client_(MockQUICTransport::Role::kClient), |
| server_(MockQUICTransport::Role::kServer) { |
| client_.set_peer(&server_); |
| server_.set_peer(&client_); |
| } |
| |
| ~MockQUICTransportPair() { |
| client_.set_peer(nullptr); |
| server_.set_peer(nullptr); |
| } |
| |
| MockQUICTransport *client() { return &client_; } |
| MockQUICTransport *server() { return &server_; } |
| |
| bool SecretsMatch(ssl_encryption_level_t level) const { |
| // We only need to check |HasReadSecret| and |HasWriteSecret| on |client_|. |
| // |PeerSecretsMatch| checks that |server_| is analogously configured. |
| return client_.PeerSecretsMatch(level) && |
| client_.HasWriteSecret(level) && |
| (level == ssl_encryption_early_data || client_.HasReadSecret(level)); |
| } |
| |
| private: |
| MockQUICTransport client_; |
| MockQUICTransport server_; |
| }; |
| |
| class QUICMethodTest : public testing::Test { |
| protected: |
| void SetUp() override { |
| client_ctx_.reset(SSL_CTX_new(TLS_method())); |
| server_ctx_ = CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx_); |
| ASSERT_TRUE(server_ctx_); |
| |
| SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION); |
| SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION); |
| SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION); |
| SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION); |
| |
| static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; |
| ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, |
| sizeof(kALPNProtos)), |
| 0); |
| SSL_CTX_set_alpn_select_cb( |
| server_ctx_.get(), |
| [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg) -> int { |
| return SSL_select_next_proto( |
| const_cast<uint8_t **>(out), out_len, in, in_len, |
| kALPNProtos, sizeof(kALPNProtos)) == OPENSSL_NPN_NEGOTIATED |
| ? SSL_TLSEXT_ERR_OK |
| : SSL_TLSEXT_ERR_NOACK; |
| }, |
| nullptr); |
| } |
| |
| static MockQUICTransport *TransportFromSSL(const SSL *ssl) { |
| return ex_data_.Get(ssl); |
| } |
| |
| static bool ProvideHandshakeData( |
| SSL *ssl, size_t num = std::numeric_limits<size_t>::max()) { |
| MockQUICTransport *transport = TransportFromSSL(ssl); |
| ssl_encryption_level_t level = SSL_quic_read_level(ssl); |
| std::vector<uint8_t> data; |
| return transport->ReadHandshakeData(&data, level, num) && |
| SSL_provide_quic_data(ssl, level, data.data(), data.size()); |
| } |
| |
| void AllowOutOfOrderWrites() { |
| allow_out_of_order_writes_ = true; |
| } |
| |
| bool CreateClientAndServer() { |
| client_.reset(SSL_new(client_ctx_.get())); |
| server_.reset(SSL_new(server_ctx_.get())); |
| if (!client_ || !server_) { |
| return false; |
| } |
| |
| SSL_set_connect_state(client_.get()); |
| SSL_set_accept_state(server_.get()); |
| |
| transport_ = std::make_unique<MockQUICTransportPair>(); |
| if (!ex_data_.Set(client_.get(), transport_->client()) || |
| !ex_data_.Set(server_.get(), transport_->server())) { |
| return false; |
| } |
| if (allow_out_of_order_writes_) { |
| transport_->client()->AllowOutOfOrderWrites(); |
| transport_->server()->AllowOutOfOrderWrites(); |
| } |
| static const uint8_t client_transport_params[] = {0}; |
| if (!SSL_set_quic_transport_params(client_.get(), client_transport_params, |
| sizeof(client_transport_params)) || |
| !SSL_set_quic_transport_params(server_.get(), |
| server_transport_params_.data(), |
| server_transport_params_.size()) || |
| !SSL_set_quic_early_data_context( |
| server_.get(), server_quic_early_data_context_.data(), |
| server_quic_early_data_context_.size())) { |
| return false; |
| } |
| return true; |
| } |
| |
| enum class ExpectedError { |
| kNoError, |
| kClientError, |
| kServerError, |
| }; |
| |
| // CompleteHandshakesForQUIC runs |SSL_do_handshake| on |client_| and |
| // |server_| until each completes once. It returns true on success and false |
| // on failure. |
| bool CompleteHandshakesForQUIC() { |
| return RunQUICHandshakesAndExpectError(ExpectedError::kNoError); |
| } |
| |
| // Runs |SSL_do_handshake| on |client_| and |server_| until each completes |
| // once. If |expect_client_error| is true, it will return true only if the |
| // client handshake failed. Otherwise, it returns true if both handshakes |
| // succeed and false otherwise. |
| bool RunQUICHandshakesAndExpectError(ExpectedError expected_error) { |
| bool client_done = false, server_done = false; |
| while (!client_done || !server_done) { |
| if (!client_done) { |
| if (!ProvideHandshakeData(client_.get())) { |
| ADD_FAILURE() << "ProvideHandshakeData(client_) failed"; |
| return false; |
| } |
| int client_ret = SSL_do_handshake(client_.get()); |
| int client_err = SSL_get_error(client_.get(), client_ret); |
| if (client_ret == 1) { |
| client_done = true; |
| } else if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { |
| if (expected_error == ExpectedError::kClientError) { |
| return true; |
| } |
| ADD_FAILURE() << "Unexpected client output: " << client_ret << " " |
| << client_err; |
| return false; |
| } |
| } |
| |
| if (!server_done) { |
| if (!ProvideHandshakeData(server_.get())) { |
| ADD_FAILURE() << "ProvideHandshakeData(server_) failed"; |
| return false; |
| } |
| int server_ret = SSL_do_handshake(server_.get()); |
| int server_err = SSL_get_error(server_.get(), server_ret); |
| if (server_ret == 1) { |
| server_done = true; |
| } else if (server_ret != -1 || server_err != SSL_ERROR_WANT_READ) { |
| if (expected_error == ExpectedError::kServerError) { |
| return true; |
| } |
| ADD_FAILURE() << "Unexpected server output: " << server_ret << " " |
| << server_err; |
| return false; |
| } |
| } |
| } |
| return expected_error == ExpectedError::kNoError; |
| } |
| |
| bssl::UniquePtr<SSL_SESSION> CreateClientSessionForQUIC() { |
| g_last_session = nullptr; |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| if (!CreateClientAndServer() || |
| !CompleteHandshakesForQUIC()) { |
| return nullptr; |
| } |
| |
| // The server sent NewSessionTicket messages in the handshake. |
| if (!ProvideHandshakeData(client_.get()) || |
| !SSL_process_quic_post_handshake(client_.get())) { |
| return nullptr; |
| } |
| |
| return std::move(g_last_session); |
| } |
| |
| void ExpectHandshakeSuccess() { |
| EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); |
| EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(client_.get())); |
| EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(client_.get())); |
| EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(server_.get())); |
| EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(server_.get())); |
| EXPECT_FALSE(transport_->client()->has_alert()); |
| EXPECT_FALSE(transport_->server()->has_alert()); |
| |
| // SSL_do_handshake is now idempotent. |
| EXPECT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_EQ(SSL_do_handshake(server_.get()), 1); |
| } |
| |
| // Returns a default SSL_QUIC_METHOD. Individual methods may be overwritten by |
| // the test. |
| SSL_QUIC_METHOD DefaultQUICMethod() { |
| return SSL_QUIC_METHOD{ |
| SetReadSecretCallback, SetWriteSecretCallback, AddHandshakeDataCallback, |
| FlushFlightCallback, SendAlertCallback, |
| }; |
| } |
| |
| static int SetReadSecretCallback(SSL *ssl, ssl_encryption_level_t level, |
| const SSL_CIPHER *cipher, |
| const uint8_t *secret, size_t secret_len) { |
| return TransportFromSSL(ssl)->SetReadSecret( |
| level, cipher, MakeConstSpan(secret, secret_len)); |
| } |
| |
| static int SetWriteSecretCallback(SSL *ssl, ssl_encryption_level_t level, |
| const SSL_CIPHER *cipher, |
| const uint8_t *secret, size_t secret_len) { |
| return TransportFromSSL(ssl)->SetWriteSecret( |
| level, cipher, MakeConstSpan(secret, secret_len)); |
| } |
| |
| static int AddHandshakeDataCallback(SSL *ssl, |
| enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) { |
| EXPECT_EQ(level, SSL_quic_write_level(ssl)); |
| return TransportFromSSL(ssl)->WriteHandshakeData(level, |
| MakeConstSpan(data, len)); |
| } |
| |
| static int FlushFlightCallback(SSL *ssl) { return 1; } |
| |
| static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level, |
| uint8_t alert) { |
| EXPECT_EQ(level, SSL_quic_write_level(ssl)); |
| return TransportFromSSL(ssl)->SendAlert(level, alert); |
| } |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx_; |
| bssl::UniquePtr<SSL_CTX> server_ctx_; |
| |
| static UnownedSSLExData<MockQUICTransport> ex_data_; |
| std::unique_ptr<MockQUICTransportPair> transport_; |
| |
| bssl::UniquePtr<SSL> client_; |
| bssl::UniquePtr<SSL> server_; |
| |
| std::vector<uint8_t> server_transport_params_ = {1}; |
| std::vector<uint8_t> server_quic_early_data_context_ = {2}; |
| |
| bool allow_out_of_order_writes_ = false; |
| }; |
| |
| UnownedSSLExData<MockQUICTransport> QUICMethodTest::ex_data_; |
| |
| // Test a full handshake and resumption work. |
| TEST_F(QUICMethodTest, Basic) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| g_last_session = nullptr; |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| EXPECT_FALSE(SSL_session_reused(client_.get())); |
| EXPECT_FALSE(SSL_session_reused(server_.get())); |
| |
| // SSL_get_traffic_secrets is not defined for QUIC. |
| Span<const uint8_t> read_secret, write_secret; |
| EXPECT_FALSE( |
| SSL_get_traffic_secrets(client_.get(), &read_secret, &write_secret)); |
| EXPECT_FALSE( |
| SSL_get_traffic_secrets(server_.get(), &read_secret, &write_secret)); |
| |
| // The server sent NewSessionTicket messages in the handshake. |
| EXPECT_FALSE(g_last_session); |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); |
| EXPECT_TRUE(g_last_session); |
| |
| // Create a second connection to verify resumption works. |
| ASSERT_TRUE(CreateClientAndServer()); |
| bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); |
| SSL_set_session(client_.get(), session.get()); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| } |
| |
| // Test that HelloRetryRequest in QUIC works. |
| TEST_F(QUICMethodTest, HelloRetryRequest) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| // BoringSSL predicts the most preferred ECDH group, so using different |
| // preferences will trigger HelloRetryRequest. |
| static const int kClientPrefs[] = {NID_X25519, NID_X9_62_prime256v1}; |
| ASSERT_TRUE(SSL_CTX_set1_groups(client_ctx_.get(), kClientPrefs, |
| OPENSSL_ARRAY_SIZE(kClientPrefs))); |
| static const int kServerPrefs[] = {NID_X9_62_prime256v1, NID_X25519}; |
| ASSERT_TRUE(SSL_CTX_set1_groups(server_ctx_.get(), kServerPrefs, |
| OPENSSL_ARRAY_SIZE(kServerPrefs))); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectHandshakeSuccess(); |
| } |
| |
| // Test that the client does not send a legacy_session_id in the ClientHello. |
| TEST_F(QUICMethodTest, NoLegacySessionId) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| // Check that the session ID length is 0 in an early callback. |
| SSL_CTX_set_select_certificate_cb( |
| server_ctx_.get(), |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| EXPECT_EQ(client_hello->session_id_len, 0u); |
| return ssl_select_cert_success; |
| }); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| } |
| |
| // Test that, even in a 1-RTT handshake, the server installs keys at the right |
| // time. Half-RTT keys are available early, but 1-RTT read keys are deferred. |
| TEST_F(QUICMethodTest, HalfRTTKeys) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| // The client sends ClientHello. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client_.get(), -1)); |
| |
| // The server reads ClientHello and sends ServerHello..Finished. |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), -1); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); |
| |
| // At this point, the server has half-RTT write keys, but it cannot access |
| // 1-RTT read keys until client Finished. |
| EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); |
| EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); |
| |
| // Finish up the client and server handshakes. |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| // Both sides can now exchange 1-RTT data. |
| ExpectHandshakeSuccess(); |
| } |
| |
| TEST_F(QUICMethodTest, ZeroRTTAccept) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); |
| ASSERT_TRUE(session); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| SSL_set_session(client_.get(), session.get()); |
| |
| // The client handshake should return immediately into the early data state. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(client_.get())); |
| // The transport should have keys for sending 0-RTT data. |
| EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| |
| // The server will consume the ClientHello and also enter the early data |
| // state. |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(server_.get())); |
| EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); |
| // At this point, the server has half-RTT write keys, but it cannot access |
| // 1-RTT read keys until client Finished. |
| EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); |
| EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); |
| |
| // Finish up the client and server handshakes. |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| // Both sides can now exchange 1-RTT data. |
| ExpectHandshakeSuccess(); |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| EXPECT_FALSE(SSL_in_early_data(client_.get())); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_TRUE(SSL_early_data_accepted(client_.get())); |
| EXPECT_TRUE(SSL_early_data_accepted(server_.get())); |
| |
| // Finish handling post-handshake messages after the first 0-RTT resumption. |
| EXPECT_TRUE(ProvideHandshakeData(client_.get())); |
| EXPECT_TRUE(SSL_process_quic_post_handshake(client_.get())); |
| |
| // Perform a second 0-RTT resumption attempt, and confirm that 0-RTT is |
| // accepted again. |
| ASSERT_TRUE(CreateClientAndServer()); |
| SSL_set_session(client_.get(), g_last_session.get()); |
| |
| // The client handshake should return immediately into the early data state. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(client_.get())); |
| // The transport should have keys for sending 0-RTT data. |
| EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| |
| // The server will consume the ClientHello and also enter the early data |
| // state. |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(server_.get())); |
| EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); |
| // At this point, the server has half-RTT write keys, but it cannot access |
| // 1-RTT read keys until client Finished. |
| EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); |
| EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); |
| |
| // Finish up the client and server handshakes. |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| // Both sides can now exchange 1-RTT data. |
| ExpectHandshakeSuccess(); |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| EXPECT_FALSE(SSL_in_early_data(client_.get())); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_TRUE(SSL_early_data_accepted(client_.get())); |
| EXPECT_TRUE(SSL_early_data_accepted(server_.get())); |
| EXPECT_EQ(SSL_get_early_data_reason(client_.get()), ssl_early_data_accepted); |
| EXPECT_EQ(SSL_get_early_data_reason(server_.get()), ssl_early_data_accepted); |
| } |
| |
| TEST_F(QUICMethodTest, ZeroRTTRejectMismatchedParameters) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| |
| bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); |
| ASSERT_TRUE(session); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| static const uint8_t new_context[] = {4}; |
| ASSERT_TRUE(SSL_set_quic_early_data_context(server_.get(), new_context, |
| sizeof(new_context))); |
| SSL_set_session(client_.get(), session.get()); |
| |
| // The client handshake should return immediately into the early data |
| // state. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(client_.get())); |
| // The transport should have keys for sending 0-RTT data. |
| EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| |
| // The server will consume the ClientHello, but it will not accept 0-RTT. |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), -1); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_early_data)); |
| |
| // The client consumes the server response and signals 0-RTT rejection. |
| for (;;) { |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| ASSERT_EQ(-1, SSL_do_handshake(client_.get())); |
| int err = SSL_get_error(client_.get(), -1); |
| if (err == SSL_ERROR_EARLY_DATA_REJECTED) { |
| break; |
| } |
| ASSERT_EQ(SSL_ERROR_WANT_READ, err); |
| } |
| |
| // As in TLS over TCP, 0-RTT rejection is sticky. |
| ASSERT_EQ(-1, SSL_do_handshake(client_.get())); |
| ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); |
| |
| // Finish up the client and server handshakes. |
| SSL_reset_early_data_reject(client_.get()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| // Both sides can now exchange 1-RTT data. |
| ExpectHandshakeSuccess(); |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| EXPECT_FALSE(SSL_in_early_data(client_.get())); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_FALSE(SSL_early_data_accepted(client_.get())); |
| EXPECT_FALSE(SSL_early_data_accepted(server_.get())); |
| } |
| |
| TEST_F(QUICMethodTest, NoZeroRTTTicketWithoutEarlyDataContext) { |
| server_quic_early_data_context_ = {}; |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); |
| ASSERT_TRUE(session); |
| EXPECT_FALSE(SSL_SESSION_early_data_capable(session.get())); |
| } |
| |
| TEST_F(QUICMethodTest, ZeroRTTReject) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); |
| ASSERT_TRUE(session); |
| |
| for (bool reject_hrr : {false, true}) { |
| SCOPED_TRACE(reject_hrr); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| if (reject_hrr) { |
| // Configure the server to prefer P-256, which will reject 0-RTT via |
| // HelloRetryRequest. |
| int p256 = NID_X9_62_prime256v1; |
| ASSERT_TRUE(SSL_set1_groups(server_.get(), &p256, 1)); |
| } else { |
| // Disable 0-RTT on the server, so it will reject it. |
| SSL_set_early_data_enabled(server_.get(), 0); |
| } |
| SSL_set_session(client_.get(), session.get()); |
| |
| // The client handshake should return immediately into the early data state. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(client_.get())); |
| // The transport should have keys for sending 0-RTT data. |
| EXPECT_TRUE( |
| transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| |
| // The server will consume the ClientHello, but it will not accept 0-RTT. |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), -1); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_FALSE( |
| transport_->server()->HasReadSecret(ssl_encryption_early_data)); |
| |
| // The client consumes the server response and signals 0-RTT rejection. |
| for (;;) { |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| ASSERT_EQ(-1, SSL_do_handshake(client_.get())); |
| int err = SSL_get_error(client_.get(), -1); |
| if (err == SSL_ERROR_EARLY_DATA_REJECTED) { |
| break; |
| } |
| ASSERT_EQ(SSL_ERROR_WANT_READ, err); |
| } |
| |
| // As in TLS over TCP, 0-RTT rejection is sticky. |
| ASSERT_EQ(-1, SSL_do_handshake(client_.get())); |
| ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); |
| |
| // Finish up the client and server handshakes. |
| SSL_reset_early_data_reject(client_.get()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| // Both sides can now exchange 1-RTT data. |
| ExpectHandshakeSuccess(); |
| EXPECT_TRUE(SSL_session_reused(client_.get())); |
| EXPECT_TRUE(SSL_session_reused(server_.get())); |
| EXPECT_FALSE(SSL_in_early_data(client_.get())); |
| EXPECT_FALSE(SSL_in_early_data(server_.get())); |
| EXPECT_FALSE(SSL_early_data_accepted(client_.get())); |
| EXPECT_FALSE(SSL_early_data_accepted(server_.get())); |
| } |
| } |
| |
| TEST_F(QUICMethodTest, NoZeroRTTKeysBeforeReverify) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); |
| SSL_CTX_set_reverify_on_resume(client_ctx_.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); |
| ASSERT_TRUE(session); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| SSL_set_session(client_.get(), session.get()); |
| |
| // Configure the certificate (re)verification to never complete. The client |
| // handshake should pause. |
| SSL_set_custom_verify( |
| client_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_retry; |
| }); |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), |
| SSL_ERROR_WANT_CERTIFICATE_VERIFY); |
| |
| // The early data keys have not yet been released. |
| EXPECT_FALSE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| |
| // After the verification completes, the handshake progresses to the 0-RTT |
| // point and releases keys. |
| SSL_set_custom_verify( |
| client_.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_ok; |
| }); |
| ASSERT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_TRUE(SSL_in_early_data(client_.get())); |
| EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); |
| } |
| |
| // Test only releasing data to QUIC one byte at a time on request, to maximize |
| // state machine pauses. Additionally, test that existing asynchronous callbacks |
| // still work. |
| TEST_F(QUICMethodTest, Async) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| // Install an asynchronous certificate callback. |
| bool cert_cb_ok = false; |
| SSL_set_cert_cb(server_.get(), |
| [](SSL *, void *arg) -> int { |
| return *static_cast<bool *>(arg) ? 1 : -1; |
| }, |
| &cert_cb_ok); |
| |
| for (;;) { |
| int client_ret = SSL_do_handshake(client_.get()); |
| if (client_ret != 1) { |
| ASSERT_EQ(client_ret, -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ); |
| ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1)); |
| } |
| |
| int server_ret = SSL_do_handshake(server_.get()); |
| if (server_ret != 1) { |
| ASSERT_EQ(server_ret, -1); |
| int ssl_err = SSL_get_error(server_.get(), server_ret); |
| switch (ssl_err) { |
| case SSL_ERROR_WANT_READ: |
| ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1)); |
| break; |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| ASSERT_FALSE(cert_cb_ok); |
| cert_cb_ok = true; |
| break; |
| default: |
| FAIL() << "Unexpected SSL_get_error result: " << ssl_err; |
| } |
| } |
| |
| if (client_ret == 1 && server_ret == 1) { |
| break; |
| } |
| } |
| |
| ExpectHandshakeSuccess(); |
| } |
| |
| // Test buffering write data until explicit flushes. |
| TEST_F(QUICMethodTest, Buffered) { |
| AllowOutOfOrderWrites(); |
| |
| struct BufferedFlight { |
| std::vector<uint8_t> data[kNumQUICLevels]; |
| }; |
| static UnownedSSLExData<BufferedFlight> buffered_flights; |
| |
| auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) -> int { |
| BufferedFlight *flight = buffered_flights.Get(ssl); |
| flight->data[level].insert(flight->data[level].end(), data, data + len); |
| return 1; |
| }; |
| |
| auto flush_flight = [](SSL *ssl) -> int { |
| BufferedFlight *flight = buffered_flights.Get(ssl); |
| for (size_t level = 0; level < kNumQUICLevels; level++) { |
| if (!flight->data[level].empty()) { |
| if (!TransportFromSSL(ssl)->WriteHandshakeData( |
| static_cast<ssl_encryption_level_t>(level), |
| flight->data[level])) { |
| return 0; |
| } |
| flight->data[level].clear(); |
| } |
| } |
| return 1; |
| }; |
| |
| SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| quic_method.add_handshake_data = add_handshake_data; |
| quic_method.flush_flight = flush_flight; |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| BufferedFlight client_flight, server_flight; |
| ASSERT_TRUE(buffered_flights.Set(client_.get(), &client_flight)); |
| ASSERT_TRUE(buffered_flights.Set(server_.get(), &server_flight)); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| } |
| |
| // Test that excess data at one level is rejected. That is, if a single |
| // |SSL_provide_quic_data| call included both ServerHello and |
| // EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on |
| // key change. |
| TEST_F(QUICMethodTest, ExcessProvidedData) { |
| AllowOutOfOrderWrites(); |
| |
| auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) -> int { |
| // Switch everything to the initial level. |
| return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial, |
| MakeConstSpan(data, len)); |
| }; |
| |
| SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| quic_method.add_handshake_data = add_handshake_data; |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| // Send the ClientHello and ServerHello through Finished. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), -1); |
| ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); |
| |
| // The client is still waiting for the ServerHello at initial |
| // encryption. |
| ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); |
| |
| // |add_handshake_data| incorrectly wrote everything at the initial level, so |
| // this queues up ServerHello through Finished in one chunk. |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| |
| // The client reads ServerHello successfully, but then rejects the buffered |
| // EncryptedExtensions on key change. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL); |
| EXPECT_TRUE( |
| ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_EXCESS_HANDSHAKE_DATA)); |
| |
| // The client sends an alert in response to this. The alert is sent at |
| // handshake level because we install write secrets before read secrets and |
| // the error is discovered when installing the read secret. (How to send |
| // alerts on protocol syntax errors near key changes is ambiguous in general.) |
| ASSERT_TRUE(transport_->client()->has_alert()); |
| EXPECT_EQ(transport_->client()->alert_level(), ssl_encryption_handshake); |
| EXPECT_EQ(transport_->client()->alert(), SSL_AD_UNEXPECTED_MESSAGE); |
| |
| // Sanity-check handshake secrets. The error is discovered while setting the |
| // read secret, so only the write secret has been installed. |
| EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_handshake)); |
| EXPECT_FALSE(transport_->client()->HasReadSecret(ssl_encryption_handshake)); |
| } |
| |
| // Test that |SSL_provide_quic_data| will reject data at the wrong level. |
| TEST_F(QUICMethodTest, ProvideWrongLevel) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| // Send the ClientHello and ServerHello through Finished. |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); |
| ASSERT_TRUE(ProvideHandshakeData(server_.get())); |
| ASSERT_EQ(SSL_do_handshake(server_.get()), -1); |
| ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); |
| |
| // The client is still waiting for the ServerHello at initial |
| // encryption. |
| ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); |
| |
| // Data cannot be provided at the next level. |
| std::vector<uint8_t> data; |
| ASSERT_TRUE( |
| transport_->client()->ReadHandshakeData(&data, ssl_encryption_initial)); |
| ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake, |
| data.data(), data.size())); |
| ERR_clear_error(); |
| |
| // Progress to EncryptedExtensions. |
| ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, |
| data.data(), data.size())); |
| ASSERT_EQ(SSL_do_handshake(client_.get()), -1); |
| ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); |
| ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get())); |
| |
| // Data cannot be provided at the previous level. |
| ASSERT_TRUE( |
| transport_->client()->ReadHandshakeData(&data, ssl_encryption_handshake)); |
| ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, |
| data.data(), data.size())); |
| } |
| |
| TEST_F(QUICMethodTest, TooMuchData) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| |
| size_t limit = |
| SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial); |
| uint8_t b = 0; |
| for (size_t i = 0; i < limit; i++) { |
| ASSERT_TRUE( |
| SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); |
| } |
| |
| EXPECT_FALSE( |
| SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); |
| } |
| |
| // Provide invalid post-handshake data. |
| TEST_F(QUICMethodTest, BadPostHandshake) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| g_last_session = nullptr; |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| EXPECT_EQ(SSL_do_handshake(client_.get()), 1); |
| EXPECT_EQ(SSL_do_handshake(server_.get()), 1); |
| EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); |
| EXPECT_FALSE(transport_->client()->has_alert()); |
| EXPECT_FALSE(transport_->server()->has_alert()); |
| |
| // Junk sent as part of post-handshake data should cause an error. |
| uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF}; |
| ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application, |
| kJunk, sizeof(kJunk))); |
| EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0); |
| } |
| |
| static void ExpectReceivedTransportParamsEqual(const SSL *ssl, |
| Span<const uint8_t> expected) { |
| const uint8_t *received; |
| size_t received_len; |
| SSL_get_peer_quic_transport_params(ssl, &received, &received_len); |
| ASSERT_EQ(received_len, expected.size()); |
| EXPECT_EQ(Bytes(received, received_len), Bytes(expected)); |
| } |
| |
| TEST_F(QUICMethodTest, SetTransportParameters) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| uint8_t kServerParams[] = {5, 6, 7}; |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, |
| sizeof(kServerParams))); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); |
| ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); |
| } |
| |
| TEST_F(QUICMethodTest, SetTransportParamsInCallback) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| static uint8_t kServerParams[] = {5, 6, 7}; |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| SSL_CTX_set_tlsext_servername_callback( |
| server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { |
| EXPECT_TRUE(SSL_set_quic_transport_params(ssl, kServerParams, |
| sizeof(kServerParams))); |
| return SSL_TLSEXT_ERR_OK; |
| }); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); |
| ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); |
| } |
| |
| TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionClient) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| g_last_session = nullptr; |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| EXPECT_FALSE(SSL_session_reused(client_.get())); |
| EXPECT_FALSE(SSL_session_reused(server_.get())); |
| |
| // The server sent NewSessionTicket messages in the handshake. |
| EXPECT_FALSE(g_last_session); |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); |
| ASSERT_TRUE(g_last_session); |
| |
| // Pretend that g_last_session came from a TLS-over-TCP connection. |
| g_last_session->is_quic = false; |
| |
| // Create a second connection and verify that resumption does not occur with |
| // a session from a non-QUIC connection. This tests that the client does not |
| // offer over QUIC a session believed to be received over TCP. The server |
| // believes this is a QUIC session, so if the client offered the session, the |
| // server would have resumed it. |
| ASSERT_TRUE(CreateClientAndServer()); |
| bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); |
| SSL_set_session(client_.get(), session.get()); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectHandshakeSuccess(); |
| EXPECT_FALSE(SSL_session_reused(client_.get())); |
| EXPECT_FALSE(SSL_session_reused(server_.get())); |
| } |
| |
| TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionServer) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| |
| g_last_session = nullptr; |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| |
| ExpectHandshakeSuccess(); |
| EXPECT_FALSE(SSL_session_reused(client_.get())); |
| EXPECT_FALSE(SSL_session_reused(server_.get())); |
| |
| // The server sent NewSessionTicket messages in the handshake. |
| EXPECT_FALSE(g_last_session); |
| ASSERT_TRUE(ProvideHandshakeData(client_.get())); |
| EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); |
| ASSERT_TRUE(g_last_session); |
| |
| // Attempt a resumption with g_last_session using TLS_method. |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), nullptr)); |
| |
| bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), |
| server(SSL_new(server_ctx_.get())); |
| ASSERT_TRUE(client); |
| ASSERT_TRUE(server); |
| SSL_set_connect_state(client.get()); |
| SSL_set_accept_state(server.get()); |
| |
| // The TLS-over-TCP client will refuse to resume with a quic session, so |
| // mark is_quic = false to bypass the client check to test the server check. |
| g_last_session->is_quic = false; |
| SSL_set_session(client.get(), g_last_session.get()); |
| |
| BIO *bio1, *bio2; |
| ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); |
| |
| // SSL_set_bio takes ownership. |
| SSL_set_bio(client.get(), bio1, bio1); |
| SSL_set_bio(server.get(), bio2, bio2); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| EXPECT_FALSE(SSL_session_reused(client.get())); |
| EXPECT_FALSE(SSL_session_reused(server.get())); |
| } |
| |
| TEST_F(QUICMethodTest, ClientRejectsMissingTransportParams) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), nullptr, 0)); |
| ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); |
| } |
| |
| TEST_F(QUICMethodTest, ServerRejectsMissingTransportParams) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), nullptr, 0)); |
| ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kClientError)); |
| } |
| |
| TEST_F(QUICMethodTest, QuicLegacyCodepointEnabled) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| uint8_t kServerParams[] = {5, 6, 7}; |
| SSL_set_quic_use_legacy_codepoint(client_.get(), 1); |
| SSL_set_quic_use_legacy_codepoint(server_.get(), 1); |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, |
| sizeof(kServerParams))); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); |
| ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); |
| } |
| |
| TEST_F(QUICMethodTest, QuicLegacyCodepointDisabled) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| uint8_t kServerParams[] = {5, 6, 7}; |
| SSL_set_quic_use_legacy_codepoint(client_.get(), 0); |
| SSL_set_quic_use_legacy_codepoint(server_.get(), 0); |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, |
| sizeof(kServerParams))); |
| |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); |
| ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); |
| } |
| |
| TEST_F(QUICMethodTest, QuicLegacyCodepointClientOnly) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| uint8_t kServerParams[] = {5, 6, 7}; |
| SSL_set_quic_use_legacy_codepoint(client_.get(), 1); |
| SSL_set_quic_use_legacy_codepoint(server_.get(), 0); |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, |
| sizeof(kServerParams))); |
| |
| ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); |
| } |
| |
| TEST_F(QUICMethodTest, QuicLegacyCodepointServerOnly) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| uint8_t kClientParams[] = {1, 2, 3, 4}; |
| uint8_t kServerParams[] = {5, 6, 7}; |
| SSL_set_quic_use_legacy_codepoint(client_.get(), 0); |
| SSL_set_quic_use_legacy_codepoint(server_.get(), 1); |
| ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, |
| sizeof(kClientParams))); |
| ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, |
| sizeof(kServerParams))); |
| |
| ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); |
| } |
| |
| // Test that the default QUIC code point is consistent with |
| // |TLSEXT_TYPE_quic_transport_parameters|. This test ensures we remember to |
| // update the two values together. |
| TEST_F(QUICMethodTest, QuicCodePointDefault) { |
| const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); |
| ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); |
| SSL_CTX_set_select_certificate_cb( |
| server_ctx_.get(), |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| const uint8_t *data; |
| size_t len; |
| if (!SSL_early_callback_ctx_extension_get( |
| client_hello, TLSEXT_TYPE_quic_transport_parameters, &data, |
| &len)) { |
| ADD_FAILURE() << "Could not find quic_transport_parameters extension"; |
| return ssl_select_cert_error; |
| } |
| return ssl_select_cert_success; |
| }); |
| |
| ASSERT_TRUE(CreateClientAndServer()); |
| ASSERT_TRUE(CompleteHandshakesForQUIC()); |
| } |
| |
| extern "C" { |
| int BORINGSSL_enum_c_type_test(void); |
| } |
| |
| TEST(SSLTest, EnumTypes) { |
| EXPECT_EQ(sizeof(int), sizeof(ssl_private_key_result_t)); |
| EXPECT_EQ(1, BORINGSSL_enum_c_type_test()); |
| } |
| |
| TEST_P(SSLVersionTest, DoubleSSLError) { |
| // Connect the inner SSL connections. |
| ASSERT_TRUE(Connect()); |
| |
| // Make a pair of |BIO|s which wrap |client_| and |server_|. |
| UniquePtr<BIO_METHOD> bio_method(BIO_meth_new(0, nullptr)); |
| ASSERT_TRUE(bio_method); |
| ASSERT_TRUE(BIO_meth_set_read( |
| bio_method.get(), [](BIO *bio, char *out, int len) -> int { |
| SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); |
| int ret = SSL_read(ssl, out, len); |
| int ssl_ret = SSL_get_error(ssl, ret); |
| if (ssl_ret == SSL_ERROR_WANT_READ) { |
| BIO_set_retry_read(bio); |
| } |
| return ret; |
| })); |
| ASSERT_TRUE(BIO_meth_set_write( |
| bio_method.get(), [](BIO *bio, const char *in, int len) -> int { |
| SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); |
| int ret = SSL_write(ssl, in, len); |
| int ssl_ret = SSL_get_error(ssl, ret); |
| if (ssl_ret == SSL_ERROR_WANT_WRITE) { |
| BIO_set_retry_write(bio); |
| } |
| return ret; |
| })); |
| ASSERT_TRUE(BIO_meth_set_ctrl( |
| bio_method.get(), [](BIO *bio, int cmd, long larg, void *parg) -> long { |
| // |SSL| objects require |BIO_flush| support. |
| if (cmd == BIO_CTRL_FLUSH) { |
| return 1; |
| } |
| return 0; |
| })); |
| |
| UniquePtr<BIO> client_bio(BIO_new(bio_method.get())); |
| ASSERT_TRUE(client_bio); |
| BIO_set_data(client_bio.get(), client_.get()); |
| BIO_set_init(client_bio.get(), 1); |
| |
| UniquePtr<BIO> server_bio(BIO_new(bio_method.get())); |
| ASSERT_TRUE(server_bio); |
| BIO_set_data(server_bio.get(), server_.get()); |
| BIO_set_init(server_bio.get(), 1); |
| |
| // Wrap the inner connections in another layer of SSL. |
| UniquePtr<SSL> client_outer(SSL_new(client_ctx_.get())); |
| ASSERT_TRUE(client_outer); |
| SSL_set_connect_state(client_outer.get()); |
| SSL_set_bio(client_outer.get(), client_bio.get(), client_bio.get()); |
| client_bio.release(); // |SSL_set_bio| takes ownership. |
| |
| UniquePtr<SSL> server_outer(SSL_new(server_ctx_.get())); |
| ASSERT_TRUE(server_outer); |
| SSL_set_accept_state(server_outer.get()); |
| SSL_set_bio(server_outer.get(), server_bio.get(), server_bio.get()); |
| server_bio.release(); // |SSL_set_bio| takes ownership. |
| |
| // Configure |client_outer| to reject the server certificate. |
| SSL_set_custom_verify( |
| client_outer.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { |
| return ssl_verify_invalid; |
| }); |
| |
| for (;;) { |
| int client_ret = SSL_do_handshake(client_outer.get()); |
| int client_err = SSL_get_error(client_outer.get(), client_ret); |
| if (client_err != SSL_ERROR_WANT_READ && |
| client_err != SSL_ERROR_WANT_WRITE) { |
| // The client handshake should terminate on a certificate verification |
| // error. |
| EXPECT_EQ(SSL_ERROR_SSL, client_err); |
| EXPECT_TRUE(ErrorEquals(ERR_peek_error(), ERR_LIB_SSL, |
| SSL_R_CERTIFICATE_VERIFY_FAILED)); |
| break; |
| } |
| |
| // Run the server handshake and continue. |
| int server_ret = SSL_do_handshake(server_outer.get()); |
| int server_err = SSL_get_error(server_outer.get(), server_ret); |
| ASSERT_TRUE(server_err == SSL_ERROR_NONE || |
| server_err == SSL_ERROR_WANT_READ || |
| server_err == SSL_ERROR_WANT_WRITE); |
| } |
| } |
| |
| TEST_P(SSLVersionTest, SameKeyResume) { |
| uint8_t key[48]; |
| RAND_bytes(key, sizeof(key)); |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); |
| ASSERT_TRUE(server_ctx2); |
| ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); |
| ASSERT_TRUE( |
| SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key, sizeof(key))); |
| ASSERT_TRUE( |
| SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key, sizeof(key))); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); |
| |
| // Establish a session for |server_ctx_|. |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| ClientConfig config; |
| config.session = session.get(); |
| |
| // Resuming with |server_ctx_| again works. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| |
| // Resuming with |server_ctx2| also works. |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx2.get(), config)); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| } |
| |
| TEST_P(SSLVersionTest, DifferentKeyNoResume) { |
| uint8_t key1[48], key2[48]; |
| RAND_bytes(key1, sizeof(key1)); |
| RAND_bytes(key2, sizeof(key2)); |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); |
| ASSERT_TRUE(server_ctx2); |
| ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); |
| ASSERT_TRUE( |
| SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key1, sizeof(key1))); |
| ASSERT_TRUE( |
| SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key2, sizeof(key2))); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); |
| |
| // Establish a session for |server_ctx_|. |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| ClientConfig config; |
| config.session = session.get(); |
| |
| // Resuming with |server_ctx_| again works. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| |
| // Resuming with |server_ctx2| does not work. |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx2.get(), config)); |
| EXPECT_FALSE(SSL_session_reused(client.get())); |
| EXPECT_FALSE(SSL_session_reused(server.get())); |
| } |
| |
| TEST_P(SSLVersionTest, UnrelatedServerNoResume) { |
| bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); |
| ASSERT_TRUE(server_ctx2); |
| ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); |
| |
| // Establish a session for |server_ctx_|. |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| ASSERT_TRUE(session); |
| ClientConfig config; |
| config.session = session.get(); |
| |
| // Resuming with |server_ctx_| again works. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| |
| // Resuming with |server_ctx2| does not work. |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx2.get(), config)); |
| EXPECT_FALSE(SSL_session_reused(client.get())); |
| EXPECT_FALSE(SSL_session_reused(server.get())); |
| } |
| |
| Span<const uint8_t> SessionIDOf(const SSL* ssl) { |
| const SSL_SESSION *session = SSL_get_session(ssl); |
| unsigned len; |
| const uint8_t *data = SSL_SESSION_get_id(session, &len); |
| return MakeConstSpan(data, len); |
| } |
| |
| TEST_P(SSLVersionTest, TicketSessionIDsMatch) { |
| // This checks that the session IDs at client and server match after a ticket |
| // resumption. It's unclear whether this should be true, but Envoy depends |
| // on it in their tests so this will give an early signal if we break it. |
| SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx_.get(), server_ctx_.get()); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ClientConfig config; |
| config.session = session.get(); |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), |
| server_ctx_.get(), config)); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_TRUE(SSL_session_reused(server.get())); |
| |
| EXPECT_EQ(Bytes(SessionIDOf(client.get())), Bytes(SessionIDOf(server.get()))); |
| } |
| |
| static void WriteHelloRequest(SSL *server) { |
| // This function assumes TLS 1.2 with ChaCha20-Poly1305. |
| ASSERT_EQ(SSL_version(server), TLS1_2_VERSION); |
| ASSERT_EQ(SSL_CIPHER_get_cipher_nid(SSL_get_current_cipher(server)), |
| NID_chacha20_poly1305); |
| |
| // Encrypt a HelloRequest. |
| uint8_t in[] = {SSL3_MT_HELLO_REQUEST, 0, 0, 0}; |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| // Fuzzer-mode records are unencrypted. |
| uint8_t record[5 + sizeof(in)]; |
| record[0] = SSL3_RT_HANDSHAKE; |
| record[1] = 3; |
| record[2] = 3; // TLS 1.2 |
| record[3] = 0; |
| record[4] = sizeof(record) - 5; |
| memcpy(record + 5, in, sizeof(in)); |
| #else |
| // Extract key material from |server|. |
| static const size_t kKeyLen = 32; |
| static const size_t kNonceLen = 12; |
| ASSERT_EQ(2u * (kKeyLen + kNonceLen), SSL_get_key_block_len(server)); |
| uint8_t key_block[2u * (kKeyLen + kNonceLen)]; |
| ASSERT_TRUE(SSL_generate_key_block(server, key_block, sizeof(key_block))); |
| Span<uint8_t> key = MakeSpan(key_block + kKeyLen, kKeyLen); |
| Span<uint8_t> nonce = |
| MakeSpan(key_block + kKeyLen + kKeyLen + kNonceLen, kNonceLen); |
| |
| uint8_t ad[13]; |
| uint64_t seq = SSL_get_write_sequence(server); |
| for (size_t i = 0; i < 8; i++) { |
| // The nonce is XORed with the sequence number. |
| nonce[11 - i] ^= uint8_t(seq); |
| ad[7 - i] = uint8_t(seq); |
| seq >>= 8; |
| } |
| |
| ad[8] = SSL3_RT_HANDSHAKE; |
| ad[9] = 3; |
| ad[10] = 3; // TLS 1.2 |
| ad[11] = 0; |
| ad[12] = sizeof(in); |
| |
| uint8_t record[5 + sizeof(in) + 16]; |
| record[0] = SSL3_RT_HANDSHAKE; |
| record[1] = 3; |
| record[2] = 3; // TLS 1.2 |
| record[3] = 0; |
| record[4] = sizeof(record) - 5; |
| |
| ScopedEVP_AEAD_CTX aead; |
| ASSERT_TRUE(EVP_AEAD_CTX_init(aead.get(), EVP_aead_chacha20_poly1305(), |
| key.data(), key.size(), |
| EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); |
| size_t len; |
| ASSERT_TRUE(EVP_AEAD_CTX_seal(aead.get(), record + 5, &len, |
| sizeof(record) - 5, nonce.data(), nonce.size(), |
| in, sizeof(in), ad, sizeof(ad))); |
| ASSERT_EQ(sizeof(record) - 5, len); |
| #endif // BORINGSSL_UNSAFE_FUZZER_MODE |
| |
| ASSERT_EQ(int(sizeof(record)), |
| BIO_write(SSL_get_wbio(server), record, sizeof(record))); |
| } |
| |
| TEST(SSLTest, WriteWhileExplicitRenegotiate) { |
| bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( |
| ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_explicit); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| static const uint8_t kInput[] = {'h', 'e', 'l', 'l', 'o'}; |
| |
| // Write "hello" until the buffer is full, so |client| has a pending write. |
| size_t num_writes = 0; |
| for (;;) { |
| int ret = SSL_write(client.get(), kInput, sizeof(kInput)); |
| if (ret != int(sizeof(kInput))) { |
| ASSERT_EQ(-1, ret); |
| ASSERT_EQ(SSL_ERROR_WANT_WRITE, SSL_get_error(client.get(), ret)); |
| break; |
| } |
| num_writes++; |
| } |
| |
| ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); |
| |
| // |SSL_read| should pick up the HelloRequest. |
| uint8_t byte; |
| ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); |
| ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); |
| |
| // Drain the data from the |client|. |
| uint8_t buf[sizeof(kInput)]; |
| for (size_t i = 0; i < num_writes; i++) { |
| ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes(buf), Bytes(kInput)); |
| } |
| |
| // |client| should be able to finish the pending write and continue to write, |
| // despite the paused HelloRequest. |
| ASSERT_EQ(int(sizeof(kInput)), |
| SSL_write(client.get(), kInput, sizeof(kInput))); |
| ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes(buf), Bytes(kInput)); |
| |
| ASSERT_EQ(int(sizeof(kInput)), |
| SSL_write(client.get(), kInput, sizeof(kInput))); |
| ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes(buf), Bytes(kInput)); |
| |
| // |SSL_read| is stuck until we acknowledge the HelloRequest. |
| ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); |
| ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); |
| |
| ASSERT_TRUE(SSL_renegotiate(client.get())); |
| ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); |
| |
| // We never renegotiate as a server. |
| ASSERT_EQ(-1, SSL_read(server.get(), buf, sizeof(buf))); |
| ASSERT_EQ(SSL_ERROR_SSL, SSL_get_error(server.get(), -1)); |
| EXPECT_TRUE( |
| ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION)); |
| } |
| |
| TEST(SSLTest, ConnectionPropertiesDuringRenegotiate) { |
| // Configure known connection properties, so we can check against them. |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| ASSERT_TRUE(cert); |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( |
| ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); |
| ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), "X25519")); |
| ASSERT_TRUE(SSL_CTX_set1_sigalgs_list(ctx.get(), "rsa_pkcs1_sha256")); |
| |
| // Connect a client and server that accept renegotiation. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| auto check_properties = [&] { |
| EXPECT_EQ(SSL_version(client.get()), TLS1_2_VERSION); |
| const SSL_CIPHER *cipher = SSL_get_current_cipher(client.get()); |
| ASSERT_TRUE(cipher); |
| EXPECT_EQ(SSL_CIPHER_get_id(cipher), |
| uint32_t{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256}); |
| EXPECT_EQ(SSL_get_group_id(client.get()), SSL_GROUP_X25519); |
| EXPECT_EQ(SSL_get_negotiated_group(client.get()), NID_X25519); |
| EXPECT_EQ(SSL_get_peer_signature_algorithm(client.get()), |
| SSL_SIGN_RSA_PKCS1_SHA256); |
| bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client.get())); |
| ASSERT_TRUE(peer); |
| EXPECT_EQ(X509_cmp(cert.get(), peer.get()), 0); |
| }; |
| check_properties(); |
| |
| // The server sends a HelloRequest. |
| ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); |
| |
| // Reading from the client will consume the HelloRequest, start a |
| // renegotiation, and then block on a ServerHello from the server. |
| uint8_t byte; |
| ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); |
| |
| // Connection properties should continue to report values from the original |
| // handshake. |
| check_properties(); |
| } |
| |
| TEST(SSLTest, CopyWithoutEarlyData) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx.get(), server_ctx.get()); |
| ASSERT_TRUE(session); |
| |
| // The client should attempt early data with |session|. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session.get()); |
| SSL_set_early_data_enabled(client.get(), 1); |
| ASSERT_EQ(1, SSL_do_handshake(client.get())); |
| EXPECT_TRUE(SSL_in_early_data(client.get())); |
| |
| // |SSL_SESSION_copy_without_early_data| should disable early data but |
| // still resume the session. |
| bssl::UniquePtr<SSL_SESSION> session2( |
| SSL_SESSION_copy_without_early_data(session.get())); |
| ASSERT_TRUE(session2); |
| EXPECT_NE(session.get(), session2.get()); |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session2.get()); |
| SSL_set_early_data_enabled(client.get(), 1); |
| EXPECT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| EXPECT_TRUE(SSL_session_reused(client.get())); |
| EXPECT_EQ(ssl_early_data_unsupported_for_session, |
| SSL_get_early_data_reason(client.get())); |
| |
| // |SSL_SESSION_copy_without_early_data| should be a reference count increase |
| // when passed an early-data-incapable session. |
| bssl::UniquePtr<SSL_SESSION> session3( |
| SSL_SESSION_copy_without_early_data(session2.get())); |
| EXPECT_EQ(session2.get(), session3.get()); |
| } |
| |
| TEST(SSLTest, ProcessTLS13NewSessionTicket) { |
| // Configure client and server to negotiate TLS 1.3 only. |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| EXPECT_EQ(TLS1_3_VERSION, SSL_version(client.get())); |
| |
| // Process a TLS 1.3 NewSessionTicket. |
| static const uint8_t kTicket[] = { |
| 0x04, 0x00, 0x00, 0xb2, 0x00, 0x02, 0xa3, 0x00, 0x04, 0x03, 0x02, 0x01, |
| 0x01, 0x00, 0x00, 0xa0, 0x01, 0x06, 0x09, 0x11, 0x16, 0x19, 0x21, 0x26, |
| 0x29, 0x31, 0x36, 0x39, 0x41, 0x46, 0x49, 0x51, 0x03, 0x06, 0x09, 0x13, |
| 0x16, 0x19, 0x23, 0x26, 0x29, 0x33, 0x36, 0x39, 0x43, 0x46, 0x49, 0x53, |
| 0xf7, 0x00, 0x29, 0xec, 0xf2, 0xc4, 0xa4, 0x41, 0xfc, 0x30, 0x17, 0x2e, |
| 0x9f, 0x7c, 0xa8, 0xaf, 0x75, 0x70, 0xf0, 0x1f, 0xc7, 0x98, 0xf7, 0xcf, |
| 0x5a, 0x5a, 0x6b, 0x5b, 0xfe, 0xf1, 0xe7, 0x3a, 0xe8, 0xf7, 0x6c, 0xd2, |
| 0xa8, 0xa6, 0x92, 0x5b, 0x96, 0x8d, 0xde, 0xdb, 0xd3, 0x20, 0x6a, 0xcb, |
| 0x69, 0x06, 0xf4, 0x91, 0x85, 0x2e, 0xe6, 0x5e, 0x0c, 0x59, 0xf2, 0x9e, |
| 0x9b, 0x79, 0x91, 0x24, 0x7e, 0x4a, 0x32, 0x3d, 0xbe, 0x4b, 0x80, 0x70, |
| 0xaf, 0xd0, 0x1d, 0xe2, 0xca, 0x05, 0x35, 0x09, 0x09, 0x05, 0x0f, 0xbb, |
| 0xc4, 0xae, 0xd7, 0xc4, 0xed, 0xd7, 0xae, 0x35, 0xc8, 0x73, 0x63, 0x78, |
| 0x64, 0xc9, 0x7a, 0x1f, 0xed, 0x7a, 0x9a, 0x47, 0x44, 0xfd, 0x50, 0xf7, |
| 0xb7, 0xe0, 0x64, 0xa9, 0x02, 0xc1, 0x5c, 0x23, 0x18, 0x3f, 0xc4, 0xcf, |
| 0x72, 0x02, 0x59, 0x2d, 0xe1, 0xaa, 0x61, 0x72, 0x00, 0x04, 0x5a, 0x5a, |
| 0x00, 0x00, |
| }; |
| bssl::UniquePtr<SSL_SESSION> session(SSL_process_tls13_new_session_ticket( |
| client.get(), kTicket, sizeof(kTicket))); |
| ASSERT_TRUE(session); |
| ASSERT_TRUE(SSL_SESSION_has_ticket(session.get())); |
| |
| uint8_t *session_buf = nullptr; |
| size_t session_length = 0; |
| ASSERT_TRUE( |
| SSL_SESSION_to_bytes(session.get(), &session_buf, &session_length)); |
| bssl::UniquePtr<uint8_t> session_buf_free(session_buf); |
| ASSERT_TRUE(session_buf); |
| ASSERT_GT(session_length, 0u); |
| |
| // Servers cannot call |SSL_process_tls13_new_session_ticket|. |
| ASSERT_FALSE(SSL_process_tls13_new_session_ticket(server.get(), kTicket, |
| sizeof(kTicket))); |
| |
| // Clients cannot call |SSL_process_tls13_new_session_ticket| before the |
| // handshake completes. |
| bssl::UniquePtr<SSL> client2(SSL_new(client_ctx.get())); |
| ASSERT_TRUE(client2); |
| SSL_set_connect_state(client2.get()); |
| ASSERT_FALSE(SSL_process_tls13_new_session_ticket(client2.get(), kTicket, |
| sizeof(kTicket))); |
| } |
| |
| TEST(SSLTest, BIO) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| |
| for (bool take_ownership : {true, false}) { |
| // For simplicity, get the handshake out of the way first. |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // Wrap |client| in an SSL BIO. |
| bssl::UniquePtr<BIO> client_bio(BIO_new(BIO_f_ssl())); |
| ASSERT_TRUE(client_bio); |
| ASSERT_EQ(1, BIO_set_ssl(client_bio.get(), client.get(), take_ownership)); |
| if (take_ownership) { |
| client.release(); |
| } |
| |
| // Flushing the BIO should not crash. |
| EXPECT_EQ(1, BIO_flush(client_bio.get())); |
| |
| // Exchange some data. |
| EXPECT_EQ(5, BIO_write(client_bio.get(), "hello", 5)); |
| uint8_t buf[5]; |
| ASSERT_EQ(5, SSL_read(server.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("hello"), Bytes(buf)); |
| |
| EXPECT_EQ(5, SSL_write(server.get(), "world", 5)); |
| ASSERT_EQ(5, BIO_read(client_bio.get(), buf, sizeof(buf))); |
| EXPECT_EQ(Bytes("world"), Bytes(buf)); |
| |
| // |BIO_should_read| should work. |
| EXPECT_EQ(-1, BIO_read(client_bio.get(), buf, sizeof(buf))); |
| EXPECT_TRUE(BIO_should_read(client_bio.get())); |
| |
| // Writing data should eventually exceed the buffer size and fail, reporting |
| // |BIO_should_write|. |
| int ret; |
| for (int i = 0; i < 1024; i++) { |
| const uint8_t kZeros[1024] = {0}; |
| ret = BIO_write(client_bio.get(), kZeros, sizeof(kZeros)); |
| if (ret <= 0) { |
| break; |
| } |
| } |
| EXPECT_EQ(-1, ret); |
| EXPECT_TRUE(BIO_should_write(client_bio.get())); |
| } |
| } |
| |
| TEST(SSLTest, ALPNConfig) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(cert); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); |
| |
| // Set up some machinery to check the configured ALPN against what is actually |
| // sent over the wire. Note that the ALPN callback is only called when the |
| // client offers ALPN. |
| std::vector<uint8_t> observed_alpn; |
| SSL_CTX_set_alpn_select_cb( |
| ctx.get(), |
| [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg) -> int { |
| std::vector<uint8_t> *observed_alpn_ptr = |
| static_cast<std::vector<uint8_t> *>(arg); |
| observed_alpn_ptr->assign(in, in + in_len); |
| return SSL_TLSEXT_ERR_NOACK; |
| }, |
| &observed_alpn); |
| auto check_alpn_proto = [&](Span<const uint8_t> expected) { |
| observed_alpn.clear(); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); |
| EXPECT_EQ(Bytes(expected), Bytes(observed_alpn)); |
| }; |
| |
| // Note that |SSL_CTX_set_alpn_protos|'s return value is reversed. |
| static const uint8_t kValidList[] = {0x03, 'f', 'o', 'o', |
| 0x03, 'b', 'a', 'r'}; |
| EXPECT_EQ(0, |
| SSL_CTX_set_alpn_protos(ctx.get(), kValidList, sizeof(kValidList))); |
| check_alpn_proto(kValidList); |
| |
| // Invalid lists are rejected. |
| static const uint8_t kInvalidList[] = {0x04, 'f', 'o', 'o'}; |
| EXPECT_EQ(1, SSL_CTX_set_alpn_protos(ctx.get(), kInvalidList, |
| sizeof(kInvalidList))); |
| |
| // Empty lists are valid and are interpreted as disabling ALPN. |
| EXPECT_EQ(0, SSL_CTX_set_alpn_protos(ctx.get(), nullptr, 0)); |
| check_alpn_proto({}); |
| } |
| |
| // This is a basic unit-test class to verify completing handshake successfully, |
| // sending the correct codepoint extension and having correct application |
| // setting on different combination of ALPS codepoint settings. More integration |
| // tests on runner.go. |
| class AlpsNewCodepointTest : public testing::Test { |
| protected: |
| void SetUp() override { |
| client_ctx_.reset(SSL_CTX_new(TLS_method())); |
| server_ctx_ = CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx_); |
| ASSERT_TRUE(server_ctx_); |
| } |
| |
| void SetUpApplicationSetting() { |
| static const uint8_t alpn[] = {0x03, 'f', 'o', 'o'}; |
| static const uint8_t proto[] = {'f', 'o', 'o'}; |
| static const uint8_t alps[] = {0x04, 'a', 'l', 'p', 's'}; |
| // SSL_set_alpn_protos's return value is backwards. It returns zero on |
| // success and one on failure. |
| ASSERT_FALSE(SSL_set_alpn_protos(client_.get(), alpn, sizeof(alpn))); |
| SSL_CTX_set_alpn_select_cb( |
| server_ctx_.get(), |
| [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg) -> int { |
| return SSL_select_next_proto( |
| const_cast<uint8_t **>(out), out_len, in, in_len, |
| alpn, sizeof(alpn)) == OPENSSL_NPN_NEGOTIATED |
| ? SSL_TLSEXT_ERR_OK |
| : SSL_TLSEXT_ERR_NOACK; |
| }, |
| nullptr); |
| ASSERT_TRUE(SSL_add_application_settings(client_.get(), proto, |
| sizeof(proto), nullptr, 0)); |
| ASSERT_TRUE(SSL_add_application_settings(server_.get(), proto, |
| sizeof(proto), alps, sizeof(alps))); |
| } |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx_; |
| bssl::UniquePtr<SSL_CTX> server_ctx_; |
| |
| bssl::UniquePtr<SSL> client_; |
| bssl::UniquePtr<SSL> server_; |
| }; |
| |
| TEST_F(AlpsNewCodepointTest, Enabled) { |
| SetUpExpectedNewCodePoint(server_ctx_.get()); |
| |
| ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get())); |
| |
| SSL_set_alps_use_new_codepoint(client_.get(), 1); |
| SSL_set_alps_use_new_codepoint(server_.get(), 1); |
| |
| SetUpApplicationSetting(); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| ASSERT_TRUE(SSL_has_application_settings(client_.get())); |
| } |
| |
| TEST_F(AlpsNewCodepointTest, Disabled) { |
| // Both client and server disable alps new codepoint. |
| SetUpExpectedOldCodePoint(server_ctx_.get()); |
| |
| ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get())); |
| |
| SSL_set_alps_use_new_codepoint(client_.get(), 0); |
| SSL_set_alps_use_new_codepoint(server_.get(), 0); |
| |
| SetUpApplicationSetting(); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| ASSERT_TRUE(SSL_has_application_settings(client_.get())); |
| } |
| |
| TEST_F(AlpsNewCodepointTest, ClientOnly) { |
| // If client set new codepoint but server doesn't set, server ignores it. |
| SetUpExpectedNewCodePoint(server_ctx_.get()); |
| |
| ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get())); |
| |
| SSL_set_alps_use_new_codepoint(client_.get(), 1); |
| SSL_set_alps_use_new_codepoint(server_.get(), 0); |
| |
| SetUpApplicationSetting(); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| ASSERT_FALSE(SSL_has_application_settings(client_.get())); |
| } |
| |
| TEST_F(AlpsNewCodepointTest, ServerOnly) { |
| // If client doesn't set new codepoint, while server set. |
| SetUpExpectedOldCodePoint(server_ctx_.get()); |
| |
| ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), |
| server_ctx_.get())); |
| |
| SSL_set_alps_use_new_codepoint(client_.get(), 0); |
| SSL_set_alps_use_new_codepoint(server_.get(), 1); |
| |
| SetUpApplicationSetting(); |
| ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); |
| ASSERT_FALSE(SSL_has_application_settings(client_.get())); |
| } |
| |
| // Test that the key usage checker can correctly handle issuerUID and |
| // subjectUID. See https://crbug.com/1199744. |
| TEST(SSLTest, KeyUsageWithUIDs) { |
| static const char kGoodKeyUsage[] = R"( |
| -----BEGIN CERTIFICATE----- |
| MIIB7DCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT |
| AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn |
| aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw |
| CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu |
| ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp |
| 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW |
| Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC |
| ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G |
| A1UdDwEB/wQEAwIHgDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0cAMEQCIEWJ |
| 34EcqW5MHwLIA1hZ2Tj/jV2QjN02KLxis9mFsqDKAiAMlMTkzsM51vVs9Ohqa+Rc |
| 4Z7qDhjIhiF4dM0uEDYRVA== |
| -----END CERTIFICATE----- |
| )"; |
| static const char kBadKeyUsage[] = R"( |
| -----BEGIN CERTIFICATE----- |
| MIIB7jCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT |
| AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn |
| aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw |
| CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu |
| ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp |
| 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW |
| Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC |
| ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G |
| A1UdDwEB/wQEAwIDCDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0kAMEYCIQC6 |
| taYBUDu2gcZC6EMk79FBHArYI0ucF+kzvETegZCbBAIhANtObFec5gtso/47moPD |
| RHrQbWsFUakETXL9QMlegh5t |
| -----END CERTIFICATE----- |
| )"; |
| |
| bssl::UniquePtr<X509> good = CertFromPEM(kGoodKeyUsage); |
| ASSERT_TRUE(good); |
| bssl::UniquePtr<X509> bad = CertFromPEM(kBadKeyUsage); |
| ASSERT_TRUE(bad); |
| |
| // We check key usage when configuring EC certificates to distinguish ECDSA |
| // and ECDH. |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| EXPECT_TRUE(SSL_CTX_use_certificate(ctx.get(), good.get())); |
| EXPECT_FALSE(SSL_CTX_use_certificate(ctx.get(), bad.get())); |
| } |
| |
| // Test that |SSL_can_release_private_key| reports true as early as expected. |
| // The internal asserts in the library check we do not report true too early. |
| TEST(SSLTest, CanReleasePrivateKey) { |
| bssl::UniquePtr<SSL_CTX> client_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| |
| // Note this assumes the transport buffer is large enough to fit the client |
| // and server first flights. We check this with |SSL_ERROR_WANT_READ|. If the |
| // transport buffer was too small it would return |SSL_ERROR_WANT_WRITE|. |
| auto check_first_server_round_trip = [&](SSL *client, SSL *server) { |
| // Write the ClientHello. |
| ASSERT_EQ(-1, SSL_do_handshake(client)); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client, -1)); |
| |
| // Consume the ClientHello and write the server flight. |
| ASSERT_EQ(-1, SSL_do_handshake(server)); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server, -1)); |
| |
| EXPECT_TRUE(SSL_can_release_private_key(server)); |
| }; |
| |
| { |
| SCOPED_TRACE("TLS 1.2 ECDHE"); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE( |
| SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( |
| server_ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); |
| // Configure the server to request client certificates, so we can also test |
| // the client half. |
| SSL_CTX_set_custom_verify( |
| server_ctx.get(), SSL_VERIFY_PEER, |
| [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| check_first_server_round_trip(client.get(), server.get()); |
| |
| // Consume the server flight and write the client response. The client still |
| // has a Finished message to consume but can also release its key early. |
| ASSERT_EQ(-1, SSL_do_handshake(client.get())); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); |
| EXPECT_TRUE(SSL_can_release_private_key(client.get())); |
| |
| // However, a client that has not disabled renegotiation can never release |
| // the key. |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); |
| check_first_server_round_trip(client.get(), server.get()); |
| ASSERT_EQ(-1, SSL_do_handshake(client.get())); |
| ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); |
| EXPECT_FALSE(SSL_can_release_private_key(client.get())); |
| } |
| |
| { |
| SCOPED_TRACE("TLS 1.2 resumption"); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE( |
| SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx.get(), server_ctx.get()); |
| ASSERT_TRUE(session); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session.get()); |
| check_first_server_round_trip(client.get(), server.get()); |
| } |
| |
| { |
| SCOPED_TRACE("TLS 1.3 1-RTT"); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE( |
| SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| check_first_server_round_trip(client.get(), server.get()); |
| } |
| |
| { |
| SCOPED_TRACE("TLS 1.3 resumption"); |
| bssl::UniquePtr<SSL_CTX> server_ctx( |
| CreateContextWithTestCertificate(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE( |
| SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx.get(), server_ctx.get()); |
| ASSERT_TRUE(session); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session.get()); |
| check_first_server_round_trip(client.get(), server.get()); |
| } |
| } |
| |
| // GetExtensionOrder sets |*out| to the list of extensions a client attached to |
| // |ctx| will send in the ClientHello. If |ech_keys| is non-null, the client |
| // will offer ECH with the public component. If |decrypt_ech| is true, |*out| |
| // will be set to the ClientHelloInner's extensions, rather than |
| // ClientHelloOuter. |
| static bool GetExtensionOrder(SSL_CTX *client_ctx, std::vector<uint16_t> *out, |
| SSL_ECH_KEYS *ech_keys, bool decrypt_ech) { |
| struct AppData { |
| std::vector<uint16_t> *out; |
| bool decrypt_ech; |
| bool callback_done = false; |
| }; |
| AppData app_data; |
| app_data.out = out; |
| app_data.decrypt_ech = decrypt_ech; |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| if (!server_ctx || // |
| !SSL_CTX_set_app_data(server_ctx.get(), &app_data) || |
| (decrypt_ech && !SSL_CTX_set1_ech_keys(server_ctx.get(), ech_keys))) { |
| return false; |
| } |
| |
| // Configure the server to record the ClientHello extension order. We use a |
| // server rather than |GetClientHello| so it can decrypt ClientHelloInner. |
| SSL_CTX_set_select_certificate_cb( |
| server_ctx.get(), |
| [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { |
| AppData *app_data_ptr = static_cast<AppData *>( |
| SSL_CTX_get_app_data(SSL_get_SSL_CTX(client_hello->ssl))); |
| EXPECT_EQ(app_data_ptr->decrypt_ech ? 1 : 0, |
| SSL_ech_accepted(client_hello->ssl)); |
| |
| app_data_ptr->out->clear(); |
| CBS extensions; |
| CBS_init(&extensions, client_hello->extensions, |
| client_hello->extensions_len); |
| while (CBS_len(&extensions)) { |
| uint16_t type; |
| CBS body; |
| if (!CBS_get_u16(&extensions, &type) || |
| !CBS_get_u16_length_prefixed(&extensions, &body)) { |
| return ssl_select_cert_error; |
| } |
| app_data_ptr->out->push_back(type); |
| } |
| |
| // Don't bother completing the handshake. |
| app_data_ptr->callback_done = true; |
| return ssl_select_cert_error; |
| }); |
| |
| bssl::UniquePtr<SSL> client, server; |
| if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx.get()) || |
| (ech_keys != nullptr && !InstallECHConfigList(client.get(), ech_keys))) { |
| return false; |
| } |
| |
| // Run the handshake far enough to process the ClientHello. |
| SSL_do_handshake(client.get()); |
| SSL_do_handshake(server.get()); |
| return app_data.callback_done; |
| } |
| |
| // Test that, when extension permutation is enabled, the ClientHello extension |
| // order changes, both with and without ECH, and in both ClientHelloInner and |
| // ClientHelloOuter. |
| TEST(SSLTest, PermuteExtensions) { |
| bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); |
| ASSERT_TRUE(keys); |
| for (bool offer_ech : {false, true}) { |
| SCOPED_TRACE(offer_ech); |
| SSL_ECH_KEYS *maybe_keys = offer_ech ? keys.get() : nullptr; |
| for (bool decrypt_ech : {false, true}) { |
| SCOPED_TRACE(decrypt_ech); |
| if (!offer_ech && decrypt_ech) { |
| continue; |
| } |
| |
| // When extension permutation is disabled, the order should be consistent. |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| std::vector<uint16_t> order1, order2; |
| ASSERT_TRUE( |
| GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); |
| ASSERT_TRUE( |
| GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); |
| EXPECT_EQ(order1, order2); |
| |
| ctx.reset(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| SSL_CTX_set_permute_extensions(ctx.get(), 1); |
| |
| // When extension permutation is enabled, each ClientHello should have a |
| // different order. |
| // |
| // This test is inherently flaky, so we run it multiple times. We send at |
| // least five extensions by default from TLS 1.3: supported_versions, |
| // key_share, supported_groups, psk_key_exchange_modes, and |
| // signature_algorithms. That means the probability of a false negative is |
| // at most 1/120. Repeating the test 14 times lowers false negative rate |
| // to under 2^-96. |
| ASSERT_TRUE( |
| GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); |
| EXPECT_GE(order1.size(), 5u); |
| static const int kNumIterations = 14; |
| bool passed = false; |
| for (int i = 0; i < kNumIterations; i++) { |
| ASSERT_TRUE( |
| GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); |
| if (order1 != order2) { |
| passed = true; |
| break; |
| } |
| } |
| EXPECT_TRUE(passed) << "Extensions were not permuted"; |
| } |
| } |
| } |
| |
| TEST(SSLTest, HostMatching) { |
| static const char kCertPEM[] = R"( |
| -----BEGIN CERTIFICATE----- |
| MIIB9jCCAZ2gAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjApMRAw |
| DgYDVQQKEwdBY21lIENvMRUwEwYDVQQDEwxleGFtcGxlMy5jb20wHhcNMjExMjA2 |
| MjA1NjU2WhcNMjIxMjA2MjA1NjU2WjApMRAwDgYDVQQKEwdBY21lIENvMRUwEwYD |
| VQQDEwxleGFtcGxlMy5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAS7l2VO |
| Bl2TjVm9WfGk24+hMbVFUNB+RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaW |
| ULDDaoeDl1M0t4Hmo4GmMIGjMA4GA1UdDwEB/wQEAwIChDATBgNVHSUEDDAKBggr |
| BgEFBQcDATAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTTJWurcc1t+VPQBko3 |
| Gsw6cbcWSTBMBgNVHREERTBDggxleGFtcGxlMS5jb22CDGV4YW1wbGUyLmNvbYIP |
| YSouZXhhbXBsZTQuY29tgg4qLmV4YW1wbGU1LmNvbYcEAQIDBDAKBggqhkjOPQQD |
| AgNHADBEAiAAv0ljHJGrgyzZDkG6XvNZ5ewxRfnXcZuD0Y7E4giCZgIgNK1qjilu |
| 5DyVbfKeeJhOCtGxqE1dWLXyJBnoRomSYBY= |
| -----END CERTIFICATE----- |
| )"; |
| bssl::UniquePtr<X509> cert(CertFromPEM(kCertPEM)); |
| ASSERT_TRUE(cert); |
| static const char kCertNoSANsPEM[] = R"( |
| -----BEGIN CERTIFICATE----- |
| MIIBqzCCAVGgAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjArMRIw |
| EAYDVQQKEwlBY21lIENvIDIxFTATBgNVBAMTDGV4YW1wbGUzLmNvbTAeFw0yMTEy |
| MDYyMDU2NTZaFw0yMjEyMDYyMDU2NTZaMCsxEjAQBgNVBAoTCUFjbWUgQ28gMjEV |
| MBMGA1UEAxMMZXhhbXBsZTMuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE |
| u5dlTgZdk41ZvVnxpNuPoTG1RVDQfkVR1mwrxbzWQKFoiCds9+ESxiJ8mbwmfMSw |
| L7LmllCww2qHg5dTNLeB5qNXMFUwDgYDVR0PAQH/BAQDAgKEMBMGA1UdJQQMMAoG |
| CCsGAQUFBwMBMA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFNMla6txzW35U9AG |
| SjcazDpxtxZJMAoGCCqGSM49BAMCA0gAMEUCIG3YWGWtpVhbcGV7wFKQwTfmvwHW |
| pw4qCFZlool4hCwsAiEA+2fc6NfSbNpFEtQkDOMJW2ANiScAVEmImNqPfb2klz4= |
| -----END CERTIFICATE----- |
| )"; |
| bssl::UniquePtr<X509> cert_no_sans(CertFromPEM(kCertNoSANsPEM)); |
| ASSERT_TRUE(cert_no_sans); |
| |
| static const char kKeyPEM[] = R"( |
| -----BEGIN PRIVATE KEY----- |
| MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQghsaSZhUzZAcQlLyJ |
| MDuy7WPdyqNsAX9rmEP650LF/q2hRANCAAS7l2VOBl2TjVm9WfGk24+hMbVFUNB+ |
| RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaWULDDaoeDl1M0t4Hm |
| -----END PRIVATE KEY----- |
| )"; |
| bssl::UniquePtr<EVP_PKEY> key(KeyFromPEM(kKeyPEM)); |
| ASSERT_TRUE(key); |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), |
| cert.get())); |
| ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), |
| cert_no_sans.get())); |
| SSL_CTX_set_verify(client_ctx.get(), |
| SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| nullptr); |
| X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), |
| X509_V_FLAG_NO_CHECK_TIME); |
| |
| struct TestCase { |
| X509 *cert; |
| std::string hostname; |
| unsigned flags; |
| bool should_match; |
| }; |
| std::vector<TestCase> kTests = { |
| // These two names are present as SANs in the certificate. |
| {cert.get(), "example1.com", 0, true}, |
| {cert.get(), "example2.com", 0, true}, |
| // This is the CN of the certificate, but that shouldn't matter if a SAN |
| // extension is present. |
| {cert.get(), "example3.com", 0, false}, |
| // If the SAN is not present, we, for now, look for DNS names in the CN. |
| {cert_no_sans.get(), "example3.com", 0, true}, |
| // ... but this can be turned off. |
| {cert_no_sans.get(), "example3.com", X509_CHECK_FLAG_NEVER_CHECK_SUBJECT, |
| false}, |
| // a*.example4.com is a SAN, but is invalid. |
| {cert.get(), "abc.example4.com", 0, false}, |
| // *.example5.com is a SAN in the certificate, which is a normal and valid |
| // wildcard. |
| {cert.get(), "abc.example5.com", 0, true}, |
| // This name is not present. |
| {cert.get(), "notexample1.com", 0, false}, |
| // The IPv4 address 1.2.3.4 is a SAN, but that shouldn't match against a |
| // hostname that happens to be its textual representation. |
| {cert.get(), "1.2.3.4", 0, false}, |
| }; |
| |
| for (const TestCase &test : kTests) { |
| SCOPED_TRACE(test.hostname); |
| |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), test.cert)); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); |
| |
| ClientConfig config; |
| bssl::UniquePtr<SSL> client, server; |
| config.verify_hostname = test.hostname; |
| config.hostflags = test.flags; |
| EXPECT_EQ(test.should_match, |
| ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get(), config)); |
| } |
| } |
| |
| TEST(SSLTest, NumTickets) { |
| bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| ASSERT_TRUE(cert); |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); |
| SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); |
| |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| static size_t ticket_count; |
| SSL_CTX_sess_set_new_cb(client_ctx.get(), [](SSL *, SSL_SESSION *) -> int { |
| ticket_count++; |
| return 0; |
| }); |
| |
| auto count_tickets = [&]() -> size_t { |
| ticket_count = 0; |
| bssl::UniquePtr<SSL> client, server; |
| if (!ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get()) || |
| !FlushNewSessionTickets(client.get(), server.get())) { |
| ADD_FAILURE() << "Could not run handshake"; |
| return 0; |
| } |
| return ticket_count; |
| }; |
| |
| // By default, we should send two tickets. |
| EXPECT_EQ(count_tickets(), 2u); |
| |
| for (size_t num_tickets : {0, 1, 2, 3, 4, 5}) { |
| SCOPED_TRACE(num_tickets); |
| ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), num_tickets)); |
| EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), num_tickets); |
| EXPECT_EQ(count_tickets(), num_tickets); |
| } |
| |
| // Configuring too many tickets causes us to stop at some point. |
| ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), 100000)); |
| EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), 16u); |
| EXPECT_EQ(count_tickets(), 16u); |
| } |
| |
| TEST(SSLTest, CertSubjectsToStack) { |
| const std::string kCert1 = R"( |
| -----BEGIN CERTIFICATE----- |
| MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC |
| QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp |
| dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ |
| BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l |
| dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni |
| v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa |
| HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw |
| HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ |
| BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E |
| BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ= |
| -----END CERTIFICATE----- |
| )"; |
| const std::vector<uint8_t> kName1 = { |
| 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, |
| 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, |
| 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, |
| 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, |
| 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, |
| 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64}; |
| const std::string kCert2 = R"( |
| -----BEGIN CERTIFICATE----- |
| MIICXjCCAcegAwIBAgIIWjO48ufpunYwDQYJKoZIhvcNAQELBQAwNjEaMBgGA1UE |
| ChMRQm9yaW5nU1NMIFRFU1RJTkcxGDAWBgNVBAMTD0ludGVybWVkaWF0ZSBDQTAg |
| Fw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowMjEaMBgGA1UEChMRQm9y |
| aW5nU1NMIFRFU1RJTkcxFDASBgNVBAMTC2V4YW1wbGUuY29tMIGfMA0GCSqGSIb3 |
| DQEBAQUAA4GNADCBiQKBgQDD0U0ZYgqShJ7oOjsyNKyVXEHqeafmk/bAoPqY/h1c |
| oPw2E8KmeqiUSoTPjG5IXSblOxcqpbAXgnjPzo8DI3GNMhAf8SYNYsoH7gc7Uy7j |
| 5x8bUrisGnuTHqkqH6d4/e7ETJ7i3CpR8bvK16DggEvQTudLipz8FBHtYhFakfdh |
| TwIDAQABo3cwdTAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEG |
| CCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwGQYDVR0OBBIEEKN5pvbur7mlXjeMEYA0 |
| 4nUwGwYDVR0jBBQwEoAQjBpoqLV2211Xex+NFLIGozANBgkqhkiG9w0BAQsFAAOB |
| gQBj/p+JChp//LnXWC1k121LM/ii7hFzQzMrt70bny406SGz9jAjaPOX4S3gt38y |
| rhjpPukBlSzgQXFg66y6q5qp1nQTD1Cw6NkKBe9WuBlY3iYfmsf7WT8nhlT1CttU |
| xNCwyMX9mtdXdQicOfNjIGUCD5OLV5PgHFPRKiHHioBAhg== |
| -----END CERTIFICATE----- |
| )"; |
| const std::vector<uint8_t> kName2 = { |
| 0x30, 0x32, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0a, |
| 0x13, 0x11, 0x42, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x53, 0x53, 0x4c, |
| 0x20, 0x54, 0x45, 0x53, 0x54, 0x49, 0x4e, 0x47, 0x31, 0x14, 0x30, |
| 0x12, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0b, 0x65, 0x78, 0x61, |
| 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; |
| |
| const struct { |
| std::vector<std::vector<uint8_t>> existing; |
| std::string pem; |
| std::vector<std::vector<uint8_t>> expected; |
| } kTests[] = { |
| // Do nothing. |
| {{}, "", {}}, |
| // Append to an empty list, skipping duplicates. |
| {{}, kCert1 + kCert2 + kCert1, {kName1, kName2}}, |
| // One of the names was already present. |
| {{kName1}, kCert1 + kCert2, {kName1, kName2}}, |
| // Both names were already present. |
| {{kName1, kName2}, kCert1 + kCert2, {kName1, kName2}}, |
| // Preserve existing duplicates. |
| {{kName1, kName2, kName2}, kCert1 + kCert2, {kName1, kName2, kName2}}, |
| }; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) { |
| SCOPED_TRACE(i); |
| const auto &t = kTests[i]; |
| |
| bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); |
| ASSERT_TRUE(stack); |
| for (const auto& name : t.existing) { |
| const uint8_t *inp = name.data(); |
| bssl::UniquePtr<X509_NAME> name_obj( |
| d2i_X509_NAME(nullptr, &inp, name.size())); |
| ASSERT_TRUE(name_obj); |
| EXPECT_EQ(inp, name.data() + name.size()); |
| ASSERT_TRUE(bssl::PushToStack(stack.get(), std::move(name_obj))); |
| } |
| |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.pem.data(), t.pem.size())); |
| ASSERT_TRUE(bio); |
| ASSERT_TRUE(SSL_add_bio_cert_subjects_to_stack(stack.get(), bio.get())); |
| |
| // The function should have left |stack|'s comparison function alone. |
| EXPECT_EQ(nullptr, sk_X509_NAME_set_cmp_func(stack.get(), nullptr)); |
| |
| std::vector<std::vector<uint8_t>> expected = t.expected, result; |
| for (X509_NAME *name : stack.get()) { |
| uint8_t *der = nullptr; |
| int der_len = i2d_X509_NAME(name, &der); |
| ASSERT_GE(der_len, 0); |
| result.push_back(std::vector<uint8_t>(der, der + der_len)); |
| OPENSSL_free(der); |
| } |
| |
| // |SSL_add_bio_cert_subjects_to_stack| does not return the output in a |
| // well-defined order. |
| std::sort(expected.begin(), expected.end()); |
| std::sort(result.begin(), result.end()); |
| EXPECT_EQ(result, expected); |
| } |
| } |
| |
| TEST(SSLTest, EmptyClientCAList) { |
| if (SkipTempFileTests()) { |
| GTEST_SKIP(); |
| } |
| |
| TemporaryFile empty; |
| ASSERT_TRUE(empty.Init()); |
| bssl::UniquePtr<STACK_OF(X509_NAME)> names( |
| SSL_load_client_CA_file(empty.path().c_str())); |
| EXPECT_FALSE(names); |
| } |
| |
| TEST(SSLTest, EmptyWriteBlockedOnHandshakeData) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| // Configure only TLS 1.3. This test requires post-handshake NewSessionTicket. |
| ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); |
| |
| // Connect a client and server with tiny buffer between the two. |
| bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), |
| server(SSL_new(server_ctx.get())); |
| ASSERT_TRUE(client); |
| ASSERT_TRUE(server); |
| SSL_set_connect_state(client.get()); |
| SSL_set_accept_state(server.get()); |
| BIO *bio1, *bio2; |
| ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); |
| SSL_set_bio(client.get(), bio1, bio1); |
| SSL_set_bio(server.get(), bio2, bio2); |
| ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); |
| |
| // We defer NewSessionTicket to the first write, so the server has a pending |
| // NewSessionTicket. See https://boringssl-review.googlesource.com/34948. This |
| // means an empty write will flush the ticket. However, the transport only |
| // allows one byte through, so this will fail with |SSL_ERROR_WANT_WRITE|. |
| int ret = SSL_write(server.get(), nullptr, 0); |
| ASSERT_EQ(ret, -1); |
| ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); |
| |
| // Attempting to write non-zero data should not trip |SSL_R_BAD_WRITE_RETRY|. |
| const uint8_t kData[] = {'h', 'e', 'l', 'l', 'o'}; |
| ret = SSL_write(server.get(), kData, sizeof(kData)); |
| ASSERT_EQ(ret, -1); |
| ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); |
| |
| // Byte by byte, the data should eventually get through. |
| uint8_t buf[sizeof(kData)]; |
| for (;;) { |
| ret = SSL_read(client.get(), buf, sizeof(buf)); |
| ASSERT_EQ(ret, -1); |
| ASSERT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_WANT_READ); |
| |
| ret = SSL_write(server.get(), kData, sizeof(kData)); |
| if (ret > 0) { |
| ASSERT_EQ(ret, 5); |
| break; |
| } |
| ASSERT_EQ(ret, -1); |
| ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); |
| } |
| |
| ret = SSL_read(client.get(), buf, sizeof(buf)); |
| ASSERT_EQ(ret, static_cast<int>(sizeof(kData))); |
| ASSERT_EQ(Bytes(buf, ret), Bytes(kData)); |
| } |
| |
| // Test that |SSL_ERROR_SYSCALL| continues to work after a close_notify. |
| TEST(SSLTest, ErrorSyscallAfterCloseNotify) { |
| // Make a custom |BIO| where writes fail, but without pushing to the error |
| // queue. |
| bssl::UniquePtr<BIO_METHOD> method(BIO_meth_new(0, nullptr)); |
| ASSERT_TRUE(method); |
| BIO_meth_set_create(method.get(), [](BIO *b) -> int { |
| BIO_set_init(b, 1); |
| return 1; |
| }); |
| static bool write_failed = false; |
| BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { |
| // Fail the operation and don't add to the error queue. |
| write_failed = true; |
| return -1; |
| }); |
| bssl::UniquePtr<BIO> wbio_silent_error(BIO_new(method.get())); |
| ASSERT_TRUE(wbio_silent_error); |
| |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // Replace the write |BIO| with |wbio_silent_error|. |
| SSL_set0_wbio(client.get(), wbio_silent_error.release()); |
| |
| // Writes should fail. There is nothing in the error queue, so |
| // |SSL_ERROR_SYSCALL| indicates the caller needs to check out-of-band. |
| const uint8_t data[1] = {0}; |
| int ret = SSL_write(client.get(), data, sizeof(data)); |
| EXPECT_EQ(ret, -1); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); |
| EXPECT_TRUE(write_failed); |
| write_failed = false; |
| |
| // Send a close_notify from the server. It should return 0 because |
| // close_notify was sent, but not received. Confusingly, this is a success |
| // output for |SSL_shutdown|'s API. |
| EXPECT_EQ(SSL_shutdown(server.get()), 0); |
| |
| // Read the close_notify on the client. |
| uint8_t buf[1]; |
| ret = SSL_read(client.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, 0); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); |
| |
| // Further calls to |SSL_read| continue to report |SSL_ERROR_ZERO_RETURN|. |
| ret = SSL_read(client.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, 0); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); |
| |
| // Although the client has seen close_notify, it should continue to report |
| // |SSL_ERROR_SYSCALL| when its writes fail. |
| ret = SSL_write(client.get(), data, sizeof(data)); |
| EXPECT_EQ(ret, -1); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); |
| EXPECT_TRUE(write_failed); |
| write_failed = false; |
| |
| // Cause |BIO_write| to fail with a return value of zero instead. |
| // |SSL_get_error| should not misinterpret this as a close_notify. |
| // |
| // This is not actually a correct implementation of |BIO_write|, but the rest |
| // of the code treats zero from |BIO_write| as an error, so ensure it does so |
| // correctly. Fixing https://crbug.com/boringssl/503 will make this case moot. |
| BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { |
| write_failed = true; |
| return 0; |
| }); |
| ret = SSL_write(client.get(), data, sizeof(data)); |
| EXPECT_EQ(ret, 0); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); |
| EXPECT_TRUE(write_failed); |
| write_failed = false; |
| } |
| |
| // Test that |SSL_shutdown|, when quiet shutdown is enabled, simulates receiving |
| // a close_notify, down to |SSL_read| reporting |SSL_ERROR_ZERO_RETURN|. |
| TEST(SSLTest, QuietShutdown) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(client_ctx); |
| ASSERT_TRUE(server_ctx); |
| SSL_CTX_set_quiet_shutdown(server_ctx.get(), 1); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| |
| // Quiet shutdown is enabled, so |SSL_shutdown| on the server should |
| // immediately return that bidirectional shutdown "completed". |
| EXPECT_EQ(SSL_shutdown(server.get()), 1); |
| |
| // Shut down writes so the client gets an EOF. |
| EXPECT_TRUE(BIO_shutdown_wr(SSL_get_wbio(server.get()))); |
| |
| // Confirm no close notify was actually sent. Client reads should report a |
| // transport EOF, not a close_notify. (Both have zero return, but |
| // |SSL_get_error| is different.) |
| char buf[1]; |
| int ret = SSL_read(client.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, 0); |
| EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); |
| |
| // The server believes bidirectional shutdown completed, so reads should |
| // replay the (simulated) close_notify. |
| ret = SSL_read(server.get(), buf, sizeof(buf)); |
| EXPECT_EQ(ret, 0); |
| EXPECT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_ZERO_RETURN); |
| } |
| |
| TEST(SSLTest, InvalidSignatureAlgorithm) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| static const uint16_t kInvalidPrefs[] = {1234}; |
| EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs( |
| ctx.get(), kInvalidPrefs, OPENSSL_ARRAY_SIZE(kInvalidPrefs))); |
| EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs( |
| ctx.get(), kInvalidPrefs, OPENSSL_ARRAY_SIZE(kInvalidPrefs))); |
| |
| static const uint16_t kDuplicatePrefs[] = {SSL_SIGN_RSA_PKCS1_SHA256, |
| SSL_SIGN_RSA_PKCS1_SHA256}; |
| EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs( |
| ctx.get(), kDuplicatePrefs, OPENSSL_ARRAY_SIZE(kDuplicatePrefs))); |
| EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs( |
| ctx.get(), kDuplicatePrefs, OPENSSL_ARRAY_SIZE(kDuplicatePrefs))); |
| } |
| |
| TEST(SSLTest, InvalidGroups) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| |
| static const uint16_t kInvalidIDs[] = {1234}; |
| EXPECT_FALSE(SSL_CTX_set1_group_ids( |
| ctx.get(), kInvalidIDs, OPENSSL_ARRAY_SIZE(kInvalidIDs))); |
| |
| // This is a valid NID, but it is not a valid group. |
| static const int kInvalidNIDs[] = {NID_rsaEncryption}; |
| EXPECT_FALSE(SSL_CTX_set1_groups( |
| ctx.get(), kInvalidNIDs, OPENSSL_ARRAY_SIZE(kInvalidNIDs))); |
| } |
| |
| TEST(SSLTest, NameLists) { |
| struct { |
| size_t (*func)(const char **, size_t); |
| std::vector<std::string> expected; |
| } kTests[] = { |
| {SSL_get_all_version_names, {"TLSv1.3", "DTLSv1.2", "unknown"}}, |
| {SSL_get_all_standard_cipher_names, |
| {"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", "TLS_AES_128_GCM_SHA256"}}, |
| {SSL_get_all_cipher_names, |
| {"ECDHE-ECDSA-AES128-GCM-SHA256", "TLS_AES_128_GCM_SHA256", "(NONE)"}}, |
| {SSL_get_all_group_names, {"P-256", "X25519"}}, |
| {SSL_get_all_signature_algorithm_names, |
| {"rsa_pkcs1_sha256", "ecdsa_secp256r1_sha256", "ecdsa_sha256"}}, |
| }; |
| for (const auto &t : kTests) { |
| size_t num = t.func(nullptr, 0); |
| EXPECT_GT(num, 0u); |
| |
| std::vector<const char*> list(num); |
| EXPECT_EQ(num, t.func(list.data(), list.size())); |
| |
| // Check the expected values are in the list. |
| for (const auto &s : t.expected) { |
| EXPECT_NE(list.end(), std::find(list.begin(), list.end(), s)) |
| << "Could not find " << s; |
| } |
| |
| // Passing in a larger buffer should leave excess space alone. |
| std::vector<const char *> list2(num + 1, "placeholder"); |
| EXPECT_EQ(num, t.func(list2.data(), list2.size())); |
| for (size_t i = 0; i < num; i++) { |
| EXPECT_STREQ(list[i], list2[i]); |
| } |
| EXPECT_STREQ(list2.back(), "placeholder"); |
| |
| // Passing in a shorter buffer should truncate the list. |
| for (size_t l = 0; l < num; l++) { |
| SCOPED_TRACE(l); |
| list2.resize(l); |
| EXPECT_EQ(num, t.func(list2.data(), list2.size())); |
| for (size_t i = 0; i < l; i++) { |
| EXPECT_STREQ(list[i], list2[i]); |
| } |
| } |
| } |
| } |
| |
| // Test that it is possible for the certificate to be configured on a mix of |
| // SSL_CTX and SSL. This ensures that we do not inadvertently overshare objects |
| // in SSL_new. |
| TEST(SSLTest, MixContextAndConnection) { |
| bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(ctx); |
| bssl::UniquePtr<X509> cert = GetTestCertificate(); |
| ASSERT_TRUE(cert); |
| bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); |
| ASSERT_TRUE(key); |
| |
| // Configure the certificate, but not the private key, on the context. |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); |
| |
| bssl::UniquePtr<SSL> ssl1(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl1.get()); |
| bssl::UniquePtr<SSL> ssl2(SSL_new(ctx.get())); |
| ASSERT_TRUE(ssl2.get()); |
| |
| // There is no private key configured yet. |
| EXPECT_FALSE(SSL_CTX_get0_privatekey(ctx.get())); |
| EXPECT_FALSE(SSL_get_privatekey(ssl1.get())); |
| EXPECT_FALSE(SSL_get_privatekey(ssl2.get())); |
| |
| // Configuring the private key on |ssl1| works. |
| ASSERT_TRUE(SSL_use_PrivateKey(ssl1.get(), key.get())); |
| EXPECT_TRUE(SSL_get_privatekey(ssl1.get())); |
| |
| // It does not impact the other connection or the context. |
| EXPECT_FALSE(SSL_CTX_get0_privatekey(ctx.get())); |
| EXPECT_FALSE(SSL_get_privatekey(ssl2.get())); |
| } |
| |
| // Test that the server handshake cleanly fails if it had no certificate |
| // configured, at all versions. |
| TEST_P(SSLVersionTest, NoCertOrKey) { |
| bssl::UniquePtr<X509> cert = GetChainTestCertificate(); |
| ASSERT_TRUE(cert); |
| bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); |
| ASSERT_TRUE(key); |
| bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate(); |
| ASSERT_TRUE(intermediate); |
| bssl::UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null()); |
| ASSERT_TRUE(chain); |
| ASSERT_TRUE(bssl::PushToStack(chain.get(), std::move(intermediate))); |
| |
| const struct { |
| bool has_cert; |
| bool has_key; |
| bool has_chain; |
| } kTests[] = { |
| // If nothing is configured, there is unambiguously no certificate. |
| {/*has_cert=*/false, /*has_key=*/false, /*has_chain=*/false}, |
| |
| // If only one of the key and certificate is configured, it is still treated |
| // as if there is no certificate. |
| {/*has_cert=*/true, /*has_key=*/false, /*has_chain=*/false}, |
| {/*has_cert=*/false, /*has_key=*/true, /*has_chain=*/false}, |
| |
| // The key and intermediates may be configured, but without a leaf there is |
| // no certificate. This case is interesting because we internally store the |
| // chain with a somewhat fragile null fist entry. |
| {/*has_cert=*/false, /*has_key=*/true, /*has_chain=*/true}, |
| }; |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(testing::Message() << "has_cert = " << t.has_cert); |
| SCOPED_TRACE(testing::Message() << "has_key = " << t.has_key); |
| SCOPED_TRACE(testing::Message() << "has_chain = " << t.has_chain); |
| for (bool client : {false, true}) { |
| SCOPED_TRACE(testing::Message() << "client = " << client); |
| |
| EXPECT_NO_FATAL_FAILURE(ResetContexts()); |
| if (client) { |
| // Request client certificates from the server. |
| SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); |
| SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, |
| nullptr); |
| } else { |
| // Recreate the server context. ResetContexts automatically adds server |
| // certificates. |
| server_ctx_ = CreateContext(); |
| ASSERT_TRUE(server_ctx_); |
| } |
| |
| SSL_CTX *ctx = client ? client_ctx_.get() : server_ctx_.get(); |
| if (t.has_cert) { |
| ASSERT_TRUE(SSL_CTX_use_certificate(ctx, cert.get())); |
| } |
| if (t.has_key) { |
| ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx, key.get())); |
| } |
| if (t.has_chain) { |
| ASSERT_TRUE(SSL_CTX_set1_chain(ctx, chain.get())); |
| } |
| |
| // In each of these cases, |SSL_CTX_check_private_key| should report the |
| // certificate was not configured. |
| EXPECT_FALSE(SSL_CTX_check_private_key(ctx)); |
| ERR_clear_error(); |
| |
| if (client) { |
| // The client should cleanly handshake without asserting a certificate. |
| EXPECT_TRUE(Connect()); |
| EXPECT_FALSE(SSL_get0_peer_certificates(server_.get())); |
| } else { |
| // Servers cannot be anonymous. The connection should fail. |
| EXPECT_FALSE(Connect()); |
| // Depending on the TLS version, this should either appear as |
| // NO_SHARED_CIPHER (TLS 1.2) or NO_CERTIFICATE_SET (TLS 1.3). |
| uint32_t err = ERR_get_error(); |
| if (!ErrorEquals(err, ERR_LIB_SSL, SSL_R_NO_SHARED_CIPHER)) { |
| EXPECT_TRUE(ErrorEquals(err, ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_SET)); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_P(SSLVersionTest, KeyLog) { |
| using KeyLog = std::map<std::string, std::vector<uint8_t>>; |
| KeyLog client_log, server_log; |
| |
| SSL_CTX_set_app_data(client_ctx_.get(), &client_log); |
| SSL_CTX_set_app_data(server_ctx_.get(), &server_log); |
| |
| auto keylog_callback = [](const SSL *ssl, const char *line) { |
| SSL_CTX *ctx = SSL_get_SSL_CTX(ssl); |
| KeyLog *log = static_cast<KeyLog *>(SSL_CTX_get_app_data(ctx)); |
| ASSERT_TRUE(log); |
| |
| const char *space1 = strchr(line, ' '); |
| ASSERT_TRUE(space1); |
| std::string name(line, space1 - line); |
| space1++; |
| const char *space2 = strchr(space1, ' '); |
| ASSERT_TRUE(space2); |
| bssl::Span<const char> client_random_hex(space1, space2 - space1); |
| space2++; |
| bssl::Span<const char> secret_hex(space2, strlen(space2)); |
| |
| std::vector<uint8_t> client_random, secret; |
| ASSERT_TRUE(DecodeLowerHex(&client_random, client_random_hex)); |
| ASSERT_TRUE(DecodeLowerHex(&secret, secret_hex)); |
| |
| // The client_random field identifies the connection. Check it matches |
| // the connection. |
| uint8_t expected_random[SSL3_RANDOM_SIZE]; |
| ASSERT_EQ( |
| sizeof(expected_random), |
| SSL_get_client_random(ssl, expected_random, sizeof(expected_random))); |
| ASSERT_EQ(Bytes(expected_random), Bytes(client_random)); |
| |
| ASSERT_EQ(log->count(name), 0u) << "duplicate name " << name; |
| log->emplace(std::move(name), std::move(secret)); |
| }; |
| SSL_CTX_set_keylog_callback(client_ctx_.get(), keylog_callback); |
| SSL_CTX_set_keylog_callback(server_ctx_.get(), keylog_callback); |
| |
| // Connect and capture the various secrets. |
| ASSERT_TRUE(Connect()); |
| |
| // Check that we logged the secrets we expected to log. |
| if (is_tls13()) { |
| EXPECT_THAT(client_log, ElementsAre(Key("CLIENT_HANDSHAKE_TRAFFIC_SECRET"), |
| Key("CLIENT_TRAFFIC_SECRET_0"), |
| Key("EXPORTER_SECRET"), |
| Key("SERVER_HANDSHAKE_TRAFFIC_SECRET"), |
| Key("SERVER_TRAFFIC_SECRET_0"))); |
| |
| if (!is_dtls()) { |
| // Ideally we'd check the other values, but those are harder to check |
| // without actually decrypting the records. |
| // |
| // TODO(crbug.com/42290608): Check the secrets in DTLS, once we have an |
| // API for them. |
| Span<const uint8_t> read_secret, write_secret; |
| ASSERT_TRUE( |
| SSL_get_traffic_secrets(client_.get(), &read_secret, &write_secret)); |
| EXPECT_EQ(Bytes(read_secret), |
| Bytes(client_log["SERVER_TRAFFIC_SECRET_0"])); |
| EXPECT_EQ(Bytes(write_secret), |
| Bytes(client_log["CLIENT_TRAFFIC_SECRET_0"])); |
| } |
| } else { |
| EXPECT_THAT(client_log, ElementsAre(Key("CLIENT_RANDOM"))); |
| |
| size_t len = |
| SSL_SESSION_get_master_key(SSL_get0_session(client_.get()), nullptr, 0); |
| std::vector<uint8_t> expected(len); |
| ASSERT_EQ(SSL_SESSION_get_master_key(SSL_get0_session(client_.get()), |
| expected.data(), expected.size()), |
| expected.size()); |
| EXPECT_EQ(Bytes(expected), Bytes(client_log["CLIENT_RANDOM"])); |
| } |
| |
| // The server should have logged the same secrets as the client. |
| EXPECT_EQ(client_log, server_log); |
| } |
| |
| TEST_P(SSLVersionTest, GetTrafficSecrets) { |
| ASSERT_TRUE(Connect()); |
| |
| Span<const uint8_t> client_read, client_write, server_read, server_write; |
| bool client_ok = |
| SSL_get_traffic_secrets(client_.get(), &client_read, &client_write); |
| bool server_ok = |
| SSL_get_traffic_secrets(server_.get(), &server_read, &server_write); |
| if (!is_dtls() && version() >= TLS1_3_VERSION) { |
| ASSERT_TRUE(client_ok); |
| ASSERT_TRUE(server_ok); |
| EXPECT_EQ(Bytes(client_read), Bytes(server_write)); |
| EXPECT_EQ(Bytes(server_read), Bytes(client_write)); |
| } else { |
| EXPECT_FALSE(client_ok); |
| EXPECT_FALSE(server_ok); |
| } |
| } |
| |
| TEST_P(SSLVersionTest, GetIVs) { |
| std::vector<const char *> ciphers; |
| if (version() == TLS1_2_VERSION || version() == DTLS1_2_VERSION) { |
| // Try both CBC and AEAD ciphers. |
| ciphers = {"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", |
| "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"}; |
| } else { |
| // The defaults are fine to test. In 1.0 and 1.1, all remaining supported |
| // ciphers are CBC. In 1.3, all ciphers are AEADs. |
| ciphers = {"ALL"}; |
| } |
| |
| for (const char *cipher : ciphers) { |
| SCOPED_TRACE(cipher); |
| |
| ASSERT_NO_FATAL_FAILURE(ResetContexts()); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(client_ctx_.get(), cipher)); |
| ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(server_ctx_.get(), cipher)); |
| ASSERT_TRUE(Connect()); |
| |
| const uint8_t *client_read_iv, *client_write_iv, *server_read_iv, |
| *server_write_iv; |
| size_t client_iv_len, server_iv_len; |
| bool client_ivs_ok = SSL_get_ivs(client_.get(), &client_read_iv, |
| &client_write_iv, &client_iv_len); |
| bool server_ivs_ok = SSL_get_ivs(server_.get(), &server_read_iv, |
| &server_write_iv, &server_iv_len); |
| |
| // Only TLS 1.0 should support |SSL_get_ivs|. Other cases should cleanly |
| // fail this operation. |
| if (version() == TLS1_VERSION) { |
| ASSERT_TRUE(client_ivs_ok); |
| ASSERT_TRUE(server_ivs_ok); |
| EXPECT_EQ(Bytes(client_write_iv, client_iv_len), |
| Bytes(server_read_iv, server_iv_len)); |
| EXPECT_EQ(Bytes(client_read_iv, client_iv_len), |
| Bytes(server_write_iv, server_iv_len)); |
| } else { |
| EXPECT_FALSE(client_ivs_ok); |
| EXPECT_FALSE(server_ivs_ok); |
| } |
| } |
| } |
| |
| TEST(SSLTest, EarlyDataVersionMismatch) { |
| bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); |
| ASSERT_TRUE(client_ctx); |
| bssl::UniquePtr<SSL_CTX> server_ctx = |
| CreateContextWithTestCertificate(TLS_method()); |
| ASSERT_TRUE(server_ctx); |
| SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); |
| SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); |
| SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); |
| SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); |
| |
| bssl::UniquePtr<SSL_SESSION> session = |
| CreateClientSession(client_ctx.get(), server_ctx.get()); |
| ASSERT_TRUE(session); |
| EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); |
| |
| // Turn off TLS 1.3 at the server. |
| SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION); |
| bssl::UniquePtr<SSL> client, server; |
| ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), |
| server_ctx.get())); |
| SSL_set_session(client.get(), session.get()); |
| |
| // Send the ClientHello. The client should immediately treat the handshake as |
| // successful and offer early data. |
| EXPECT_EQ(1, SSL_do_handshake(client.get())); |
| EXPECT_TRUE(SSL_in_early_data(client.get())); |
| |
| // In the early data state, we report the predicted version, so that callers |
| // see self-consistent connection properties. |
| EXPECT_EQ(SSL_version(client.get()), TLS1_3_VERSION); |
| EXPECT_NE(SSL_get0_peer_certificates(client.get()), nullptr); |
| |
| // Read the ClientHello and send the ServerHello. The server will (implicitly |
| // by negotiating TLS 1.2) reject early data. |
| EXPECT_EQ(-1, SSL_do_handshake(server.get())); |
| EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server.get(), -1)); |
| |
| // Read the ServerHello. The client will now see the ServerHello and report a |
| // version mismatch. Unlike other 0-RTT rejections, this is fatal, because a |
| // TLS 1.2 server cannot recover from 0-RTT rejection. |
| EXPECT_EQ(-1, SSL_do_handshake(client.get())); |
| EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); |
| EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, |
| SSL_R_WRONG_VERSION_ON_EARLY_DATA)); |
| |
| // |SSL_version| should continue reporting self-consistent state until the |
| // caller calls |SSL_reset_early_data_reject|. |
| // |
| // TLS 1.3 to TLS 1.2 is not the most interesting version-related 0-RTT |
| // rejection because it is fatal to the connection anyway. Once there are two |
| // post-TLS-1.3 versions, or if we implement DTLS 1.3 0-RTT (where a DTLS 1.2 |
| // server will skip over early data naturally), those will make for better |
| // tests. In particular, early_data accept is signaled in EncryptedExtensions, |
| // but the new version is learned at ServerHello. Though an implementation |
| // could already infer based on the version that early data will be rejected. |
| EXPECT_EQ(SSL_version(client.get()), TLS1_3_VERSION); |
| EXPECT_NE(SSL_get0_peer_certificates(client.get()), nullptr); |
| } |
| |
| } // namespace |
| BSSL_NAMESPACE_END |