| // Copyright 2016 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/pool.h> |
| |
| #include "internal.h" |
| #include "../test/test_util.h" |
| |
| #if defined(OPENSSL_THREADS) |
| #include <chrono> |
| #include <thread> |
| #endif |
| |
| |
| TEST(PoolTest, Unpooled) { |
| static const uint8_t kData[4] = {1, 2, 3, 4}; |
| bssl::UniquePtr<CRYPTO_BUFFER> buf( |
| CRYPTO_BUFFER_new(kData, sizeof(kData), nullptr)); |
| ASSERT_TRUE(buf); |
| |
| EXPECT_EQ(Bytes(kData), |
| Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get()))); |
| |
| // Test that reference-counting works properly. |
| bssl::UniquePtr<CRYPTO_BUFFER> buf2 = bssl::UpRef(buf); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> buf_static( |
| CRYPTO_BUFFER_new_from_static_data_unsafe(kData, sizeof(kData), nullptr)); |
| ASSERT_TRUE(buf_static); |
| EXPECT_EQ(kData, CRYPTO_BUFFER_data(buf_static.get())); |
| EXPECT_EQ(sizeof(kData), CRYPTO_BUFFER_len(buf_static.get())); |
| |
| // Test that reference-counting works properly. |
| bssl::UniquePtr<CRYPTO_BUFFER> buf_static2 = bssl::UpRef(buf_static); |
| } |
| |
| TEST(PoolTest, Empty) { |
| bssl::UniquePtr<CRYPTO_BUFFER> buf(CRYPTO_BUFFER_new(nullptr, 0, nullptr)); |
| ASSERT_TRUE(buf); |
| |
| EXPECT_EQ(Bytes(""), |
| Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get()))); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> buf_static( |
| CRYPTO_BUFFER_new_from_static_data_unsafe(nullptr, 0, nullptr)); |
| ASSERT_TRUE(buf_static); |
| |
| EXPECT_EQ(nullptr, CRYPTO_BUFFER_data(buf_static.get())); |
| EXPECT_EQ(0u, CRYPTO_BUFFER_len(buf_static.get())); |
| } |
| |
| TEST(PoolTest, Pooled) { |
| bssl::UniquePtr<CRYPTO_BUFFER_POOL> pool(CRYPTO_BUFFER_POOL_new()); |
| ASSERT_TRUE(pool); |
| |
| static const uint8_t kData1[4] = {1, 2, 3, 4}; |
| bssl::UniquePtr<CRYPTO_BUFFER> buf( |
| CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get())); |
| ASSERT_TRUE(buf); |
| EXPECT_EQ(Bytes(kData1), |
| Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get()))); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> buf2( |
| CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get())); |
| ASSERT_TRUE(buf2); |
| EXPECT_EQ(Bytes(kData1), Bytes(CRYPTO_BUFFER_data(buf2.get()), |
| CRYPTO_BUFFER_len(buf2.get()))); |
| |
| EXPECT_EQ(buf.get(), buf2.get()) << "CRYPTO_BUFFER_POOL did not dedup data."; |
| |
| // Different inputs do not get deduped. |
| static const uint8_t kData2[4] = {5, 6, 7, 8}; |
| bssl::UniquePtr<CRYPTO_BUFFER> buf3( |
| CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get())); |
| ASSERT_TRUE(buf3); |
| EXPECT_EQ(Bytes(kData2), Bytes(CRYPTO_BUFFER_data(buf3.get()), |
| CRYPTO_BUFFER_len(buf3.get()))); |
| EXPECT_NE(buf.get(), buf3.get()); |
| |
| // When the last refcount on |buf3| is dropped, it is removed from the pool. |
| buf3 = nullptr; |
| EXPECT_EQ(1u, lh_CRYPTO_BUFFER_num_items(pool->bufs)); |
| |
| // Static buffers participate in pooling. |
| buf3.reset(CRYPTO_BUFFER_new_from_static_data_unsafe(kData2, sizeof(kData2), |
| pool.get())); |
| ASSERT_TRUE(buf3); |
| EXPECT_EQ(kData2, CRYPTO_BUFFER_data(buf3.get())); |
| EXPECT_EQ(sizeof(kData2), CRYPTO_BUFFER_len(buf3.get())); |
| EXPECT_NE(buf.get(), buf3.get()); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> buf4( |
| CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get())); |
| EXPECT_EQ(buf4.get(), buf3.get()); |
| |
| bssl::UniquePtr<CRYPTO_BUFFER> buf5(CRYPTO_BUFFER_new_from_static_data_unsafe( |
| kData2, sizeof(kData2), pool.get())); |
| EXPECT_EQ(buf5.get(), buf3.get()); |
| |
| // When creating a static buffer, if there is already a non-static buffer, it |
| // replaces the old buffer. |
| bssl::UniquePtr<CRYPTO_BUFFER> buf6(CRYPTO_BUFFER_new_from_static_data_unsafe( |
| kData1, sizeof(kData1), pool.get())); |
| ASSERT_TRUE(buf6); |
| EXPECT_EQ(kData1, CRYPTO_BUFFER_data(buf6.get())); |
| EXPECT_EQ(sizeof(kData1), CRYPTO_BUFFER_len(buf6.get())); |
| EXPECT_NE(buf.get(), buf6.get()); |
| |
| // Subsequent lookups of |kData1| should return |buf6|. |
| bssl::UniquePtr<CRYPTO_BUFFER> buf7( |
| CRYPTO_BUFFER_new(kData1, sizeof(kData1), pool.get())); |
| EXPECT_EQ(buf7.get(), buf6.get()); |
| } |
| |
| #if defined(OPENSSL_THREADS) |
| TEST(PoolTest, Threads) { |
| bssl::UniquePtr<CRYPTO_BUFFER_POOL> pool(CRYPTO_BUFFER_POOL_new()); |
| ASSERT_TRUE(pool); |
| |
| // Race threads making pooled |CRYPTO_BUFFER|s. |
| static const uint8_t kData[4] = {1, 2, 3, 4}; |
| static const uint8_t kData2[3] = {4, 5, 6}; |
| bssl::UniquePtr<CRYPTO_BUFFER> buf, buf2, buf3; |
| { |
| std::thread thread([&] { |
| buf.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get())); |
| }); |
| std::thread thread2([&] { |
| buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get())); |
| }); |
| buf3.reset(CRYPTO_BUFFER_new(kData2, sizeof(kData2), pool.get())); |
| thread.join(); |
| thread2.join(); |
| } |
| |
| ASSERT_TRUE(buf); |
| ASSERT_TRUE(buf2); |
| ASSERT_TRUE(buf3); |
| EXPECT_EQ(buf.get(), buf2.get()) << "CRYPTO_BUFFER_POOL did not dedup data."; |
| EXPECT_NE(buf.get(), buf3.get()) |
| << "CRYPTO_BUFFER_POOL incorrectly deduped data."; |
| EXPECT_EQ(Bytes(kData), |
| Bytes(CRYPTO_BUFFER_data(buf.get()), CRYPTO_BUFFER_len(buf.get()))); |
| EXPECT_EQ(Bytes(kData2), Bytes(CRYPTO_BUFFER_data(buf3.get()), |
| CRYPTO_BUFFER_len(buf3.get()))); |
| |
| // Reference-counting of |CRYPTO_BUFFER| interacts with pooling. Race an |
| // increment and free. |
| { |
| bssl::UniquePtr<CRYPTO_BUFFER> buf_ref; |
| std::thread thread([&] { buf_ref = bssl::UpRef(buf); }); |
| buf2.reset(); |
| thread.join(); |
| } |
| |
| // |buf|'s data is still valid. |
| EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf.get()), |
| CRYPTO_BUFFER_len(buf.get()))); |
| |
| // Race a thread re-creating the |CRYPTO_BUFFER| with another thread freeing |
| // it. Do this twice with sleeps so ThreadSanitizer can observe two different |
| // interleavings. Ideally we would run this test under a tool that could |
| // search all interleavings. |
| { |
| std::thread thread([&] { |
| std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
| buf.reset(); |
| }); |
| buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get())); |
| thread.join(); |
| |
| ASSERT_TRUE(buf2); |
| EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf2.get()), |
| CRYPTO_BUFFER_len(buf2.get()))); |
| buf = std::move(buf2); |
| } |
| |
| { |
| std::thread thread([&] { buf.reset(); }); |
| std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
| buf2.reset(CRYPTO_BUFFER_new(kData, sizeof(kData), pool.get())); |
| thread.join(); |
| |
| ASSERT_TRUE(buf2); |
| EXPECT_EQ(Bytes(kData), Bytes(CRYPTO_BUFFER_data(buf2.get()), |
| CRYPTO_BUFFER_len(buf2.get()))); |
| buf = std::move(buf2); |
| } |
| |
| // Finally, race the frees. |
| { |
| buf2 = bssl::UpRef(buf); |
| std::thread thread([&] { buf.reset(); }); |
| std::thread thread2([&] { buf3.reset(); }); |
| buf2.reset(); |
| thread.join(); |
| thread2.join(); |
| } |
| } |
| #endif |