| /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | 
 |  * and Bodo Moeller for the OpenSSL project. */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer.  | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { | 
 |   // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm | 
 |   // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory", | 
 |   // algorithm 1.5.1). |p| is assumed to be a prime. | 
 |  | 
 |   BIGNUM *ret = in; | 
 |   int err = 1; | 
 |   int r; | 
 |   BIGNUM *A, *b, *q, *t, *x, *y; | 
 |   int e, i, j; | 
 |  | 
 |   if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | 
 |     if (BN_abs_is_word(p, 2)) { | 
 |       if (ret == NULL) { | 
 |         ret = BN_new(); | 
 |       } | 
 |       if (ret == NULL) { | 
 |         goto end; | 
 |       } | 
 |       if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | 
 |         if (ret != in) { | 
 |           BN_free(ret); | 
 |         } | 
 |         return NULL; | 
 |       } | 
 |       return ret; | 
 |     } | 
 |  | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); | 
 |     return (NULL); | 
 |   } | 
 |  | 
 |   if (BN_is_zero(a) || BN_is_one(a)) { | 
 |     if (ret == NULL) { | 
 |       ret = BN_new(); | 
 |     } | 
 |     if (ret == NULL) { | 
 |       goto end; | 
 |     } | 
 |     if (!BN_set_word(ret, BN_is_one(a))) { | 
 |       if (ret != in) { | 
 |         BN_free(ret); | 
 |       } | 
 |       return NULL; | 
 |     } | 
 |     return ret; | 
 |   } | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   A = BN_CTX_get(ctx); | 
 |   b = BN_CTX_get(ctx); | 
 |   q = BN_CTX_get(ctx); | 
 |   t = BN_CTX_get(ctx); | 
 |   x = BN_CTX_get(ctx); | 
 |   y = BN_CTX_get(ctx); | 
 |   if (y == NULL) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   if (ret == NULL) { | 
 |     ret = BN_new(); | 
 |   } | 
 |   if (ret == NULL) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // A = a mod p | 
 |   if (!BN_nnmod(A, a, p, ctx)) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // now write  |p| - 1  as  2^e*q  where  q  is odd | 
 |   e = 1; | 
 |   while (!BN_is_bit_set(p, e)) { | 
 |     e++; | 
 |   } | 
 |   // we'll set  q  later (if needed) | 
 |  | 
 |   if (e == 1) { | 
 |     // The easy case:  (|p|-1)/2  is odd, so 2 has an inverse | 
 |     // modulo  (|p|-1)/2,  and square roots can be computed | 
 |     // directly by modular exponentiation. | 
 |     // We have | 
 |     //     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2), | 
 |     // so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1. | 
 |     if (!BN_rshift(q, p, 2)) { | 
 |       goto end; | 
 |     } | 
 |     q->neg = 0; | 
 |     if (!BN_add_word(q, 1) || | 
 |         !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) { | 
 |       goto end; | 
 |     } | 
 |     err = 0; | 
 |     goto vrfy; | 
 |   } | 
 |  | 
 |   if (e == 2) { | 
 |     // |p| == 5  (mod 8) | 
 |     // | 
 |     // In this case  2  is always a non-square since | 
 |     // Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime. | 
 |     // So if  a  really is a square, then  2*a  is a non-square. | 
 |     // Thus for | 
 |     //      b := (2*a)^((|p|-5)/8), | 
 |     //      i := (2*a)*b^2 | 
 |     // we have | 
 |     //     i^2 = (2*a)^((1 + (|p|-5)/4)*2) | 
 |     //         = (2*a)^((p-1)/2) | 
 |     //         = -1; | 
 |     // so if we set | 
 |     //      x := a*b*(i-1), | 
 |     // then | 
 |     //     x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | 
 |     //         = a^2 * b^2 * (-2*i) | 
 |     //         = a*(-i)*(2*a*b^2) | 
 |     //         = a*(-i)*i | 
 |     //         = a. | 
 |     // | 
 |     // (This is due to A.O.L. Atkin, | 
 |     // <URL: | 
 |     //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | 
 |     // November 1992.) | 
 |  | 
 |     // t := 2*a | 
 |     if (!bn_mod_lshift1_consttime(t, A, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |  | 
 |     // b := (2*a)^((|p|-5)/8) | 
 |     if (!BN_rshift(q, p, 3)) { | 
 |       goto end; | 
 |     } | 
 |     q->neg = 0; | 
 |     if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) { | 
 |       goto end; | 
 |     } | 
 |  | 
 |     // y := b^2 | 
 |     if (!BN_mod_sqr(y, b, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |  | 
 |     // t := (2*a)*b^2 - 1 | 
 |     if (!BN_mod_mul(t, t, y, p, ctx) || | 
 |         !BN_sub_word(t, 1)) { | 
 |       goto end; | 
 |     } | 
 |  | 
 |     // x = a*b*t | 
 |     if (!BN_mod_mul(x, A, b, p, ctx) || | 
 |         !BN_mod_mul(x, x, t, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |  | 
 |     if (!BN_copy(ret, x)) { | 
 |       goto end; | 
 |     } | 
 |     err = 0; | 
 |     goto vrfy; | 
 |   } | 
 |  | 
 |   // e > 2, so we really have to use the Tonelli/Shanks algorithm. | 
 |   // First, find some  y  that is not a square. | 
 |   if (!BN_copy(q, p)) { | 
 |     goto end;  // use 'q' as temp | 
 |   } | 
 |   q->neg = 0; | 
 |   i = 2; | 
 |   do { | 
 |     // For efficiency, try small numbers first; | 
 |     // if this fails, try random numbers. | 
 |     if (i < 22) { | 
 |       if (!BN_set_word(y, i)) { | 
 |         goto end; | 
 |       } | 
 |     } else { | 
 |       if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) { | 
 |         goto end; | 
 |       } | 
 |       if (BN_ucmp(y, p) >= 0) { | 
 |         if (!(p->neg ? BN_add : BN_sub)(y, y, p)) { | 
 |           goto end; | 
 |         } | 
 |       } | 
 |       // now 0 <= y < |p| | 
 |       if (BN_is_zero(y)) { | 
 |         if (!BN_set_word(y, i)) { | 
 |           goto end; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     r = bn_jacobi(y, q, ctx);  // here 'q' is |p| | 
 |     if (r < -1) { | 
 |       goto end; | 
 |     } | 
 |     if (r == 0) { | 
 |       // m divides p | 
 |       OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); | 
 |       goto end; | 
 |     } | 
 |   } while (r == 1 && ++i < 82); | 
 |  | 
 |   if (r != -1) { | 
 |     // Many rounds and still no non-square -- this is more likely | 
 |     // a bug than just bad luck. | 
 |     // Even if  p  is not prime, we should have found some  y | 
 |     // such that r == -1. | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // Here's our actual 'q': | 
 |   if (!BN_rshift(q, q, e)) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // Now that we have some non-square, we can find an element | 
 |   // of order  2^e  by computing its q'th power. | 
 |   if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) { | 
 |     goto end; | 
 |   } | 
 |   if (BN_is_one(y)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // Now we know that (if  p  is indeed prime) there is an integer | 
 |   // k,  0 <= k < 2^e,  such that | 
 |   // | 
 |   //      a^q * y^k == 1   (mod p). | 
 |   // | 
 |   // As  a^q  is a square and  y  is not,  k  must be even. | 
 |   // q+1  is even, too, so there is an element | 
 |   // | 
 |   //     X := a^((q+1)/2) * y^(k/2), | 
 |   // | 
 |   // and it satisfies | 
 |   // | 
 |   //     X^2 = a^q * a     * y^k | 
 |   //         = a, | 
 |   // | 
 |   // so it is the square root that we are looking for. | 
 |  | 
 |   // t := (q-1)/2  (note that  q  is odd) | 
 |   if (!BN_rshift1(t, q)) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // x := a^((q-1)/2) | 
 |   if (BN_is_zero(t))  // special case: p = 2^e + 1 | 
 |   { | 
 |     if (!BN_nnmod(t, A, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |     if (BN_is_zero(t)) { | 
 |       // special case: a == 0  (mod p) | 
 |       BN_zero(ret); | 
 |       err = 0; | 
 |       goto end; | 
 |     } else if (!BN_one(x)) { | 
 |       goto end; | 
 |     } | 
 |   } else { | 
 |     if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) { | 
 |       goto end; | 
 |     } | 
 |     if (BN_is_zero(x)) { | 
 |       // special case: a == 0  (mod p) | 
 |       BN_zero(ret); | 
 |       err = 0; | 
 |       goto end; | 
 |     } | 
 |   } | 
 |  | 
 |   // b := a*x^2  (= a^q) | 
 |   if (!BN_mod_sqr(b, x, p, ctx) || | 
 |       !BN_mod_mul(b, b, A, p, ctx)) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   // x := a*x    (= a^((q+1)/2)) | 
 |   if (!BN_mod_mul(x, x, A, p, ctx)) { | 
 |     goto end; | 
 |   } | 
 |  | 
 |   while (1) { | 
 |     // Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E | 
 |     // where  E  refers to the original value of  e,  which we | 
 |     // don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2). | 
 |     // | 
 |     // We have  a*b = x^2, | 
 |     //    y^2^(e-1) = -1, | 
 |     //    b^2^(e-1) = 1. | 
 |  | 
 |     if (BN_is_one(b)) { | 
 |       if (!BN_copy(ret, x)) { | 
 |         goto end; | 
 |       } | 
 |       err = 0; | 
 |       goto vrfy; | 
 |     } | 
 |  | 
 |  | 
 |     // find smallest  i  such that  b^(2^i) = 1 | 
 |     i = 1; | 
 |     if (!BN_mod_sqr(t, b, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |     while (!BN_is_one(t)) { | 
 |       i++; | 
 |       if (i == e) { | 
 |         OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); | 
 |         goto end; | 
 |       } | 
 |       if (!BN_mod_mul(t, t, t, p, ctx)) { | 
 |         goto end; | 
 |       } | 
 |     } | 
 |  | 
 |  | 
 |     // t := y^2^(e - i - 1) | 
 |     if (!BN_copy(t, y)) { | 
 |       goto end; | 
 |     } | 
 |     for (j = e - i - 1; j > 0; j--) { | 
 |       if (!BN_mod_sqr(t, t, p, ctx)) { | 
 |         goto end; | 
 |       } | 
 |     } | 
 |     if (!BN_mod_mul(y, t, t, p, ctx) || | 
 |         !BN_mod_mul(x, x, t, p, ctx) || | 
 |         !BN_mod_mul(b, b, y, p, ctx)) { | 
 |       goto end; | 
 |     } | 
 |     e = i; | 
 |   } | 
 |  | 
 | vrfy: | 
 |   if (!err) { | 
 |     // verify the result -- the input might have been not a square | 
 |     // (test added in 0.9.8) | 
 |  | 
 |     if (!BN_mod_sqr(x, ret, p, ctx)) { | 
 |       err = 1; | 
 |     } | 
 |  | 
 |     if (!err && 0 != BN_cmp(x, A)) { | 
 |       OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); | 
 |       err = 1; | 
 |     } | 
 |   } | 
 |  | 
 | end: | 
 |   if (err) { | 
 |     if (ret != in) { | 
 |       BN_clear_free(ret); | 
 |     } | 
 |     ret = NULL; | 
 |   } | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) { | 
 |   BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2; | 
 |   int ok = 0, last_delta_valid = 0; | 
 |  | 
 |   if (in->neg) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
 |     return 0; | 
 |   } | 
 |   if (BN_is_zero(in)) { | 
 |     BN_zero(out_sqrt); | 
 |     return 1; | 
 |   } | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   if (out_sqrt == in) { | 
 |     estimate = BN_CTX_get(ctx); | 
 |   } else { | 
 |     estimate = out_sqrt; | 
 |   } | 
 |   tmp = BN_CTX_get(ctx); | 
 |   last_delta = BN_CTX_get(ctx); | 
 |   delta = BN_CTX_get(ctx); | 
 |   if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) { | 
 |     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // We estimate that the square root of an n-bit number is 2^{n/2}. | 
 |   if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // This is Newton's method for finding a root of the equation |estimate|^2 - | 
 |   // |in| = 0. | 
 |   for (;;) { | 
 |     // |estimate| = 1/2 * (|estimate| + |in|/|estimate|) | 
 |     if (!BN_div(tmp, NULL, in, estimate, ctx) || | 
 |         !BN_add(tmp, tmp, estimate) || | 
 |         !BN_rshift1(estimate, tmp) || | 
 |         // |tmp| = |estimate|^2 | 
 |         !BN_sqr(tmp, estimate, ctx) || | 
 |         // |delta| = |in| - |tmp| | 
 |         !BN_sub(delta, in, tmp)) { | 
 |       OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     delta->neg = 0; | 
 |     // The difference between |in| and |estimate| squared is required to always | 
 |     // decrease. This ensures that the loop always terminates, but I don't have | 
 |     // a proof that it always finds the square root for a given square. | 
 |     if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) { | 
 |       break; | 
 |     } | 
 |  | 
 |     last_delta_valid = 1; | 
 |  | 
 |     tmp2 = last_delta; | 
 |     last_delta = delta; | 
 |     delta = tmp2; | 
 |   } | 
 |  | 
 |   if (BN_cmp(tmp, in) != 0) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ok = 1; | 
 |  | 
 | err: | 
 |   if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) { | 
 |     ok = 0; | 
 |   } | 
 |   BN_CTX_end(ctx); | 
 |   return ok; | 
 | } |