|  | // Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../bcm_interface.h" | 
|  |  | 
|  |  | 
|  | // Be aware that different sets of AES functions use incompatible key | 
|  | // representations, varying in format of the key schedule, the |AES_KEY.rounds| | 
|  | // value, or both. Therefore they cannot mix. Also, on AArch64, the plain-C | 
|  | // code, above, is incompatible with the |aes_hw_*| functions. | 
|  |  | 
|  | bcm_infallible BCM_aes_encrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key) { | 
|  | if (hwaes_capable()) { | 
|  | aes_hw_encrypt(in, out, key); | 
|  | } else if (vpaes_capable()) { | 
|  | vpaes_encrypt(in, out, key); | 
|  | } else { | 
|  | aes_nohw_encrypt(in, out, key); | 
|  | } | 
|  | return bcm_infallible::not_approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_aes_decrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key) { | 
|  | if (hwaes_capable()) { | 
|  | aes_hw_decrypt(in, out, key); | 
|  | } else if (vpaes_capable()) { | 
|  | vpaes_decrypt(in, out, key); | 
|  | } else { | 
|  | aes_nohw_decrypt(in, out, key); | 
|  | } | 
|  | return bcm_infallible::not_approved; | 
|  | } | 
|  |  | 
|  | bcm_status BCM_aes_set_encrypt_key(const uint8_t *key, unsigned bits, | 
|  | AES_KEY *aeskey) { | 
|  | int ret = -1; | 
|  | if (hwaes_capable()) { | 
|  | ret = aes_hw_set_encrypt_key(key, bits, aeskey); | 
|  | } else if (vpaes_capable()) { | 
|  | ret = vpaes_set_encrypt_key(key, bits, aeskey); | 
|  | } else { | 
|  | ret = aes_nohw_set_encrypt_key(key, bits, aeskey); | 
|  | } | 
|  | if (ret < 0) { | 
|  | return bcm_status::failure; | 
|  | } | 
|  | BSSL_CHECK(ret == 0); | 
|  | return bcm_status::not_approved; | 
|  | } | 
|  |  | 
|  | bcm_status BCM_aes_set_decrypt_key(const uint8_t *key, unsigned bits, | 
|  | AES_KEY *aeskey) { | 
|  | int ret = -1; | 
|  | if (hwaes_capable()) { | 
|  | ret = aes_hw_set_decrypt_key(key, bits, aeskey); | 
|  | } else if (vpaes_capable()) { | 
|  | ret = vpaes_set_decrypt_key(key, bits, aeskey); | 
|  | } else { | 
|  | ret = aes_nohw_set_decrypt_key(key, bits, aeskey); | 
|  | } | 
|  | if (ret < 0) { | 
|  | return bcm_status::failure; | 
|  | } | 
|  | BSSL_CHECK(ret == 0); | 
|  | return bcm_status::not_approved; | 
|  | } | 
|  |  | 
|  | #if defined(HWAES) && (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) | 
|  | // On x86 and x86_64, |aes_hw_set_decrypt_key|, we implement | 
|  | // |aes_hw_encrypt_key_to_decrypt_key| in assembly and rely on C code to combine | 
|  | // the operations. | 
|  | int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { | 
|  | int ret = aes_hw_set_encrypt_key(user_key, bits, key); | 
|  | if (ret == 0) { | 
|  | aes_hw_encrypt_key_to_decrypt_key(key); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { | 
|  | if (aes_hw_set_encrypt_key_alt_preferred()) { | 
|  | return aes_hw_set_encrypt_key_alt(user_key, bits, key); | 
|  | } else { | 
|  | return aes_hw_set_encrypt_key_base(user_key, bits, key); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(VPAES) && defined(OPENSSL_X86) | 
|  | // On x86, there is no |vpaes_ctr32_encrypt_blocks|, so we implement it | 
|  | // ourselves. This avoids all callers needing to account for a missing function. | 
|  | void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, | 
|  | const AES_KEY *key, const uint8_t iv[16]) { | 
|  | uint32_t ctr = CRYPTO_load_u32_be(iv + 12); | 
|  | uint8_t iv_buf[16], enc[16]; | 
|  | OPENSSL_memcpy(iv_buf, iv, 12); | 
|  | for (size_t i = 0; i < blocks; i++) { | 
|  | CRYPTO_store_u32_be(iv_buf + 12, ctr); | 
|  | vpaes_encrypt(iv_buf, enc, key); | 
|  | CRYPTO_xor16(out, in, enc); | 
|  | ctr++; | 
|  | in += 16; | 
|  | out += 16; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(BSAES) | 
|  | void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in, uint8_t *out, | 
|  | size_t blocks, const AES_KEY *key, | 
|  | const uint8_t ivec[16]) { | 
|  | // |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|, | 
|  | // but it takes at least one full 8-block batch to amortize the conversion. | 
|  | if (blocks < 8) { | 
|  | vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t bsaes_blocks = blocks; | 
|  | if (bsaes_blocks % 8 < 6) { | 
|  | // |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the | 
|  | // final batch is too small (under six blocks), it is faster to loop over | 
|  | // |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8. | 
|  | bsaes_blocks -= bsaes_blocks % 8; | 
|  | } | 
|  |  | 
|  | AES_KEY bsaes; | 
|  | vpaes_encrypt_key_to_bsaes(&bsaes, key); | 
|  | bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec); | 
|  | OPENSSL_cleanse(&bsaes, sizeof(bsaes)); | 
|  |  | 
|  | in += 16 * bsaes_blocks; | 
|  | out += 16 * bsaes_blocks; | 
|  | blocks -= bsaes_blocks; | 
|  |  | 
|  | uint8_t new_ivec[16]; | 
|  | memcpy(new_ivec, ivec, 12); | 
|  | uint32_t ctr = CRYPTO_load_u32_be(ivec + 12) + bsaes_blocks; | 
|  | CRYPTO_store_u32_be(new_ivec + 12, ctr); | 
|  |  | 
|  | // Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|. | 
|  | vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec); | 
|  | } | 
|  | #endif  // BSAES | 
|  |  | 
|  | ctr128_f aes_ctr_set_key(AES_KEY *aes_key, int *out_is_hwaes, | 
|  | block128_f *out_block, const uint8_t *key, | 
|  | size_t key_bytes) { | 
|  | // This function assumes the key length was previously validated. | 
|  | assert(key_bytes == 128 / 8 || key_bytes == 192 / 8 || key_bytes == 256 / 8); | 
|  | if (hwaes_capable()) { | 
|  | aes_hw_set_encrypt_key(key, (int)key_bytes * 8, aes_key); | 
|  | if (out_is_hwaes) { | 
|  | *out_is_hwaes = 1; | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = aes_hw_encrypt; | 
|  | } | 
|  | return aes_hw_ctr32_encrypt_blocks; | 
|  | } | 
|  |  | 
|  | if (vpaes_capable()) { | 
|  | vpaes_set_encrypt_key(key, (int)key_bytes * 8, aes_key); | 
|  | if (out_block) { | 
|  | *out_block = vpaes_encrypt; | 
|  | } | 
|  | if (out_is_hwaes) { | 
|  | *out_is_hwaes = 0; | 
|  | } | 
|  | #if defined(BSAES) | 
|  | assert(bsaes_capable()); | 
|  | return vpaes_ctr32_encrypt_blocks_with_bsaes; | 
|  | #else | 
|  | return vpaes_ctr32_encrypt_blocks; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | aes_nohw_set_encrypt_key(key, (int)key_bytes * 8, aes_key); | 
|  | if (out_is_hwaes) { | 
|  | *out_is_hwaes = 0; | 
|  | } | 
|  | if (out_block) { | 
|  | *out_block = aes_nohw_encrypt; | 
|  | } | 
|  | return aes_nohw_ctr32_encrypt_blocks; | 
|  | } |