blob: 15c3a2f9486fb2c97c016e0bc938daeb1c581b04 [file] [log] [blame]
// Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
// Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ec.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include "internal.h"
size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) {
if (form != POINT_CONVERSION_COMPRESSED &&
form != POINT_CONVERSION_UNCOMPRESSED) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM);
return 0;
}
const size_t field_len = BN_num_bytes(&group->field.N);
size_t output_len = 1 /* type byte */ + field_len;
if (form == POINT_CONVERSION_UNCOMPRESSED) {
// Uncompressed points have a second coordinate.
output_len += field_len;
}
return output_len;
}
size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point,
point_conversion_form_t form, uint8_t *buf,
size_t max_out) {
size_t output_len = ec_point_byte_len(group, form);
if (max_out < output_len) {
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
return 0;
}
size_t field_len;
ec_felem_to_bytes(group, buf + 1, &field_len, &point->X);
assert(field_len == BN_num_bytes(&group->field.N));
if (form == POINT_CONVERSION_UNCOMPRESSED) {
ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y);
assert(field_len == BN_num_bytes(&group->field.N));
buf[0] = form;
} else {
uint8_t y_buf[EC_MAX_BYTES];
ec_felem_to_bytes(group, y_buf, &field_len, &point->Y);
buf[0] = form + (y_buf[field_len - 1] & 1);
}
return output_len;
}
int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out,
const uint8_t *in, size_t len) {
const size_t field_len = BN_num_bytes(&group->field.N);
if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
return 0;
}
EC_FELEM x, y;
if (!ec_felem_from_bytes(group, &x, in + 1, field_len) ||
!ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) ||
!ec_point_set_affine_coordinates(group, out, &x, &y)) {
return 0;
}
return 1;
}
static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
const uint8_t *buf, size_t len,
BN_CTX *ctx) {
if (len == 0) {
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
return 0;
}
uint8_t form = buf[0];
if (form == static_cast<uint8_t>(POINT_CONVERSION_UNCOMPRESSED)) {
EC_AFFINE affine;
if (!ec_point_from_uncompressed(group, &affine, buf, len)) {
// In the event of an error, defend against the caller not checking the
// return value by setting a known safe value.
ec_set_to_safe_point(group, &point->raw);
return 0;
}
ec_affine_to_jacobian(group, &point->raw, &affine);
return 1;
}
const int y_bit = form & 1;
const size_t field_len = BN_num_bytes(&group->field.N);
form = form & ~1u;
if (form != static_cast<uint8_t>(POINT_CONVERSION_COMPRESSED) ||
len != 1 /* type byte */ + field_len) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
return 0;
}
// TODO(davidben): Integrate compressed coordinates with the lower-level EC
// abstractions. This requires a way to compute square roots, which is tricky
// for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's
// prime is particularly inconvenient for compressed coordinates. See
// https://cr.yp.to/papers/sqroot.pdf
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *x = BN_CTX_get(ctx);
if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) {
goto err;
}
if (BN_ucmp(x, &group->field.N) >= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
goto err;
}
if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point,
const uint8_t *buf, size_t len, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_GFp_simple_oct2point(group, point, buf, len, ctx);
}
size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point,
point_conversion_form_t form, uint8_t *buf,
size_t max_out, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (buf == NULL) {
// When |buf| is NULL, just return the number of bytes that would be
// written, without doing an expensive Jacobian-to-affine conversion.
if (ec_GFp_simple_is_at_infinity(group, &point->raw)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
return ec_point_byte_len(group, form);
}
EC_AFFINE affine;
if (!ec_jacobian_to_affine(group, &affine, &point->raw)) {
return 0;
}
return ec_point_to_bytes(group, &affine, form, buf, max_out);
}
size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point,
point_conversion_form_t form, uint8_t **out_buf,
BN_CTX *ctx) {
*out_buf = NULL;
size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx);
if (len == 0) {
return 0;
}
uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(len));
if (buf == NULL) {
return 0;
}
len = EC_POINT_point2oct(group, point, form, buf, len, ctx);
if (len == 0) {
OPENSSL_free(buf);
return 0;
}
*out_buf = buf;
return len;
}
int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group,
EC_POINT *point, const BIGNUM *x,
int y_bit, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
const BIGNUM *field = &group->field.N;
if (BN_is_negative(x) || BN_cmp(x, field) >= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT);
return 0;
}
BN_CTX *new_ctx = NULL;
int ret = 0;
ERR_clear_error();
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
y_bit = (y_bit != 0);
BN_CTX_start(ctx);
BIGNUM *tmp1 = BN_CTX_get(ctx);
BIGNUM *tmp2 = BN_CTX_get(ctx);
BIGNUM *a = BN_CTX_get(ctx);
BIGNUM *b = BN_CTX_get(ctx);
BIGNUM *y = BN_CTX_get(ctx);
if (y == NULL || !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) {
goto err;
}
// Recover y. We have a Weierstrass equation
// y^2 = x^3 + a*x + b,
// so y is one of the square roots of x^3 + a*x + b.
// tmp1 := x^3
if (!BN_mod_sqr(tmp2, x, field, ctx) ||
!BN_mod_mul(tmp1, tmp2, x, field, ctx)) {
goto err;
}
// tmp1 := tmp1 + a*x
if (group->a_is_minus3) {
if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) ||
!bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) ||
!bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) {
goto err;
}
} else {
if (!BN_mod_mul(tmp2, a, x, field, ctx) ||
!bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) {
goto err;
}
}
// tmp1 := tmp1 + b
if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) {
goto err;
}
if (!BN_mod_sqrt(y, tmp1, field, ctx)) {
uint32_t err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_BN &&
ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
ERR_clear_error();
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT);
} else {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
}
goto err;
}
if (y_bit != BN_is_odd(y)) {
if (BN_is_zero(y)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT);
goto err;
}
if (!BN_usub(y, field, y)) {
goto err;
}
}
if (y_bit != BN_is_odd(y)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}