| // Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/ec.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| |
| #include "internal.h" |
| |
| |
| size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) { |
| if (form != POINT_CONVERSION_COMPRESSED && |
| form != POINT_CONVERSION_UNCOMPRESSED) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); |
| return 0; |
| } |
| |
| const size_t field_len = BN_num_bytes(&group->field.N); |
| size_t output_len = 1 /* type byte */ + field_len; |
| if (form == POINT_CONVERSION_UNCOMPRESSED) { |
| // Uncompressed points have a second coordinate. |
| output_len += field_len; |
| } |
| return output_len; |
| } |
| |
| size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, |
| point_conversion_form_t form, uint8_t *buf, |
| size_t max_out) { |
| size_t output_len = ec_point_byte_len(group, form); |
| if (max_out < output_len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| size_t field_len; |
| ec_felem_to_bytes(group, buf + 1, &field_len, &point->X); |
| assert(field_len == BN_num_bytes(&group->field.N)); |
| |
| if (form == POINT_CONVERSION_UNCOMPRESSED) { |
| ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y); |
| assert(field_len == BN_num_bytes(&group->field.N)); |
| buf[0] = form; |
| } else { |
| uint8_t y_buf[EC_MAX_BYTES]; |
| ec_felem_to_bytes(group, y_buf, &field_len, &point->Y); |
| buf[0] = form + (y_buf[field_len - 1] & 1); |
| } |
| |
| return output_len; |
| } |
| |
| int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, |
| const uint8_t *in, size_t len) { |
| const size_t field_len = BN_num_bytes(&group->field.N); |
| if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| return 0; |
| } |
| |
| EC_FELEM x, y; |
| if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || |
| !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || |
| !ec_point_set_affine_coordinates(group, out, &x, &y)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, |
| const uint8_t *buf, size_t len, |
| BN_CTX *ctx) { |
| if (len == 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| uint8_t form = buf[0]; |
| if (form == static_cast<uint8_t>(POINT_CONVERSION_UNCOMPRESSED)) { |
| EC_AFFINE affine; |
| if (!ec_point_from_uncompressed(group, &affine, buf, len)) { |
| // In the event of an error, defend against the caller not checking the |
| // return value by setting a known safe value. |
| ec_set_to_safe_point(group, &point->raw); |
| return 0; |
| } |
| ec_affine_to_jacobian(group, &point->raw, &affine); |
| return 1; |
| } |
| |
| const int y_bit = form & 1; |
| const size_t field_len = BN_num_bytes(&group->field.N); |
| form = form & ~1u; |
| if (form != static_cast<uint8_t>(POINT_CONVERSION_COMPRESSED) || |
| len != 1 /* type byte */ + field_len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| return 0; |
| } |
| |
| // TODO(davidben): Integrate compressed coordinates with the lower-level EC |
| // abstractions. This requires a way to compute square roots, which is tricky |
| // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's |
| // prime is particularly inconvenient for compressed coordinates. See |
| // https://cr.yp.to/papers/sqroot.pdf |
| BN_CTX *new_ctx = NULL; |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *x = BN_CTX_get(ctx); |
| if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) { |
| goto err; |
| } |
| if (BN_ucmp(x, &group->field.N) >= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); |
| goto err; |
| } |
| |
| if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, |
| const uint8_t *buf, size_t len, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| return ec_GFp_simple_oct2point(group, point, buf, len, ctx); |
| } |
| |
| size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, |
| point_conversion_form_t form, uint8_t *buf, |
| size_t max_out, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| if (buf == NULL) { |
| // When |buf| is NULL, just return the number of bytes that would be |
| // written, without doing an expensive Jacobian-to-affine conversion. |
| if (ec_GFp_simple_is_at_infinity(group, &point->raw)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| return ec_point_byte_len(group, form); |
| } |
| EC_AFFINE affine; |
| if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { |
| return 0; |
| } |
| return ec_point_to_bytes(group, &affine, form, buf, max_out); |
| } |
| |
| size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, |
| point_conversion_form_t form, uint8_t **out_buf, |
| BN_CTX *ctx) { |
| *out_buf = NULL; |
| size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); |
| if (len == 0) { |
| return 0; |
| } |
| uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(len)); |
| if (buf == NULL) { |
| return 0; |
| } |
| len = EC_POINT_point2oct(group, point, form, buf, len, ctx); |
| if (len == 0) { |
| OPENSSL_free(buf); |
| return 0; |
| } |
| *out_buf = buf; |
| return len; |
| } |
| |
| int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, |
| EC_POINT *point, const BIGNUM *x, |
| int y_bit, BN_CTX *ctx) { |
| if (EC_GROUP_cmp(group, point->group, NULL) != 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| |
| const BIGNUM *field = &group->field.N; |
| if (BN_is_negative(x) || BN_cmp(x, field) >= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
| return 0; |
| } |
| |
| BN_CTX *new_ctx = NULL; |
| int ret = 0; |
| |
| ERR_clear_error(); |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| y_bit = (y_bit != 0); |
| |
| BN_CTX_start(ctx); |
| BIGNUM *tmp1 = BN_CTX_get(ctx); |
| BIGNUM *tmp2 = BN_CTX_get(ctx); |
| BIGNUM *a = BN_CTX_get(ctx); |
| BIGNUM *b = BN_CTX_get(ctx); |
| BIGNUM *y = BN_CTX_get(ctx); |
| if (y == NULL || !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { |
| goto err; |
| } |
| |
| // Recover y. We have a Weierstrass equation |
| // y^2 = x^3 + a*x + b, |
| // so y is one of the square roots of x^3 + a*x + b. |
| |
| // tmp1 := x^3 |
| if (!BN_mod_sqr(tmp2, x, field, ctx) || |
| !BN_mod_mul(tmp1, tmp2, x, field, ctx)) { |
| goto err; |
| } |
| |
| // tmp1 := tmp1 + a*x |
| if (group->a_is_minus3) { |
| if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) || |
| !bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) || |
| !bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_mod_mul(tmp2, a, x, field, ctx) || |
| !bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) { |
| goto err; |
| } |
| } |
| |
| // tmp1 := tmp1 + b |
| if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) { |
| goto err; |
| } |
| |
| if (!BN_mod_sqrt(y, tmp1, field, ctx)) { |
| uint32_t err = ERR_peek_last_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_BN && |
| ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { |
| ERR_clear_error(); |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); |
| } else { |
| OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
| } |
| goto err; |
| } |
| |
| if (y_bit != BN_is_odd(y)) { |
| if (BN_is_zero(y)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); |
| goto err; |
| } |
| if (!BN_usub(y, field, y)) { |
| goto err; |
| } |
| } |
| if (y_bit != BN_is_odd(y)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |