|  | /* | 
|  | * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | * Copyright 2005 Nokia. All rights reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_SSL_INTERNAL_H | 
|  | #define OPENSSL_HEADER_SSL_INTERNAL_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <bitset> | 
|  | #include <initializer_list> | 
|  | #include <limits> | 
|  | #include <new> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/curve25519.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/hpke.h> | 
|  | #include <openssl/lhash.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/span.h> | 
|  | #include <openssl/ssl.h> | 
|  | #include <openssl/stack.h> | 
|  |  | 
|  | #include "../crypto/err/internal.h" | 
|  | #include "../crypto/internal.h" | 
|  | #include "../crypto/lhash/internal.h" | 
|  |  | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | // Windows defines struct timeval in winsock2.h. | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <winsock2.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  | #else | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | struct SSL_CONFIG; | 
|  | struct SSL_HANDSHAKE; | 
|  | struct SSL_PROTOCOL_METHOD; | 
|  | struct SSL_X509_METHOD; | 
|  |  | 
|  | // C++ utilities. | 
|  |  | 
|  | // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It | 
|  | // returns nullptr on allocation error. It only implements single-object | 
|  | // allocation and not new T[n]. | 
|  | // | 
|  | // Note: unlike |new|, this does not support non-public constructors. | 
|  | template <typename T, typename... Args> | 
|  | T *New(Args &&...args) { | 
|  | void *t = OPENSSL_malloc(sizeof(T)); | 
|  | if (t == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | return new (t) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. | 
|  | // | 
|  | // Note: unlike |delete| this does not support non-public destructors. | 
|  | template <typename T> | 
|  | void Delete(T *t) { | 
|  | if (t != nullptr) { | 
|  | t->~T(); | 
|  | OPENSSL_free(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All types with kAllowUniquePtr set may be used with UniquePtr. Other types | 
|  | // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. | 
|  | namespace internal { | 
|  | template <typename T> | 
|  | struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> { | 
|  | static void Free(T *t) { Delete(t); } | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation | 
|  | // error. | 
|  | template <typename T, typename... Args> | 
|  | UniquePtr<T> MakeUnique(Args &&...args) { | 
|  | return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); | 
|  | } | 
|  |  | 
|  | // Array<T> is an owning array of elements of |T|. | 
|  | template <typename T> | 
|  | class Array { | 
|  | public: | 
|  | // Array's default constructor creates an empty array. | 
|  | Array() {} | 
|  | Array(const Array &) = delete; | 
|  | Array(Array &&other) { *this = std::move(other); } | 
|  |  | 
|  | ~Array() { Reset(); } | 
|  |  | 
|  | Array &operator=(const Array &) = delete; | 
|  | Array &operator=(Array &&other) { | 
|  | Reset(); | 
|  | other.Release(&data_, &size_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return data_; } | 
|  | T *data() { return data_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data_; } | 
|  | const T *begin() const { return data_; } | 
|  | T *end() { return data_ + size_; } | 
|  | const T *end() const { return data_ + size_; } | 
|  |  | 
|  | void Reset() { Reset(nullptr, 0); } | 
|  |  | 
|  | // Reset releases the current contents of the array and takes ownership of the | 
|  | // raw pointer supplied by the caller. | 
|  | void Reset(T *new_data, size_t new_size) { | 
|  | std::destroy_n(data_, size_); | 
|  | OPENSSL_free(data_); | 
|  | data_ = new_data; | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | // Release releases ownership of the array to a raw pointer supplied by the | 
|  | // caller. | 
|  | void Release(T **out, size_t *out_size) { | 
|  | *out = data_; | 
|  | *out_size = size_; | 
|  | data_ = nullptr; | 
|  | size_ = 0; | 
|  | } | 
|  |  | 
|  | // Init replaces the array with a newly-allocated array of |new_size| | 
|  | // value-constructed copies of |T|. It returns true on success and false on | 
|  | // error. If |T| is a primitive type like |uint8_t|, value-construction means | 
|  | // it will be zero-initialized. | 
|  | bool Init(size_t new_size) { | 
|  | if (!InitUninitialized(new_size)) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_value_construct_n(data_, size_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // InitForOverwrite behaves like |Init| but it default-constructs each element | 
|  | // instead. This means that, if |T| is a primitive type, the array will be | 
|  | // uninitialized and thus must be filled in by the caller. | 
|  | bool InitForOverwrite(size_t new_size) { | 
|  | if (!InitUninitialized(new_size)) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_default_construct_n(data_, size_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns | 
|  | // true on success and false on error. | 
|  | bool CopyFrom(Span<const T> in) { | 
|  | if (!InitUninitialized(in.size())) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_copy(in.begin(), in.end(), data_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Shrink shrinks the stored size of the array to |new_size|. It crashes if | 
|  | // the new size is larger. Note this does not shrink the allocation itself. | 
|  | void Shrink(size_t new_size) { | 
|  | if (new_size > size_) { | 
|  | abort(); | 
|  | } | 
|  | std::destroy_n(data_ + new_size, size_ - new_size); | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // InitUninitialized replaces the array with a newly-allocated array of | 
|  | // |new_size| elements, but whose constructor has not yet run. On success, the | 
|  | // elements must be constructed before returning control to the caller. | 
|  | bool InitUninitialized(size_t new_size) { | 
|  | Reset(); | 
|  | if (new_size == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T))); | 
|  | if (data_ == nullptr) { | 
|  | return false; | 
|  | } | 
|  | size_ = new_size; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | T *data_ = nullptr; | 
|  | size_t size_ = 0; | 
|  | }; | 
|  |  | 
|  | // Vector<T> is a resizable array of elements of |T|. | 
|  | template <typename T> | 
|  | class Vector { | 
|  | public: | 
|  | Vector() = default; | 
|  | Vector(const Vector &) = delete; | 
|  | Vector(Vector &&other) { *this = std::move(other); } | 
|  | ~Vector() { clear(); } | 
|  |  | 
|  | Vector &operator=(const Vector &) = delete; | 
|  | Vector &operator=(Vector &&other) { | 
|  | clear(); | 
|  | std::swap(data_, other.data_); | 
|  | std::swap(size_, other.size_); | 
|  | std::swap(capacity_, other.capacity_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return data_; } | 
|  | T *data() { return data_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data_[i]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data_; } | 
|  | const T *begin() const { return data_; } | 
|  | T *end() { return data_ + size_; } | 
|  | const T *end() const { return data_ + size_; } | 
|  |  | 
|  | void clear() { | 
|  | std::destroy_n(data_, size_); | 
|  | OPENSSL_free(data_); | 
|  | data_ = nullptr; | 
|  | size_ = 0; | 
|  | capacity_ = 0; | 
|  | } | 
|  |  | 
|  | // Push adds |elem| at the end of the internal array, growing if necessary. It | 
|  | // returns false when allocation fails. | 
|  | bool Push(T elem) { | 
|  | if (!MaybeGrow()) { | 
|  | return false; | 
|  | } | 
|  | new (&data_[size_]) T(std::move(elem)); | 
|  | size_++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CopyFrom replaces the contents of the array with a copy of |in|. It returns | 
|  | // true on success and false on allocation error. | 
|  | bool CopyFrom(Span<const T> in) { | 
|  | Array<T> copy; | 
|  | if (!copy.CopyFrom(in)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | clear(); | 
|  | copy.Release(&data_, &size_); | 
|  | capacity_ = size_; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // If there is no room for one more element, creates a new backing array with | 
|  | // double the size of the old one and copies elements over. | 
|  | bool MaybeGrow() { | 
|  | // No need to grow if we have room for one more T. | 
|  | if (size_ < capacity_) { | 
|  | return true; | 
|  | } | 
|  | size_t new_capacity = kDefaultSize; | 
|  | if (capacity_ > 0) { | 
|  | // Double the array's size if it's safe to do so. | 
|  | if (capacity_ > std::numeric_limits<size_t>::max() / 2) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | new_capacity = capacity_ * 2; | 
|  | } | 
|  | if (new_capacity > std::numeric_limits<size_t>::max() / sizeof(T)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | T *new_data = | 
|  | reinterpret_cast<T *>(OPENSSL_malloc(new_capacity * sizeof(T))); | 
|  | if (new_data == nullptr) { | 
|  | return false; | 
|  | } | 
|  | size_t new_size = size_; | 
|  | std::uninitialized_move(begin(), end(), new_data); | 
|  | clear(); | 
|  | data_ = new_data; | 
|  | size_ = new_size; | 
|  | capacity_ = new_capacity; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // data_ is a pointer to |capacity_| objects of size |T|, the first |size_| of | 
|  | // which are constructed. | 
|  | T *data_ = nullptr; | 
|  | // |size_| is the number of elements stored in this Vector. | 
|  | size_t size_ = 0; | 
|  | // |capacity_| is the number of elements allocated in this Vector. | 
|  | size_t capacity_ = 0; | 
|  | // |kDefaultSize| is the default initial size of the backing array. | 
|  | static constexpr size_t kDefaultSize = 16; | 
|  | }; | 
|  |  | 
|  | // A PackedSize is an integer that can store values from 0 to N, represented as | 
|  | // a minimal-width integer. | 
|  | template <size_t N> | 
|  | using PackedSize = std::conditional_t< | 
|  | N <= 0xff, uint8_t, | 
|  | std::conditional_t<N <= 0xffff, uint16_t, | 
|  | std::conditional_t<N <= 0xffffffff, uint32_t, size_t>>>; | 
|  |  | 
|  | // An InplaceVector is like a Vector, but stores up to N elements inline in the | 
|  | // object. It is inspired by std::inplace_vector in C++26. | 
|  | template <typename T, size_t N> | 
|  | class InplaceVector { | 
|  | public: | 
|  | InplaceVector() = default; | 
|  | InplaceVector(const InplaceVector &other) { *this = other; } | 
|  | InplaceVector(InplaceVector &&other) { *this = std::move(other); } | 
|  | ~InplaceVector() { clear(); } | 
|  | InplaceVector &operator=(const InplaceVector &other) { | 
|  | if (this != &other) { | 
|  | CopyFrom(other); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  | InplaceVector &operator=(InplaceVector &&other) { | 
|  | clear(); | 
|  | std::uninitialized_move(other.begin(), other.end(), data()); | 
|  | size_ = other.size(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return reinterpret_cast<const T *>(storage_); } | 
|  | T *data() { return reinterpret_cast<T *>(storage_); } | 
|  | size_t size() const { return size_; } | 
|  | static constexpr size_t capacity() { return N; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data()[i]; | 
|  | } | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size_); | 
|  | return data()[i]; | 
|  | } | 
|  |  | 
|  | T *begin() { return data(); } | 
|  | const T *begin() const { return data(); } | 
|  | T *end() { return data() + size_; } | 
|  | const T *end() const { return data() + size_; } | 
|  |  | 
|  | void clear() { Shrink(0); } | 
|  |  | 
|  | // Shrink resizes the vector to |new_size|, which must not be larger than the | 
|  | // current size. Unlike |Resize|, this can be called when |T| is not | 
|  | // default-constructible. | 
|  | void Shrink(size_t new_size) { | 
|  | BSSL_CHECK(new_size <= size_); | 
|  | std::destroy_n(data() + new_size, size_ - new_size); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | } | 
|  |  | 
|  | // TryResize resizes the vector to |new_size| and returns true, or returns | 
|  | // false if |new_size| is too large. Any newly-added elements are | 
|  | // value-initialized. | 
|  | bool TryResize(size_t new_size) { | 
|  | if (new_size <= size_) { | 
|  | Shrink(new_size); | 
|  | return true; | 
|  | } | 
|  | if (new_size > capacity()) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_value_construct_n(data() + size_, new_size - size_); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryResizeForOverwrite behaves like |TryResize|, but newly-added elements | 
|  | // are default-initialized, so POD types may contain uninitialized values that | 
|  | // the caller is responsible for filling in. | 
|  | bool TryResizeForOverwrite(size_t new_size) { | 
|  | if (new_size <= size_) { | 
|  | Shrink(new_size); | 
|  | return true; | 
|  | } | 
|  | if (new_size > capacity()) { | 
|  | return false; | 
|  | } | 
|  | std::uninitialized_default_construct_n(data() + size_, new_size - size_); | 
|  | size_ = static_cast<PackedSize<N>>(new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryCopyFrom sets the vector to a copy of |in| and returns true, or returns | 
|  | // false if |in| is too large. | 
|  | bool TryCopyFrom(Span<const T> in) { | 
|  | if (in.size() > capacity()) { | 
|  | return false; | 
|  | } | 
|  | clear(); | 
|  | std::uninitialized_copy(in.begin(), in.end(), data()); | 
|  | size_ = in.size(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TryPushBack appends |val| to the vector and returns a pointer to the | 
|  | // newly-inserted value, or nullptr if the vector is at capacity. | 
|  | T *TryPushBack(T val) { | 
|  | if (size() >= capacity()) { | 
|  | return nullptr; | 
|  | } | 
|  | T *ret = &data()[size_]; | 
|  | new (ret) T(std::move(val)); | 
|  | size_++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // The following methods behave like their |Try*| counterparts, but abort the | 
|  | // program on failure. | 
|  | void Resize(size_t size) { BSSL_CHECK(TryResize(size)); } | 
|  | void ResizeForOverwrite(size_t size) { | 
|  | BSSL_CHECK(TryResizeForOverwrite(size)); | 
|  | } | 
|  | void CopyFrom(Span<const T> in) { BSSL_CHECK(TryCopyFrom(in)); } | 
|  | T &PushBack(T val) { | 
|  | T *ret = TryPushBack(std::move(val)); | 
|  | BSSL_CHECK(ret != nullptr); | 
|  | return *ret; | 
|  | } | 
|  |  | 
|  | template <typename Pred> | 
|  | void EraseIf(Pred pred) { | 
|  | // See if anything needs to be erased at all. This avoids a self-move. | 
|  | auto iter = std::find_if(begin(), end(), pred); | 
|  | if (iter == end()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Elements before the first to be erased may be left as-is. | 
|  | size_t new_size = iter - begin(); | 
|  | // Swap all subsequent elements in if they are to be kept. | 
|  | for (size_t i = new_size + 1; i < size(); i++) { | 
|  | if (!pred((*this)[i])) { | 
|  | (*this)[new_size] = std::move((*this)[i]); | 
|  | new_size++; | 
|  | } | 
|  | } | 
|  |  | 
|  | Shrink(new_size); | 
|  | } | 
|  |  | 
|  | private: | 
|  | alignas(T) char storage_[sizeof(T[N])]; | 
|  | PackedSize<N> size_ = 0; | 
|  | }; | 
|  |  | 
|  | // An MRUQueue maintains a queue of up to |N| objects of type |T|. If the queue | 
|  | // is at capacity, adding to the queue pops the least recently added element. | 
|  | template <typename T, size_t N> | 
|  | class MRUQueue { | 
|  | public: | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | MRUQueue() = default; | 
|  |  | 
|  | // If we ever need to make this type movable, we could. (The defaults almost | 
|  | // work except we need |start_| to be reset when moved-from.) | 
|  | MRUQueue(const MRUQueue &other) = delete; | 
|  | MRUQueue &operator=(const MRUQueue &other) = delete; | 
|  |  | 
|  | bool empty() const { return size() == 0; } | 
|  | size_t size() const { return storage_.size(); } | 
|  |  | 
|  | T &operator[](size_t i) { | 
|  | BSSL_CHECK(i < size()); | 
|  | return storage_[(start_ + i) % N]; | 
|  | } | 
|  | const T &operator[](size_t i) const { | 
|  | return (*const_cast<MRUQueue *>(this))[i]; | 
|  | } | 
|  |  | 
|  | void Clear() { | 
|  | storage_.clear(); | 
|  | start_ = 0; | 
|  | } | 
|  |  | 
|  | void PushBack(T t) { | 
|  | if (storage_.size() < N) { | 
|  | assert(start_ == 0); | 
|  | storage_.PushBack(std::move(t)); | 
|  | } else { | 
|  | (*this)[0] = std::move(t); | 
|  | start_ = (start_ + 1) % N; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | InplaceVector<T, N> storage_; | 
|  | PackedSize<N> start_ = 0; | 
|  | }; | 
|  |  | 
|  | // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. | 
|  | OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out); | 
|  |  | 
|  | // GetAllNames helps to implement |*_get_all_*_names| style functions. It | 
|  | // writes at most |max_out| string pointers to |out| and returns the number that | 
|  | // it would have liked to have written. The strings written consist of | 
|  | // |fixed_names_len| strings from |fixed_names| followed by |objects_len| | 
|  | // strings taken by projecting |objects| through |name|. | 
|  | template <typename T, typename Name> | 
|  | inline size_t GetAllNames(const char **out, size_t max_out, | 
|  | Span<const char *const> fixed_names, Name(T::*name), | 
|  | Span<const T> objects) { | 
|  | auto span = bssl::MakeSpan(out, max_out); | 
|  | for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) { | 
|  | span[0] = fixed_names[i]; | 
|  | span = span.subspan(1); | 
|  | } | 
|  | span = span.subspan(0, objects.size()); | 
|  | for (size_t i = 0; i < span.size(); i++) { | 
|  | span[i] = objects[i].*name; | 
|  | } | 
|  | return fixed_names.size() + objects.size(); | 
|  | } | 
|  |  | 
|  | // RefCounted is a common base for ref-counted types. This is an instance of the | 
|  | // C++ curiously-recurring template pattern, so a type Foo must subclass | 
|  | // RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling | 
|  | // the destructor. | 
|  | template <typename Derived> | 
|  | class RefCounted { | 
|  | public: | 
|  | RefCounted(const RefCounted &) = delete; | 
|  | RefCounted &operator=(const RefCounted &) = delete; | 
|  |  | 
|  | // These methods are intentionally named differently from `bssl::UpRef` to | 
|  | // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free` | 
|  | // should call these. | 
|  | void UpRefInternal() { CRYPTO_refcount_inc(&references_); } | 
|  | void DecRefInternal() { | 
|  | if (CRYPTO_refcount_dec_and_test_zero(&references_)) { | 
|  | Derived *d = static_cast<Derived *>(this); | 
|  | d->~Derived(); | 
|  | OPENSSL_free(d); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`, | 
|  | // can call the constructor. This catches bugs where someone inherited from | 
|  | // the wrong base. | 
|  | class CheckSubClass { | 
|  | private: | 
|  | friend Derived; | 
|  | CheckSubClass() = default; | 
|  | }; | 
|  | RefCounted(CheckSubClass) { | 
|  | static_assert(std::is_base_of<RefCounted, Derived>::value, | 
|  | "Derived must subclass RefCounted<Derived>"); | 
|  | } | 
|  |  | 
|  | ~RefCounted() = default; | 
|  |  | 
|  | private: | 
|  | CRYPTO_refcount_t references_ = 1; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Protocol versions. | 
|  | // | 
|  | // Due to DTLS's historical wire version differences, we maintain two notions of | 
|  | // version. | 
|  | // | 
|  | // The "version" or "wire version" is the actual 16-bit value that appears on | 
|  | // the wire. It uniquely identifies a version and is also used at API | 
|  | // boundaries. The set of supported versions differs between TLS and DTLS. Wire | 
|  | // versions are opaque values and may not be compared numerically. | 
|  | // | 
|  | // The "protocol version" identifies the high-level handshake variant being | 
|  | // used. DTLS versions map to the corresponding TLS versions. Protocol versions | 
|  | // are sequential and may be compared numerically. | 
|  |  | 
|  | // ssl_protocol_version_from_wire sets |*out| to the protocol version | 
|  | // corresponding to wire version |version| and returns true. If |version| is not | 
|  | // a valid TLS or DTLS version, it returns false. | 
|  | // | 
|  | // Note this simultaneously handles both DTLS and TLS. Use one of the | 
|  | // higher-level functions below for most operations. | 
|  | bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); | 
|  |  | 
|  | // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the | 
|  | // minimum and maximum enabled protocol versions, respectively. | 
|  | bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version, | 
|  | uint16_t *out_max_version); | 
|  |  | 
|  | // ssl_supports_version returns whether |hs| supports |version|. | 
|  | bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version); | 
|  |  | 
|  | // ssl_method_supports_version returns whether |method| supports |version|. | 
|  | bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method, | 
|  | uint16_t version); | 
|  |  | 
|  | // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in | 
|  | // decreasing preference order. The version list is filtered to those whose | 
|  | // protocol version is at least |extra_min_version|. | 
|  | bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb, | 
|  | uint16_t extra_min_version); | 
|  |  | 
|  | // ssl_negotiate_version negotiates a common version based on |hs|'s preferences | 
|  | // and the peer preference list in |peer_versions|. On success, it returns true | 
|  | // and sets |*out_version| to the selected version. Otherwise, it returns false | 
|  | // and sets |*out_alert| to an alert to send. | 
|  | bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | uint16_t *out_version, const CBS *peer_versions); | 
|  |  | 
|  | // ssl_has_final_version returns whether |ssl| has determined the final version. | 
|  | // This may be used to distinguish the predictive 0-RTT version from the final | 
|  | // one. | 
|  | bool ssl_has_final_version(const SSL *ssl); | 
|  |  | 
|  | // ssl_protocol_version returns |ssl|'s protocol version. It is an error to | 
|  | // call this function before the version is determined. | 
|  | uint16_t ssl_protocol_version(const SSL *ssl); | 
|  |  | 
|  | // Cipher suites. | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | struct ssl_cipher_st { | 
|  | // name is the OpenSSL name for the cipher. | 
|  | const char *name; | 
|  | // standard_name is the IETF name for the cipher. | 
|  | const char *standard_name; | 
|  | // id is the cipher suite value bitwise OR-d with 0x03000000. | 
|  | uint32_t id; | 
|  |  | 
|  | // algorithm_* determine the cipher suite. See constants below for the values. | 
|  | uint32_t algorithm_mkey; | 
|  | uint32_t algorithm_auth; | 
|  | uint32_t algorithm_enc; | 
|  | uint32_t algorithm_mac; | 
|  | uint32_t algorithm_prf; | 
|  | }; | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | // Bits for |algorithm_mkey| (key exchange algorithm). | 
|  | #define SSL_kRSA 0x00000001u | 
|  | #define SSL_kECDHE 0x00000002u | 
|  | // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. | 
|  | #define SSL_kPSK 0x00000004u | 
|  | #define SSL_kGENERIC 0x00000008u | 
|  |  | 
|  | // Bits for |algorithm_auth| (server authentication). | 
|  | #define SSL_aRSA_SIGN 0x00000001u | 
|  | #define SSL_aRSA_DECRYPT 0x00000002u | 
|  | #define SSL_aECDSA 0x00000004u | 
|  | // SSL_aPSK is set for both PSK and ECDHE_PSK. | 
|  | #define SSL_aPSK 0x00000008u | 
|  | #define SSL_aGENERIC 0x00000010u | 
|  |  | 
|  | #define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA) | 
|  |  | 
|  | // Bits for |algorithm_enc| (symmetric encryption). | 
|  | #define SSL_3DES 0x00000001u | 
|  | #define SSL_AES128 0x00000002u | 
|  | #define SSL_AES256 0x00000004u | 
|  | #define SSL_AES128GCM 0x00000008u | 
|  | #define SSL_AES256GCM 0x00000010u | 
|  | #define SSL_CHACHA20POLY1305 0x00000020u | 
|  |  | 
|  | #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) | 
|  |  | 
|  | // Bits for |algorithm_mac| (symmetric authentication). | 
|  | #define SSL_SHA1 0x00000001u | 
|  | #define SSL_SHA256 0x00000002u | 
|  | // SSL_AEAD is set for all AEADs. | 
|  | #define SSL_AEAD 0x00000004u | 
|  |  | 
|  | // Bits for |algorithm_prf| (handshake digest). | 
|  | #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 | 
|  | #define SSL_HANDSHAKE_MAC_SHA256 0x2 | 
|  | #define SSL_HANDSHAKE_MAC_SHA384 0x4 | 
|  |  | 
|  | // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384. | 
|  | #define SSL_MAX_MD_SIZE 48 | 
|  |  | 
|  | // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal- | 
|  | // preference groups. For TLS clients, the groups are moot because the server | 
|  | // picks the cipher and groups cannot be expressed on the wire. However, for | 
|  | // servers, the equal-preference groups allow the client's preferences to be | 
|  | // partially respected. (This only has an effect with | 
|  | // SSL_OP_CIPHER_SERVER_PREFERENCE). | 
|  | // | 
|  | // The equal-preference groups are expressed by grouping SSL_CIPHERs together. | 
|  | // All elements of a group have the same priority: no ordering is expressed | 
|  | // within a group. | 
|  | // | 
|  | // The values in |ciphers| are in one-to-one correspondence with | 
|  | // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of | 
|  | // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to | 
|  | // indicate that the corresponding SSL_CIPHER is not the last element of a | 
|  | // group, or 0 to indicate that it is. | 
|  | // | 
|  | // For example, if |in_group_flags| contains all zeros then that indicates a | 
|  | // traditional, fully-ordered preference. Every SSL_CIPHER is the last element | 
|  | // of the group (i.e. they are all in a one-element group). | 
|  | // | 
|  | // For a more complex example, consider: | 
|  | //   ciphers:        A  B  C  D  E  F | 
|  | //   in_group_flags: 1  1  0  0  1  0 | 
|  | // | 
|  | // That would express the following, order: | 
|  | // | 
|  | //    A         E | 
|  | //    B -> D -> F | 
|  | //    C | 
|  | struct SSLCipherPreferenceList { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSLCipherPreferenceList() = default; | 
|  | ~SSLCipherPreferenceList(); | 
|  |  | 
|  | bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers, | 
|  | Span<const bool> in_group_flags); | 
|  | bool Init(const SSLCipherPreferenceList &); | 
|  |  | 
|  | void Remove(const SSL_CIPHER *cipher); | 
|  |  | 
|  | UniquePtr<STACK_OF(SSL_CIPHER)> ciphers; | 
|  | bool *in_group_flags = nullptr; | 
|  | }; | 
|  |  | 
|  | // AllCiphers returns an array of all supported ciphers, sorted by id. | 
|  | Span<const SSL_CIPHER> AllCiphers(); | 
|  |  | 
|  | // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD | 
|  | // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| | 
|  | // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, | 
|  | // respectively. The MAC key length is zero except for legacy block and stream | 
|  | // ciphers. It returns true on success and false on error. | 
|  | bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, | 
|  | size_t *out_mac_secret_len, | 
|  | size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, | 
|  | uint16_t version); | 
|  |  | 
|  | // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and | 
|  | // |cipher|. | 
|  | const EVP_MD *ssl_get_handshake_digest(uint16_t version, | 
|  | const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a | 
|  | // newly-allocated |SSLCipherPreferenceList| containing the result. It returns | 
|  | // true on success and false on failure. If |strict| is true, nonsense will be | 
|  | // rejected. If false, nonsense will be silently ignored. An empty result is | 
|  | // considered an error regardless of |strict|. |has_aes_hw| indicates if the | 
|  | // list should be ordered based on having support for AES in hardware or not. | 
|  | bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list, | 
|  | const bool has_aes_hw, const char *rule_str, | 
|  | bool strict); | 
|  |  | 
|  | // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| | 
|  | // values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates | 
|  | // whether |key| may be used for signing. | 
|  | uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok); | 
|  |  | 
|  | // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the | 
|  | // server and, optionally, the client with a certificate. | 
|  | bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a | 
|  | // ServerKeyExchange message. | 
|  | // | 
|  | // This function may return false while still allowing |cipher| an optional | 
|  | // ServerKeyExchange. This is the case for plain PSK ciphers. | 
|  | bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the | 
|  | // length of an encrypted 1-byte record, for use in record-splitting. Otherwise | 
|  | // it returns zero. | 
|  | size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best | 
|  | // available from |cipher_suites| compatible with |version| and |policy|. It | 
|  | // returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if | 
|  | // the choice should be made as if support for AES in hardware is available. | 
|  | const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw, | 
|  | uint16_t version, | 
|  | enum ssl_compliance_policy_t policy); | 
|  |  | 
|  | // ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given | 
|  | // |policy|. | 
|  | bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id, | 
|  | enum ssl_compliance_policy_t policy); | 
|  |  | 
|  | // ssl_cipher_is_deprecated returns true if |cipher| is deprecated. | 
|  | OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher); | 
|  |  | 
|  |  | 
|  | // Transcript layer. | 
|  |  | 
|  | // SSLTranscript maintains the handshake transcript as a combination of a | 
|  | // buffer and running hash. | 
|  | class SSLTranscript { | 
|  | public: | 
|  | explicit SSLTranscript(bool is_dtls); | 
|  | ~SSLTranscript(); | 
|  |  | 
|  | SSLTranscript(SSLTranscript &&other) = default; | 
|  | SSLTranscript &operator=(SSLTranscript &&other) = default; | 
|  |  | 
|  | // Init initializes the handshake transcript. If called on an existing | 
|  | // transcript, it resets the transcript and hash. It returns true on success | 
|  | // and false on failure. | 
|  | bool Init(); | 
|  |  | 
|  | // InitHash initializes the handshake hash based on the PRF and contents of | 
|  | // the handshake transcript. Subsequent calls to |Update| will update the | 
|  | // rolling hash. It returns one on success and zero on failure. It is an error | 
|  | // to call this function after the handshake buffer is released. This may be | 
|  | // called multiple times to change the hash function. | 
|  | bool InitHash(uint16_t version, const SSL_CIPHER *cipher); | 
|  |  | 
|  | // UpdateForHelloRetryRequest resets the rolling hash with the | 
|  | // HelloRetryRequest construction. It returns true on success and false on | 
|  | // failure. It is an error to call this function before the handshake buffer | 
|  | // is released. | 
|  | bool UpdateForHelloRetryRequest(); | 
|  |  | 
|  | // CopyToHashContext initializes |ctx| with |digest| and the data thus far in | 
|  | // the transcript. It returns true on success and false on failure. If the | 
|  | // handshake buffer is still present, |digest| may be any supported digest. | 
|  | // Otherwise, |digest| must match the transcript hash. | 
|  | bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const; | 
|  |  | 
|  | Span<const uint8_t> buffer() const { | 
|  | return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data), | 
|  | buffer_->length); | 
|  | } | 
|  |  | 
|  | // FreeBuffer releases the handshake buffer. Subsequent calls to | 
|  | // |Update| will not update the handshake buffer. | 
|  | void FreeBuffer(); | 
|  |  | 
|  | // DigestLen returns the length of the PRF hash. | 
|  | size_t DigestLen() const; | 
|  |  | 
|  | // Digest returns the PRF hash. For TLS 1.1 and below, this is | 
|  | // |EVP_md5_sha1|. | 
|  | const EVP_MD *Digest() const; | 
|  |  | 
|  | // Update adds |in| to the handshake buffer and handshake hash, whichever is | 
|  | // enabled. It returns true on success and false on failure. | 
|  | bool Update(Span<const uint8_t> in); | 
|  |  | 
|  | // GetHash writes the handshake hash to |out| which must have room for at | 
|  | // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to | 
|  | // the number of bytes written. Otherwise, it returns false. | 
|  | bool GetHash(uint8_t *out, size_t *out_len) const; | 
|  |  | 
|  | // GetFinishedMAC computes the MAC for the Finished message into the bytes | 
|  | // pointed by |out| and writes the number of bytes to |*out_len|. |out| must | 
|  | // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false | 
|  | // on failure. | 
|  | bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, | 
|  | bool from_server) const; | 
|  |  | 
|  | private: | 
|  | // HashBuffer initializes |ctx| to use |digest| and writes the contents of | 
|  | // |buffer_| to |ctx|. If this SSLTranscript is for DTLS 1.3, the appropriate | 
|  | // bytes in |buffer_| will be skipped when hashing the buffer. | 
|  | bool HashBuffer(EVP_MD_CTX *ctx, const EVP_MD *digest) const; | 
|  |  | 
|  | // AddToBufferOrHash directly adds the contents of |in| to |buffer_| and/or | 
|  | // |hash_|. | 
|  | bool AddToBufferOrHash(Span<const uint8_t> in); | 
|  |  | 
|  | // buffer_, if non-null, contains the handshake transcript. | 
|  | UniquePtr<BUF_MEM> buffer_; | 
|  | // hash, if initialized with an |EVP_MD|, maintains the handshake hash. | 
|  | ScopedEVP_MD_CTX hash_; | 
|  | // is_dtls_ indicates whether this is a transcript for a DTLS connection. | 
|  | bool is_dtls_ : 1; | 
|  | // version_ contains the version for the connection (if known). | 
|  | uint16_t version_ = 0; | 
|  | }; | 
|  |  | 
|  | // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| | 
|  | // as the secret and |label| as the label. |seed1| and |seed2| are concatenated | 
|  | // to form the seed parameter. It returns true on success and false on failure. | 
|  | bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, Span<const char> label, | 
|  | Span<const uint8_t> seed1, Span<const uint8_t> seed2); | 
|  |  | 
|  |  | 
|  | // Encryption layer. | 
|  |  | 
|  | // SSLAEADContext contains information about an AEAD that is being used to | 
|  | // encrypt an SSL connection. | 
|  | class SSLAEADContext { | 
|  | public: | 
|  | explicit SSLAEADContext(const SSL_CIPHER *cipher); | 
|  | ~SSLAEADContext(); | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSLAEADContext(const SSLAEADContext &&) = delete; | 
|  | SSLAEADContext &operator=(const SSLAEADContext &&) = delete; | 
|  |  | 
|  | // CreateNullCipher creates an |SSLAEADContext| for the null cipher. | 
|  | static UniquePtr<SSLAEADContext> CreateNullCipher(); | 
|  |  | 
|  | // Create creates an |SSLAEADContext| using the supplied key material. It | 
|  | // returns nullptr on error. Only one of |Open| or |Seal| may be used with the | 
|  | // resulting object, depending on |direction|. |version| is the wire version. | 
|  | static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction, | 
|  | uint16_t version, | 
|  | const SSL_CIPHER *cipher, | 
|  | Span<const uint8_t> enc_key, | 
|  | Span<const uint8_t> mac_key, | 
|  | Span<const uint8_t> fixed_iv); | 
|  |  | 
|  | // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the | 
|  | // given cipher. The resulting object can be queried for various properties | 
|  | // but cannot encrypt or decrypt data. | 
|  | static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC( | 
|  | const SSL_CIPHER *cipher); | 
|  |  | 
|  | const SSL_CIPHER *cipher() const { return cipher_; } | 
|  |  | 
|  | // is_null_cipher returns true if this is the null cipher. | 
|  | bool is_null_cipher() const { return !cipher_; } | 
|  |  | 
|  | // ExplicitNonceLen returns the length of the explicit nonce. | 
|  | size_t ExplicitNonceLen() const; | 
|  |  | 
|  | // MaxOverhead returns the maximum overhead of calling |Seal|. | 
|  | size_t MaxOverhead() const; | 
|  |  | 
|  | // MaxSealInputLen returns the maximum length for |Seal| that can fit in | 
|  | // |max_out| output bytes, or zero if no input may fit. | 
|  | size_t MaxSealInputLen(size_t max_out) const; | 
|  |  | 
|  | // SuffixLen calculates the suffix length written by |SealScatter| and writes | 
|  | // it to |*out_suffix_len|. It returns true on success and false on error. | 
|  | // |in_len| and |extra_in_len| should equal the argument of the same names | 
|  | // passed to |SealScatter|. | 
|  | bool SuffixLen(size_t *out_suffix_len, size_t in_len, | 
|  | size_t extra_in_len) const; | 
|  |  | 
|  | // CiphertextLen calculates the total ciphertext length written by | 
|  | // |SealScatter| and writes it to |*out_len|. It returns true on success and | 
|  | // false on error. |in_len| and |extra_in_len| should equal the argument of | 
|  | // the same names passed to |SealScatter|. | 
|  | bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const; | 
|  |  | 
|  | // Open authenticates and decrypts |in| in-place. On success, it sets |*out| | 
|  | // to the plaintext in |in| and returns true.  Otherwise, it returns | 
|  | // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. | 
|  | bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version, | 
|  | uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in); | 
|  |  | 
|  | // Seal encrypts and authenticates |in_len| bytes from |in| and writes the | 
|  | // result to |out|. It returns true on success and false on error. | 
|  | // | 
|  | // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. | 
|  | bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, | 
|  | uint16_t record_version, uint64_t seqnum, | 
|  | Span<const uint8_t> header, const uint8_t *in, size_t in_len); | 
|  |  | 
|  | // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits | 
|  | // the result between |out_prefix|, |out| and |out_suffix|. It returns one on | 
|  | // success and zero on error. | 
|  | // | 
|  | // On successful return, exactly |ExplicitNonceLen| bytes are written to | 
|  | // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to | 
|  | // |out_suffix|. | 
|  | // | 
|  | // |extra_in| may point to an additional plaintext buffer. If present, | 
|  | // |extra_in_len| additional bytes are encrypted and authenticated, and the | 
|  | // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should | 
|  | // be used to size |out_suffix| accordingly. | 
|  | // | 
|  | // If |in| and |out| alias then |out| must be == |in|. Other arguments may not | 
|  | // alias anything. | 
|  | bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, | 
|  | uint8_t type, uint16_t record_version, uint64_t seqnum, | 
|  | Span<const uint8_t> header, const uint8_t *in, size_t in_len, | 
|  | const uint8_t *extra_in, size_t extra_in_len); | 
|  |  | 
|  | bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; | 
|  |  | 
|  | private: | 
|  | // GetAdditionalData returns the additional data, writing into |storage| if | 
|  | // necessary. | 
|  | Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type, | 
|  | uint16_t record_version, | 
|  | uint64_t seqnum, size_t plaintext_len, | 
|  | Span<const uint8_t> header); | 
|  |  | 
|  | const SSL_CIPHER *cipher_; | 
|  | ScopedEVP_AEAD_CTX ctx_; | 
|  | // fixed_nonce_ contains any bytes of the nonce that are fixed for all | 
|  | // records. | 
|  | InplaceVector<uint8_t, 12> fixed_nonce_; | 
|  | uint8_t variable_nonce_len_ = 0; | 
|  | // variable_nonce_included_in_record_ is true if the variable nonce | 
|  | // for a record is included as a prefix before the ciphertext. | 
|  | bool variable_nonce_included_in_record_ : 1; | 
|  | // random_variable_nonce_ is true if the variable nonce is | 
|  | // randomly generated, rather than derived from the sequence | 
|  | // number. | 
|  | bool random_variable_nonce_ : 1; | 
|  | // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the | 
|  | // variable nonce rather than prepended. | 
|  | bool xor_fixed_nonce_ : 1; | 
|  | // omit_length_in_ad_ is true if the length should be omitted in the | 
|  | // AEAD's ad parameter. | 
|  | bool omit_length_in_ad_ : 1; | 
|  | // ad_is_header_ is true if the AEAD's ad parameter is the record header. | 
|  | bool ad_is_header_ : 1; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // DTLS replay bitmap. | 
|  |  | 
|  | // DTLSReplayBitmap maintains a sliding window of sequence numbers to detect | 
|  | // replayed packets. | 
|  | class DTLSReplayBitmap { | 
|  | public: | 
|  | // ShouldDiscard returns true if |seq_num| has been seen in | 
|  | // |bitmap| or is stale. Otherwise it returns false. | 
|  | bool ShouldDiscard(uint64_t seqnum) const; | 
|  |  | 
|  | // Record updates the bitmap to record receipt of sequence number | 
|  | // |seq_num|. It slides the window forward if needed. It is an error to call | 
|  | // this function on a stale sequence number. | 
|  | void Record(uint64_t seqnum); | 
|  |  | 
|  | uint64_t max_seq_num() const { return max_seq_num_; } | 
|  |  | 
|  | private: | 
|  | // map is a bitset of sequence numbers that have been seen. Bit i corresponds | 
|  | // to |max_seq_num_ - i|. | 
|  | std::bitset<256> map_; | 
|  | // max_seq_num_ is the largest sequence number seen so far as a 64-bit | 
|  | // integer. | 
|  | uint64_t max_seq_num_ = 0; | 
|  | }; | 
|  |  | 
|  | // reconstruct_seqnum takes the low order bits of a record sequence number from | 
|  | // the wire and reconstructs the full sequence number. It does so using the | 
|  | // algorithm described in section 4.2.2 of RFC 9147, where |wire_seq| is the | 
|  | // low bits of the sequence number as seen on the wire, |seq_mask| is a bitmask | 
|  | // of 8 or 16 1 bits corresponding to the length of the sequence number on the | 
|  | // wire, and |max_valid_seqnum| is the largest sequence number of a record | 
|  | // successfully deprotected in this epoch. This function returns the sequence | 
|  | // number that is numerically closest to one plus |max_valid_seqnum| that when | 
|  | // bitwise and-ed with |seq_mask| equals |wire_seq|. | 
|  | // | 
|  | // |max_valid_seqnum| must be most 2^48-1, in which case the output will also be | 
|  | // at most 2^48-1. | 
|  | OPENSSL_EXPORT uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, | 
|  | uint64_t max_valid_seqnum); | 
|  |  | 
|  |  | 
|  | // Record layer. | 
|  |  | 
|  | class DTLSRecordNumber { | 
|  | public: | 
|  | static constexpr uint64_t kMaxSequence = (uint64_t{1} << 48) - 1; | 
|  |  | 
|  | DTLSRecordNumber() = default; | 
|  | DTLSRecordNumber(uint16_t epoch, uint64_t sequence) { | 
|  | BSSL_CHECK(sequence <= kMaxSequence); | 
|  | combined_ = (uint64_t{epoch} << 48) | sequence; | 
|  | } | 
|  |  | 
|  | static DTLSRecordNumber FromCombined(uint64_t combined) { | 
|  | return DTLSRecordNumber(combined); | 
|  | } | 
|  |  | 
|  | bool operator==(DTLSRecordNumber r) const { | 
|  | return combined() == r.combined(); | 
|  | } | 
|  | bool operator!=(DTLSRecordNumber r) const { return !((*this) == r); } | 
|  | bool operator<(DTLSRecordNumber r) const { return combined() < r.combined(); } | 
|  |  | 
|  | uint64_t combined() const { return combined_; } | 
|  | uint16_t epoch() const { return combined_ >> 48; } | 
|  | uint64_t sequence() const { return combined_ & kMaxSequence; } | 
|  |  | 
|  | bool HasNext() const { return sequence() < kMaxSequence; } | 
|  | DTLSRecordNumber Next() const { | 
|  | BSSL_CHECK(HasNext()); | 
|  | // This will not overflow into the epoch. | 
|  | return DTLSRecordNumber::FromCombined(combined_ + 1); | 
|  | } | 
|  |  | 
|  | private: | 
|  | explicit DTLSRecordNumber(uint64_t combined) : combined_(combined) {} | 
|  |  | 
|  | uint64_t combined_ = 0; | 
|  | }; | 
|  |  | 
|  | class RecordNumberEncrypter { | 
|  | public: | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  | static constexpr size_t kMaxKeySize = 32; | 
|  |  | 
|  | // Create returns a DTLS 1.3 record number encrypter for |traffic_secret|, or | 
|  | // nullptr on error. | 
|  | static UniquePtr<RecordNumberEncrypter> Create( | 
|  | const SSL_CIPHER *cipher, Span<const uint8_t> traffic_secret); | 
|  |  | 
|  | virtual ~RecordNumberEncrypter() = default; | 
|  | virtual size_t KeySize() = 0; | 
|  | virtual bool SetKey(Span<const uint8_t> key) = 0; | 
|  | virtual bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) = 0; | 
|  | }; | 
|  |  | 
|  | struct DTLSReadEpoch { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | // TODO(davidben): This could be made slightly more compact if |bitmap| stored | 
|  | // a DTLSRecordNumber. | 
|  | uint16_t epoch = 0; | 
|  | UniquePtr<SSLAEADContext> aead; | 
|  | UniquePtr<RecordNumberEncrypter> rn_encrypter; | 
|  | DTLSReplayBitmap bitmap; | 
|  | }; | 
|  |  | 
|  | struct DTLSWriteEpoch { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | uint16_t epoch() const { return next_record.epoch(); } | 
|  |  | 
|  | DTLSRecordNumber next_record; | 
|  | UniquePtr<SSLAEADContext> aead; | 
|  | UniquePtr<RecordNumberEncrypter> rn_encrypter; | 
|  | }; | 
|  |  | 
|  | // ssl_record_prefix_len returns the length of the prefix before the ciphertext | 
|  | // of a record for |ssl|. | 
|  | // | 
|  | // TODO(davidben): Expose this as part of public API once the high-level | 
|  | // buffer-free APIs are available. | 
|  | size_t ssl_record_prefix_len(const SSL *ssl); | 
|  |  | 
|  | enum ssl_open_record_t { | 
|  | ssl_open_record_success, | 
|  | ssl_open_record_discard, | 
|  | ssl_open_record_partial, | 
|  | ssl_open_record_close_notify, | 
|  | ssl_open_record_error, | 
|  | }; | 
|  |  | 
|  | // tls_open_record decrypts a record from |in| in-place. | 
|  | // | 
|  | // If the input did not contain a complete record, it returns | 
|  | // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of | 
|  | // bytes necessary. It is guaranteed that a successful call to |tls_open_record| | 
|  | // will consume at least that many bytes. | 
|  | // | 
|  | // Otherwise, it sets |*out_consumed| to the number of bytes of input | 
|  | // consumed. Note that input may be consumed on all return codes if a record was | 
|  | // decrypted. | 
|  | // | 
|  | // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the | 
|  | // record type and |*out| to the record body in |in|. Note that |*out| may be | 
|  | // empty. | 
|  | // | 
|  | // If a record was successfully processed but should be discarded, it returns | 
|  | // |ssl_open_record_discard|. | 
|  | // | 
|  | // If a record was successfully processed but is a close_notify, it returns | 
|  | // |ssl_open_record_close_notify|. | 
|  | // | 
|  | // On failure or fatal alert, it returns |ssl_open_record_error| and sets | 
|  | // |*out_alert| to an alert to emit, or zero if no alert should be emitted. | 
|  | enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, | 
|  | Span<uint8_t> *out, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // dtls_open_record implements |tls_open_record| for DTLS. It only returns | 
|  | // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to | 
|  | // zero. The caller should read one packet and try again. On success, | 
|  | // |*out_number| is set to the record number of the record. | 
|  | enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, | 
|  | DTLSRecordNumber *out_number, | 
|  | Span<uint8_t> *out, | 
|  | size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher | 
|  | // state needs record-splitting and zero otherwise. | 
|  | bool ssl_needs_record_splitting(const SSL *ssl); | 
|  |  | 
|  | // tls_seal_record seals a new record of type |type| and body |in| and writes it | 
|  | // to |out|. At most |max_out| bytes will be written. It returns true on success | 
|  | // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC | 
|  | // 1/n-1 record splitting and may write two records concatenated. | 
|  | // | 
|  | // For a large record, the bulk of the ciphertext will begin | 
|  | // |tls_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may | 
|  | // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| | 
|  | // bytes to |out|. | 
|  | // | 
|  | // |in| and |out| may not alias. | 
|  | bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint8_t type, const uint8_t *in, size_t in_len); | 
|  |  | 
|  | // dtls_record_header_write_len returns the length of the record header that | 
|  | // will be written at |epoch|. | 
|  | size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch); | 
|  |  | 
|  | // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a | 
|  | // record. | 
|  | size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch); | 
|  |  | 
|  | // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in | 
|  | // front of the plaintext when sealing a record in-place. | 
|  | size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch); | 
|  |  | 
|  | // dtls_seal_max_input_len returns the maximum number of input bytes that can | 
|  | // fit in a record of up to |max_out| bytes, or zero if none may fit. | 
|  | size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out); | 
|  |  | 
|  | // dtls_seal_record implements |tls_seal_record| for DTLS. |epoch| selects which | 
|  | // epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| may | 
|  | // alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes | 
|  | // ahead of |out|. On success, |*out_number| is set to the record number of the | 
|  | // record. | 
|  | bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out, | 
|  | size_t *out_len, size_t max_out, uint8_t type, | 
|  | const uint8_t *in, size_t in_len, uint16_t epoch); | 
|  |  | 
|  | // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown | 
|  | // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, | 
|  | // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as | 
|  | // appropriate. | 
|  | enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Private key operations. | 
|  |  | 
|  | // ssl_private_key_* perform the corresponding operation on | 
|  | // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they | 
|  | // call the corresponding function or |complete| depending on whether there is a | 
|  | // pending operation. Otherwise, they implement the operation with | 
|  | // |EVP_PKEY|. | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_sign( | 
|  | SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint16_t sigalg, Span<const uint8_t> in); | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, | 
|  | uint8_t *out, | 
|  | size_t *out_len, | 
|  | size_t max_out, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  | // ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign | 
|  | // |sigalg|. | 
|  | bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, | 
|  | uint16_t sigalg, bool is_verify); | 
|  |  | 
|  | // ssl_public_key_verify verifies that the |signature| is valid for the public | 
|  | // key |pkey| and input |in|, using the signature algorithm |sigalg|. | 
|  | bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, | 
|  | uint16_t sigalg, EVP_PKEY *pkey, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Key shares. | 
|  |  | 
|  | // SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE | 
|  | // cipher suites and the TLS 1.3 key_share extension. | 
|  | // | 
|  | // TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share | 
|  | // extension, but it really implements a KEM abstraction. Additionally, we use | 
|  | // the same type for Encap, which is a one-off, stateless operation, as Generate | 
|  | // and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey | 
|  | // (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap | 
|  | // to be static function. | 
|  | class SSLKeyShare { | 
|  | public: | 
|  | virtual ~SSLKeyShare() {} | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | // Create returns a SSLKeyShare instance for use with group |group_id| or | 
|  | // nullptr on error. | 
|  | static UniquePtr<SSLKeyShare> Create(uint16_t group_id); | 
|  |  | 
|  | // GroupID returns the group ID. | 
|  | virtual uint16_t GroupID() const = 0; | 
|  |  | 
|  | // Generate generates a keypair and writes the public key to |out_public_key|. | 
|  | // It returns true on success and false on error. | 
|  | virtual bool Generate(CBB *out_public_key) = 0; | 
|  |  | 
|  | // Encap generates an ephemeral, symmetric secret and encapsulates it with | 
|  | // |peer_key|. On success, it returns true, writes the encapsulated secret to | 
|  | // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure, | 
|  | // it returns false and sets |*out_alert| to an alert to send to the peer. | 
|  | virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret, | 
|  | uint8_t *out_alert, Span<const uint8_t> peer_key) = 0; | 
|  |  | 
|  | // Decap decapsulates the symmetric secret in |ciphertext|. On success, it | 
|  | // returns true and sets |*out_secret| to the shared secret. On failure, it | 
|  | // returns false and sets |*out_alert| to an alert to send to the peer. | 
|  | virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert, | 
|  | Span<const uint8_t> ciphertext) = 0; | 
|  |  | 
|  | // SerializePrivateKey writes the private key to |out|, returning true if | 
|  | // successful and false otherwise. It should be called after |Generate|. | 
|  | virtual bool SerializePrivateKey(CBB *out) { return false; } | 
|  |  | 
|  | // DeserializePrivateKey initializes the state of the key exchange from |in|, | 
|  | // returning true if successful and false otherwise. | 
|  | virtual bool DeserializePrivateKey(CBS *in) { return false; } | 
|  | }; | 
|  |  | 
|  | struct NamedGroup { | 
|  | int nid; | 
|  | uint16_t group_id; | 
|  | const char name[32], alias[32]; | 
|  | }; | 
|  |  | 
|  | // NamedGroups returns all supported groups. | 
|  | Span<const NamedGroup> NamedGroups(); | 
|  |  | 
|  | // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it | 
|  | // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns | 
|  | // false. | 
|  | bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid); | 
|  |  | 
|  | // ssl_name_to_group_id looks up the group corresponding to the |name| string of | 
|  | // length |len|. On success, it sets |*out_group_id| to the group ID and returns | 
|  | // true. Otherwise, it returns false. | 
|  | bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); | 
|  |  | 
|  | // ssl_group_id_to_nid returns the NID corresponding to |group_id| or | 
|  | // |NID_undef| if unknown. | 
|  | int ssl_group_id_to_nid(uint16_t group_id); | 
|  |  | 
|  |  | 
|  | // Handshake messages. | 
|  |  | 
|  | struct SSLMessage { | 
|  | bool is_v2_hello; | 
|  | uint8_t type; | 
|  | CBS body; | 
|  | // raw is the entire serialized handshake message, including the TLS or DTLS | 
|  | // message header. | 
|  | CBS raw; | 
|  | }; | 
|  |  | 
|  | // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including | 
|  | // ChangeCipherSpec, in the longest handshake flight. Currently this is the | 
|  | // client's second leg in a full handshake when client certificates, NPN, and | 
|  | // Channel ID, are all enabled. | 
|  | #define SSL_MAX_HANDSHAKE_FLIGHT 7 | 
|  |  | 
|  | extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; | 
|  | extern const uint8_t kTLS12DowngradeRandom[8]; | 
|  | extern const uint8_t kTLS13DowngradeRandom[8]; | 
|  | extern const uint8_t kJDK11DowngradeRandom[8]; | 
|  |  | 
|  | // ssl_max_handshake_message_len returns the maximum number of bytes permitted | 
|  | // in a handshake message for |ssl|. | 
|  | size_t ssl_max_handshake_message_len(const SSL *ssl); | 
|  |  | 
|  | // tls_can_accept_handshake_data returns whether |ssl| is able to accept more | 
|  | // data into handshake buffer. | 
|  | bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); | 
|  |  | 
|  | // tls_has_unprocessed_handshake_data returns whether there is buffered | 
|  | // handshake data that has not been consumed by |get_message|. | 
|  | bool tls_has_unprocessed_handshake_data(const SSL *ssl); | 
|  |  | 
|  | // tls_append_handshake_data appends |data| to the handshake buffer. It returns | 
|  | // true on success and false on allocation failure. | 
|  | bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data); | 
|  |  | 
|  | // dtls_has_unprocessed_handshake_data behaves like | 
|  | // |tls_has_unprocessed_handshake_data| for DTLS. | 
|  | bool dtls_has_unprocessed_handshake_data(const SSL *ssl); | 
|  |  | 
|  | // tls_flush_pending_hs_data flushes any handshake plaintext data. | 
|  | bool tls_flush_pending_hs_data(SSL *ssl); | 
|  |  | 
|  | // dtls_clear_outgoing_messages releases all buffered outgoing messages. | 
|  | void dtls_clear_outgoing_messages(SSL *ssl); | 
|  |  | 
|  | // dtls_clear_unused_write_epochs releases any write epochs that are no longer | 
|  | // needed. | 
|  | void dtls_clear_unused_write_epochs(SSL *ssl); | 
|  |  | 
|  |  | 
|  | // Callbacks. | 
|  |  | 
|  | // ssl_do_info_callback calls |ssl|'s info callback, if set. | 
|  | void ssl_do_info_callback(const SSL *ssl, int type, int value); | 
|  |  | 
|  | // ssl_do_msg_callback calls |ssl|'s message callback, if set. | 
|  | void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Transport buffers. | 
|  |  | 
|  | class SSLBuffer { | 
|  | public: | 
|  | SSLBuffer() {} | 
|  | ~SSLBuffer() { Clear(); } | 
|  |  | 
|  | SSLBuffer(const SSLBuffer &) = delete; | 
|  | SSLBuffer &operator=(const SSLBuffer &) = delete; | 
|  |  | 
|  | uint8_t *data() { return buf_ + offset_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  | size_t cap() const { return cap_; } | 
|  |  | 
|  | Span<uint8_t> span() { return MakeSpan(data(), size()); } | 
|  |  | 
|  | Span<uint8_t> remaining() { | 
|  | return MakeSpan(data() + size(), cap() - size()); | 
|  | } | 
|  |  | 
|  | // Clear releases the buffer. | 
|  | void Clear(); | 
|  |  | 
|  | // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such | 
|  | // that data written after |header_len| is aligned to a | 
|  | // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false | 
|  | // on error. | 
|  | bool EnsureCap(size_t header_len, size_t new_cap); | 
|  |  | 
|  | // DidWrite extends the buffer by |len|. The caller must have filled in to | 
|  | // this point. | 
|  | void DidWrite(size_t len); | 
|  |  | 
|  | // Consume consumes |len| bytes from the front of the buffer.  The memory | 
|  | // consumed will remain valid until the next call to |DiscardConsumed| or | 
|  | // |Clear|. | 
|  | void Consume(size_t len); | 
|  |  | 
|  | // DiscardConsumed discards the consumed bytes from the buffer. If the buffer | 
|  | // is now empty, it releases memory used by it. | 
|  | void DiscardConsumed(); | 
|  |  | 
|  | private: | 
|  | // buf_ is the memory allocated for this buffer. | 
|  | uint8_t *buf_ = nullptr; | 
|  | // offset_ is the offset into |buf_| which the buffer contents start at. | 
|  | uint16_t offset_ = 0; | 
|  | // size_ is the size of the buffer contents from |buf_| + |offset_|. | 
|  | uint16_t size_ = 0; | 
|  | // cap_ is how much memory beyond |buf_| + |offset_| is available. | 
|  | uint16_t cap_ = 0; | 
|  | // inline_buf_ is a static buffer for short reads. | 
|  | uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH]; | 
|  | }; | 
|  |  | 
|  | // ssl_read_buffer_extend_to extends the read buffer to the desired length. For | 
|  | // TLS, it reads to the end of the buffer until the buffer is |len| bytes | 
|  | // long. For DTLS, it reads a new packet and ignores |len|. It returns one on | 
|  | // success, zero on EOF, and a negative number on error. | 
|  | // | 
|  | // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is | 
|  | // non-empty. | 
|  | int ssl_read_buffer_extend_to(SSL *ssl, size_t len); | 
|  |  | 
|  | // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| | 
|  | // to a record-processing function. If |ret| is a success or if the caller | 
|  | // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= | 
|  | // 0. | 
|  | int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, | 
|  | size_t consumed, uint8_t alert); | 
|  |  | 
|  | // ssl_write_buffer_flush flushes the write buffer to the transport. It returns | 
|  | // one on success and <= 0 on error. For DTLS, whether or not the write | 
|  | // succeeds, the write buffer will be cleared. | 
|  | int ssl_write_buffer_flush(SSL *ssl); | 
|  |  | 
|  |  | 
|  | // Certificate functions. | 
|  |  | 
|  | // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used | 
|  | // by a TLS Certificate message. On success, it advances |cbs| and returns | 
|  | // true. Otherwise, it returns false and sets |*out_alert| to an alert to send | 
|  | // to the peer. | 
|  | // | 
|  | // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to | 
|  | // the certificate chain and the leaf certificate's public key | 
|  | // respectively. Otherwise, both will be set to nullptr. | 
|  | // | 
|  | // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the | 
|  | // SHA-256 hash of the leaf to |out_leaf_sha256|. | 
|  | bool ssl_parse_cert_chain(uint8_t *out_alert, | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, | 
|  | UniquePtr<EVP_PKEY> *out_pubkey, | 
|  | uint8_t *out_leaf_sha256, CBS *cbs, | 
|  | CRYPTO_BUFFER_POOL *pool); | 
|  |  | 
|  | enum ssl_key_usage_t { | 
|  | key_usage_digital_signature = 0, | 
|  | key_usage_encipherment = 2, | 
|  | }; | 
|  |  | 
|  | // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in| | 
|  | // and returns true if doesn't specify a key usage or, if it does, if it | 
|  | // includes |bit|. Otherwise it pushes to the error queue and returns false. | 
|  | OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in, | 
|  | enum ssl_key_usage_t bit); | 
|  |  | 
|  | // ssl_cert_extract_issuer parses the DER-encoded, X.509 certificate in |in| | 
|  | // and extracts the issuer. On success it returns true and the DER encoded | 
|  | // issuer is in |out_dn|, otherwise it returns false. | 
|  | OPENSSL_EXPORT bool ssl_cert_extract_issuer(const CBS *in, CBS *out_dn); | 
|  |  | 
|  | // ssl_cert_matches_issuer parses the DER-encoded, X.509 certificate in |in| | 
|  | // and returns true if its issuer is an exact match for the DER encoded | 
|  | // distinguished name in |dn| | 
|  | bool ssl_cert_matches_issuer(const CBS *in, const CBS *dn); | 
|  |  | 
|  | // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 | 
|  | // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns | 
|  | // nullptr and pushes to the error queue. | 
|  | UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in); | 
|  |  | 
|  | // SSL_parse_CA_list parses a CA list from |cbs| in the format used by a TLS | 
|  | // CertificateRequest message and Certificate Authorities extension. On success, | 
|  | // it returns a newly-allocated |CRYPTO_BUFFER| list and advances | 
|  | // |cbs|. Otherwise, it returns nullptr and sets |*out_alert| to an alert to | 
|  | // send to the peer. | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> SSL_parse_CA_list(SSL *ssl, | 
|  | uint8_t *out_alert, | 
|  | CBS *cbs); | 
|  |  | 
|  | // ssl_has_client_CAs returns whether there are configured CAs. | 
|  | bool ssl_has_client_CAs(const SSL_CONFIG *cfg); | 
|  |  | 
|  | // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format | 
|  | // used by a TLS CertificateRequest message. It returns true on success and | 
|  | // false on error. | 
|  | bool ssl_add_client_CA_list(const SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // ssl_has_CA_names returns whether there are configured CA names. | 
|  | bool ssl_has_CA_names(const SSL_CONFIG *cfg); | 
|  |  | 
|  | // ssl_add_CA_names adds the configured CA_names list to |cbb| in the format | 
|  | // used by a TLS Certificate Authorities extension. It returns true on success | 
|  | // and false on error. | 
|  | bool ssl_add_CA_names(const SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as | 
|  | // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes | 
|  | // an error on the error queue. | 
|  | bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, | 
|  | const CRYPTO_BUFFER *leaf); | 
|  |  | 
|  |  | 
|  | // TLS 1.3 key derivation. | 
|  |  | 
|  | // tls13_init_key_schedule initializes the handshake hash and key derivation | 
|  | // state, and incorporates the PSK. The cipher suite and PRF hash must have been | 
|  | // selected at this point. It returns true on success and false on error. | 
|  | bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk); | 
|  |  | 
|  | // tls13_init_early_key_schedule initializes the handshake hash and key | 
|  | // derivation state from |session| for use with 0-RTT. It returns one on success | 
|  | // and zero on error. | 
|  | bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | // tls13_advance_key_schedule incorporates |in| into the key schedule with | 
|  | // HKDF-Extract. It returns true on success and false on error. | 
|  | bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in); | 
|  |  | 
|  | // tls13_set_traffic_key sets the read or write traffic keys to | 
|  | // |traffic_secret|. The version and cipher suite are determined from |session|. | 
|  | // It returns true on success and false on error. | 
|  | bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, | 
|  | enum evp_aead_direction_t direction, | 
|  | const SSL_SESSION *session, | 
|  | Span<const uint8_t> traffic_secret); | 
|  |  | 
|  | // tls13_derive_early_secret derives the early traffic secret. It returns true | 
|  | // on success and false on error. | 
|  | bool tls13_derive_early_secret(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_derive_handshake_secrets derives the handshake traffic secret. It | 
|  | // returns true on success and false on error. | 
|  | bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_rotate_traffic_key derives the next read or write traffic secret. It | 
|  | // returns true on success and false on error. | 
|  | bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); | 
|  |  | 
|  | // tls13_derive_application_secrets derives the initial application data traffic | 
|  | // and exporter secrets based on the handshake transcripts and |master_secret|. | 
|  | // It returns true on success and false on error. | 
|  | bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_derive_resumption_secret derives the |resumption_secret|. | 
|  | bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_export_keying_material provides an exporter interface to use the | 
|  | // |exporter_secret|. | 
|  | bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const char> label, | 
|  | Span<const uint8_t> context); | 
|  |  | 
|  | // tls13_finished_mac calculates the MAC of the handshake transcript to verify | 
|  | // the integrity of the Finished message, and stores the result in |out| and | 
|  | // length in |out_len|. |is_server| is true if this is for the Server Finished | 
|  | // and false for the Client Finished. | 
|  | bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, | 
|  | bool is_server); | 
|  |  | 
|  | // tls13_derive_session_psk calculates the PSK for this session based on the | 
|  | // resumption master secret and |nonce|. It returns true on success, and false | 
|  | // on failure. | 
|  | bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce, | 
|  | bool is_dtls); | 
|  |  | 
|  | // tls13_write_psk_binder calculates the PSK binder value over |transcript| and | 
|  | // |msg|, and replaces the last bytes of |msg| with the resulting value. It | 
|  | // returns true on success, and false on failure. If |out_binder_len| is | 
|  | // non-NULL, it sets |*out_binder_len| to the length of the value computed. | 
|  | bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSLTranscript &transcript, Span<uint8_t> msg, | 
|  | size_t *out_binder_len); | 
|  |  | 
|  | // tls13_verify_psk_binder verifies that the handshake transcript, truncated up | 
|  | // to the binders has a valid signature using the value of |session|'s | 
|  | // resumption secret. It returns true on success, and false on failure. | 
|  | bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session, const SSLMessage &msg, | 
|  | CBS *binders); | 
|  |  | 
|  |  | 
|  | // Encrypted ClientHello. | 
|  |  | 
|  | struct ECHConfig { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  | // raw contains the serialized ECHConfig. | 
|  | Array<uint8_t> raw; | 
|  | // The following fields alias into |raw|. | 
|  | Span<const uint8_t> public_key; | 
|  | Span<const uint8_t> public_name; | 
|  | Span<const uint8_t> cipher_suites; | 
|  | uint16_t kem_id = 0; | 
|  | uint8_t maximum_name_length = 0; | 
|  | uint8_t config_id = 0; | 
|  | }; | 
|  |  | 
|  | class ECHServerConfig { | 
|  | public: | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  | ECHServerConfig() = default; | 
|  | ECHServerConfig(const ECHServerConfig &other) = delete; | 
|  | ECHServerConfig &operator=(ECHServerConfig &&) = delete; | 
|  |  | 
|  | // Init parses |ech_config| as an ECHConfig and saves a copy of |key|. | 
|  | // It returns true on success and false on error. | 
|  | bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key, | 
|  | bool is_retry_config); | 
|  |  | 
|  | // SetupContext sets up |ctx| for a new connection, given the specified | 
|  | // HPKE ciphersuite and encapsulated KEM key. It returns true on success and | 
|  | // false on error. This function may only be called on an initialized object. | 
|  | bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id, | 
|  | Span<const uint8_t> enc) const; | 
|  |  | 
|  | const ECHConfig &ech_config() const { return ech_config_; } | 
|  | bool is_retry_config() const { return is_retry_config_; } | 
|  |  | 
|  | private: | 
|  | ECHConfig ech_config_; | 
|  | ScopedEVP_HPKE_KEY key_; | 
|  | bool is_retry_config_ = false; | 
|  | }; | 
|  |  | 
|  | enum ssl_client_hello_type_t { | 
|  | ssl_client_hello_unencrypted, | 
|  | ssl_client_hello_inner, | 
|  | ssl_client_hello_outer, | 
|  | }; | 
|  |  | 
|  | // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension. | 
|  | #define ECH_CLIENT_OUTER 0 | 
|  | #define ECH_CLIENT_INNER 1 | 
|  |  | 
|  | // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the | 
|  | // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its | 
|  | // outer_extensions extension with the referenced extensions from the | 
|  | // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered | 
|  | // ClientHelloInner to |out_client_hello_inner|. It returns true on success and | 
|  | // false on failure. | 
|  | // | 
|  | // This function is exported for fuzzing. | 
|  | OPENSSL_EXPORT bool ssl_decode_client_hello_inner( | 
|  | SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner, | 
|  | Span<const uint8_t> encoded_client_hello_inner, | 
|  | const SSL_CLIENT_HELLO *client_hello_outer); | 
|  |  | 
|  | // ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It | 
|  | // writes the result to |*out|. |payload| must point into |client_hello_outer|. | 
|  | // It returns true on success and false on error. On error, it sets | 
|  | // |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext. | 
|  | bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | bool *out_is_decrypt_error, Array<uint8_t> *out, | 
|  | const SSL_CLIENT_HELLO *client_hello_outer, | 
|  | Span<const uint8_t> payload); | 
|  |  | 
|  | #define ECH_CONFIRMATION_SIGNAL_LEN 8 | 
|  |  | 
|  | // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH | 
|  | // confirmation signal in a ServerHello message, including the handshake header. | 
|  | size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl); | 
|  |  | 
|  | // ssl_ech_accept_confirmation computes the server's ECH acceptance signal, | 
|  | // writing it to |out|. The transcript portion is the concatenation of | 
|  | // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from | 
|  | // |offset| in |msg| are replaced with zeros before hashing. This function | 
|  | // returns true on success, and false on failure. | 
|  | bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out, | 
|  | Span<const uint8_t> client_random, | 
|  | const SSLTranscript &transcript, bool is_hrr, | 
|  | Span<const uint8_t> msg, size_t offset); | 
|  |  | 
|  | // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH | 
|  | // public name and false otherwise. It is exported for testing. | 
|  | OPENSSL_EXPORT bool ssl_is_valid_ech_public_name( | 
|  | Span<const uint8_t> public_name); | 
|  |  | 
|  | // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid | 
|  | // ECHConfigList structure and false otherwise. | 
|  | bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list); | 
|  |  | 
|  | // ssl_select_ech_config selects an ECHConfig and associated parameters to offer | 
|  | // on the client and updates |hs|. It returns true on success, whether an | 
|  | // ECHConfig was found or not, and false on internal error. On success, the | 
|  | // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the | 
|  | // number of bytes written. If the function did not select an ECHConfig, the | 
|  | // encapsulated key is the empty string. | 
|  | bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc, | 
|  | size_t *out_enc_len); | 
|  |  | 
|  | // ssl_ech_extension_body_length returns the length of the body of a ClientHello | 
|  | // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of | 
|  | // length |enc_len|. The result does not include the four-byte extension header. | 
|  | size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len, | 
|  | size_t in_len); | 
|  |  | 
|  | // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the | 
|  | // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc| | 
|  | // is the encapsulated key to include in the extension. It returns true on | 
|  | // success and false on error. If not offering ECH, |enc| is ignored and the | 
|  | // function will compute a GREASE ECH extension if necessary, and otherwise | 
|  | // return success while doing nothing. | 
|  | // | 
|  | // Encrypting the ClientHelloInner incorporates all extensions in the | 
|  | // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello| | 
|  | // must already be computed. | 
|  | bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc); | 
|  |  | 
|  |  | 
|  | // Credentials. | 
|  |  | 
|  | enum class SSLCredentialType { | 
|  | kX509, | 
|  | kDelegated, | 
|  | }; | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | // SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace. | 
|  | struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> { | 
|  | explicit ssl_credential_st(bssl::SSLCredentialType type); | 
|  | ssl_credential_st(const ssl_credential_st &) = delete; | 
|  | ssl_credential_st &operator=(const ssl_credential_st &) = delete; | 
|  |  | 
|  | // Dup returns a copy of the credential, or nullptr on error. The |ex_data| | 
|  | // values are not copied. This is only used on the legacy credential, whose | 
|  | // |ex_data| is inaccessible. | 
|  | bssl::UniquePtr<SSL_CREDENTIAL> Dup() const; | 
|  |  | 
|  | // ClearCertAndKey erases any certificate and private key on the credential. | 
|  | void ClearCertAndKey(); | 
|  |  | 
|  | // UsesX509 returns true if the credential type uses an X.509 certificate. | 
|  | bool UsesX509() const; | 
|  |  | 
|  | // UsesPrivateKey returns true if the credential type uses an asymmetric | 
|  | // private key. | 
|  | bool UsesPrivateKey() const; | 
|  |  | 
|  | // IsComplete returns whether all required fields in the credential have been | 
|  | // filled in. | 
|  | bool IsComplete() const; | 
|  |  | 
|  | // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining | 
|  | // certificates unmodified. It returns true on success and false on error. If | 
|  | // |discard_key_on_mismatch| is true and the private key is inconsistent with | 
|  | // the new leaf certificate, it is silently discarded. | 
|  | bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf, | 
|  | bool discard_key_on_mismatch); | 
|  |  | 
|  | // ClearIntermediateCerts clears intermediate certificates in the certificate | 
|  | // chain, while preserving the leaf. | 
|  | void ClearIntermediateCerts(); | 
|  |  | 
|  | // AppendIntermediateCert appends |cert| to the certificate chain. If there is | 
|  | // no leaf certificate configured, it leaves a placeholder null in |chain|. It | 
|  | // returns one on success and zero on error. | 
|  | bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert); | 
|  |  | 
|  | // ChainContainsIssuer returns true if |dn| is a byte for byte match with the | 
|  | // issuer of any certificate in |chain|, false otherwise. | 
|  | bool ChainContainsIssuer(bssl::Span<const uint8_t> dn) const; | 
|  |  | 
|  | // type is the credential type and determines which other fields apply. | 
|  | bssl::SSLCredentialType type; | 
|  |  | 
|  | // pubkey is the cached public key of the credential. Unlike |privkey|, it is | 
|  | // always present and is extracted from the certificate, delegated credential, | 
|  | // etc. | 
|  | bssl::UniquePtr<EVP_PKEY> pubkey; | 
|  |  | 
|  | // privkey is the private key of the credential. It may be omitted in favor of | 
|  | // |key_method|. | 
|  | bssl::UniquePtr<EVP_PKEY> privkey; | 
|  |  | 
|  | // key_method, if non-null, is a set of callbacks to call for private key | 
|  | // operations. | 
|  | const SSL_PRIVATE_KEY_METHOD *key_method = nullptr; | 
|  |  | 
|  | // sigalgs, if non-empty, is the set of signature algorithms supported by the | 
|  | // private key in decreasing order of preference. If empty, the default list | 
|  | // is used. | 
|  | // | 
|  | // In delegated credentials, this field is not configurable and is instead | 
|  | // computed from the dc_cert_verify_algorithm field. | 
|  | bssl::Array<uint16_t> sigalgs; | 
|  |  | 
|  | // chain contains the certificate chain, with the leaf at the beginning. The | 
|  | // first element of |chain| may be nullptr to indicate that the leaf | 
|  | // certificate has not yet been set. | 
|  | //   If |chain| != nullptr -> len(chain) >= 1 | 
|  | //   If |chain[0]| == nullptr -> len(chain) >= 2. | 
|  | //   |chain[1..]| != nullptr | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain; | 
|  |  | 
|  | // dc is the DelegatedCredential structure, if this is a delegated credential. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> dc; | 
|  |  | 
|  | // dc_algorithm is the signature scheme of the signature over the delegated | 
|  | // credential itself, made by the end-entity certificate's public key. | 
|  | uint16_t dc_algorithm = 0; | 
|  |  | 
|  | // Signed certificate timestamp list to be sent to the client, if requested | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; | 
|  |  | 
|  | // OCSP response to be sent to the client, if requested. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data; | 
|  |  | 
|  | // must_match_issuer is a flag indicating that this credential should be | 
|  | // considered only when it matches a peer request for a particular issuer via | 
|  | // a negotiation mechanism (such as the certificate_authorities extension). | 
|  | bool must_match_issuer = false; | 
|  |  | 
|  | private: | 
|  | friend RefCounted; | 
|  | ~ssl_credential_st(); | 
|  | }; | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | // ssl_get_credential_list computes |hs|'s credential list. On success, it | 
|  | // writes it to |*out| and returns true. Otherwise, it returns false. The | 
|  | // credential list may be empty, in which case this function will successfully | 
|  | // return an empty array. | 
|  | // | 
|  | // The pointers in the result are only valid until |hs| is next mutated. | 
|  | bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out); | 
|  |  | 
|  | // ssl_credential_matches_requested_issuers returns true if |cred| is a | 
|  | // usable match for any requested issuers in |hs|. | 
|  | bool ssl_credential_matches_requested_issuers(SSL_HANDSHAKE *hs, | 
|  | const SSL_CREDENTIAL *cred); | 
|  |  | 
|  | // Handshake functions. | 
|  |  | 
|  | enum ssl_hs_wait_t { | 
|  | ssl_hs_error, | 
|  | ssl_hs_ok, | 
|  | ssl_hs_read_server_hello, | 
|  | ssl_hs_read_message, | 
|  | ssl_hs_flush, | 
|  | ssl_hs_certificate_selection_pending, | 
|  | ssl_hs_handoff, | 
|  | ssl_hs_handback, | 
|  | ssl_hs_x509_lookup, | 
|  | ssl_hs_private_key_operation, | 
|  | ssl_hs_pending_session, | 
|  | ssl_hs_pending_ticket, | 
|  | ssl_hs_early_return, | 
|  | ssl_hs_early_data_rejected, | 
|  | ssl_hs_read_end_of_early_data, | 
|  | ssl_hs_read_change_cipher_spec, | 
|  | ssl_hs_certificate_verify, | 
|  | ssl_hs_hints_ready, | 
|  | }; | 
|  |  | 
|  | enum ssl_grease_index_t { | 
|  | ssl_grease_cipher = 0, | 
|  | ssl_grease_group, | 
|  | ssl_grease_extension1, | 
|  | ssl_grease_extension2, | 
|  | ssl_grease_version, | 
|  | ssl_grease_ticket_extension, | 
|  | ssl_grease_ech_config_id, | 
|  | ssl_grease_last_index = ssl_grease_ech_config_id, | 
|  | }; | 
|  |  | 
|  | enum tls12_server_hs_state_t { | 
|  | state12_start_accept = 0, | 
|  | state12_read_client_hello, | 
|  | state12_read_client_hello_after_ech, | 
|  | state12_cert_callback, | 
|  | state12_tls13, | 
|  | state12_select_parameters, | 
|  | state12_send_server_hello, | 
|  | state12_send_server_certificate, | 
|  | state12_send_server_key_exchange, | 
|  | state12_send_server_hello_done, | 
|  | state12_read_client_certificate, | 
|  | state12_verify_client_certificate, | 
|  | state12_read_client_key_exchange, | 
|  | state12_read_client_certificate_verify, | 
|  | state12_read_change_cipher_spec, | 
|  | state12_process_change_cipher_spec, | 
|  | state12_read_next_proto, | 
|  | state12_read_channel_id, | 
|  | state12_read_client_finished, | 
|  | state12_send_server_finished, | 
|  | state12_finish_server_handshake, | 
|  | state12_done, | 
|  | }; | 
|  |  | 
|  | enum tls13_server_hs_state_t { | 
|  | state13_select_parameters = 0, | 
|  | state13_select_session, | 
|  | state13_send_hello_retry_request, | 
|  | state13_read_second_client_hello, | 
|  | state13_send_server_hello, | 
|  | state13_send_server_certificate_verify, | 
|  | state13_send_server_finished, | 
|  | state13_send_half_rtt_ticket, | 
|  | state13_read_second_client_flight, | 
|  | state13_process_end_of_early_data, | 
|  | state13_read_client_encrypted_extensions, | 
|  | state13_read_client_certificate, | 
|  | state13_read_client_certificate_verify, | 
|  | state13_read_channel_id, | 
|  | state13_read_client_finished, | 
|  | state13_send_new_session_ticket, | 
|  | state13_done, | 
|  | }; | 
|  |  | 
|  | // handback_t lists the points in the state machine where a handback can occur. | 
|  | // These are the different points at which key material is no longer needed. | 
|  | enum handback_t { | 
|  | handback_after_session_resumption = 0, | 
|  | handback_after_ecdhe = 1, | 
|  | handback_after_handshake = 2, | 
|  | handback_tls13 = 3, | 
|  | handback_max_value = handback_tls13, | 
|  | }; | 
|  |  | 
|  | // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See | 
|  | // |SSL_request_handshake_hints| and related functions. | 
|  | struct SSL_HANDSHAKE_HINTS { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | Array<uint8_t> server_random_tls12; | 
|  | Array<uint8_t> server_random_tls13; | 
|  |  | 
|  | uint16_t key_share_group_id = 0; | 
|  | Array<uint8_t> key_share_ciphertext; | 
|  | Array<uint8_t> key_share_secret; | 
|  |  | 
|  | uint16_t signature_algorithm = 0; | 
|  | Array<uint8_t> signature_input; | 
|  | Array<uint8_t> signature_spki; | 
|  | Array<uint8_t> signature; | 
|  |  | 
|  | Array<uint8_t> decrypted_psk; | 
|  | bool ignore_psk = false; | 
|  |  | 
|  | uint16_t cert_compression_alg_id = 0; | 
|  | Array<uint8_t> cert_compression_input; | 
|  | Array<uint8_t> cert_compression_output; | 
|  |  | 
|  | uint16_t ecdhe_group_id = 0; | 
|  | Array<uint8_t> ecdhe_public_key; | 
|  | Array<uint8_t> ecdhe_private_key; | 
|  |  | 
|  | Array<uint8_t> decrypted_ticket; | 
|  | bool renew_ticket = false; | 
|  | bool ignore_ticket = false; | 
|  | }; | 
|  |  | 
|  | struct SSL_HANDSHAKE { | 
|  | explicit SSL_HANDSHAKE(SSL *ssl); | 
|  | ~SSL_HANDSHAKE(); | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | // ssl is a non-owning pointer to the parent |SSL| object. | 
|  | SSL *ssl; | 
|  |  | 
|  | // config is a non-owning pointer to the handshake configuration. | 
|  | SSL_CONFIG *config; | 
|  |  | 
|  | // wait contains the operation the handshake is currently blocking on or | 
|  | // |ssl_hs_ok| if none. | 
|  | enum ssl_hs_wait_t wait = ssl_hs_ok; | 
|  |  | 
|  | // state is the internal state for the TLS 1.2 and below handshake. Its | 
|  | // values depend on |do_handshake| but the starting state is always zero. | 
|  | int state = 0; | 
|  |  | 
|  | // tls13_state is the internal state for the TLS 1.3 handshake. Its values | 
|  | // depend on |do_handshake| but the starting state is always zero. | 
|  | int tls13_state = 0; | 
|  |  | 
|  | // min_version is the minimum accepted protocol version, taking account both | 
|  | // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. | 
|  | uint16_t min_version = 0; | 
|  |  | 
|  | // max_version is the maximum accepted protocol version, taking account both | 
|  | // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. | 
|  | uint16_t max_version = 0; | 
|  |  | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> early_traffic_secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> client_handshake_secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> server_handshake_secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> client_traffic_secret_0; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> server_traffic_secret_0; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> expected_client_finished; | 
|  |  | 
|  | // GetClientHello, on the server, returns either the normal ClientHello | 
|  | // message or the ClientHelloInner if it has been serialized to | 
|  | // |ech_client_hello_buf|. This function should only be called when the | 
|  | // current message is a ClientHello. It returns true on success and false on | 
|  | // error. | 
|  | // | 
|  | // Note that fields of the returned |out_msg| and |out_client_hello| point | 
|  | // into a handshake-owned buffer, so their lifetimes should not exceed this | 
|  | // SSL_HANDSHAKE. | 
|  | bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello); | 
|  |  | 
|  | union { | 
|  | // sent is a bitset where the bits correspond to elements of kExtensions | 
|  | // in extensions.cc. Each bit is set if that extension was sent in a | 
|  | // ClientHello. It's not used by servers. | 
|  | uint32_t sent = 0; | 
|  | // received is a bitset, like |sent|, but is used by servers to record | 
|  | // which extensions were received from a client. | 
|  | uint32_t received; | 
|  | } extensions; | 
|  |  | 
|  | // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for | 
|  | // the ClientHelloInner. | 
|  | uint32_t inner_extensions_sent = 0; | 
|  |  | 
|  | // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. | 
|  | UniquePtr<ERR_SAVE_STATE> error; | 
|  |  | 
|  | // key_shares are the current key exchange instances. The second is only used | 
|  | // as a client if we believe that we should offer two key shares in a | 
|  | // ClientHello. | 
|  | UniquePtr<SSLKeyShare> key_shares[2]; | 
|  |  | 
|  | // transcript is the current handshake transcript. | 
|  | SSLTranscript transcript; | 
|  |  | 
|  | // inner_transcript, on the client, is the handshake transcript for the | 
|  | // ClientHelloInner handshake. It is moved to |transcript| if the server | 
|  | // accepts ECH. | 
|  | SSLTranscript inner_transcript; | 
|  |  | 
|  | // inner_client_random is the ClientHello random value used with | 
|  | // ClientHelloInner. | 
|  | uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0}; | 
|  |  | 
|  | // cookie is the value of the cookie in HelloRetryRequest, or empty if none | 
|  | // was received. | 
|  | Array<uint8_t> cookie; | 
|  |  | 
|  | // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If | 
|  | // empty, either none was received or HelloVerifyRequest contained an empty | 
|  | // cookie. Check the received_hello_verify_request field to distinguish an | 
|  | // empty cookie from no HelloVerifyRequest message being received. | 
|  | Array<uint8_t> dtls_cookie; | 
|  |  | 
|  | // ech_client_outer contains the outer ECH extension to send in the | 
|  | // ClientHello, excluding the header and type byte. | 
|  | Array<uint8_t> ech_client_outer; | 
|  |  | 
|  | // ech_retry_configs, on the client, contains the retry configs from the | 
|  | // server as a serialized ECHConfigList. | 
|  | Array<uint8_t> ech_retry_configs; | 
|  |  | 
|  | // ech_client_hello_buf, on the server, contains the bytes of the | 
|  | // reconstructed ClientHelloInner message. | 
|  | Array<uint8_t> ech_client_hello_buf; | 
|  |  | 
|  | // key_share_bytes is the key_share extension that the client should send. | 
|  | Array<uint8_t> key_share_bytes; | 
|  |  | 
|  | // key_share_ciphertext, for servers, is encapsulated shared secret to be sent | 
|  | // to the client in the TLS 1.3 key_share extension. | 
|  | Array<uint8_t> key_share_ciphertext; | 
|  |  | 
|  | // peer_sigalgs are the signature algorithms that the peer supports. These are | 
|  | // taken from the contents of the signature algorithms extension for a server | 
|  | // or from the CertificateRequest for a client. | 
|  | Array<uint16_t> peer_sigalgs; | 
|  |  | 
|  | // peer_supported_group_list contains the supported group IDs advertised by | 
|  | // the peer. This is only set on the server's end. The server does not | 
|  | // advertise this extension to the client. | 
|  | Array<uint16_t> peer_supported_group_list; | 
|  |  | 
|  | // peer_delegated_credential_sigalgs are the signature algorithms the peer | 
|  | // supports with delegated credentials, or empty if the peer does not support | 
|  | // delegated credentials. | 
|  | Array<uint16_t> peer_delegated_credential_sigalgs; | 
|  |  | 
|  | // peer_key is the peer's ECDH key for a TLS 1.2 client. | 
|  | Array<uint8_t> peer_key; | 
|  |  | 
|  | // extension_permutation is the permutation to apply to ClientHello | 
|  | // extensions. It maps indices into the |kExtensions| table into other | 
|  | // indices. | 
|  | Array<uint8_t> extension_permutation; | 
|  |  | 
|  | // cert_compression_alg_id, for a server, contains the negotiated certificate | 
|  | // compression algorithm for this client. It is only valid if | 
|  | // |cert_compression_negotiated| is true. | 
|  | uint16_t cert_compression_alg_id; | 
|  |  | 
|  | // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is | 
|  | // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is | 
|  | // initialized if |selected_ech_config| is not nullptr. | 
|  | ScopedEVP_HPKE_CTX ech_hpke_ctx; | 
|  |  | 
|  | // server_params, in a TLS 1.2 server, stores the ServerKeyExchange | 
|  | // parameters. It has client and server randoms prepended for signing | 
|  | // convenience. | 
|  | Array<uint8_t> server_params; | 
|  |  | 
|  | // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the | 
|  | // server when using a TLS 1.2 PSK key exchange. | 
|  | UniquePtr<char> peer_psk_identity_hint; | 
|  |  | 
|  | // ca_names contains the list of CAs received via the Certificate Authorities | 
|  | // extension in our peer's CertificateRequest or ClientHello message | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names; | 
|  |  | 
|  | // cached_x509_ca_names contains a cache of parsed versions of the elements of | 
|  | // |ca_names|. This pointer is left non-owning so only | 
|  | // |ssl_crypto_x509_method| needs to link against crypto/x509. | 
|  | STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; | 
|  |  | 
|  | // certificate_types, on the client, contains the set of certificate types | 
|  | // received in a CertificateRequest message. | 
|  | Array<uint8_t> certificate_types; | 
|  |  | 
|  | // credential is the credential we are using for the handshake. | 
|  | UniquePtr<SSL_CREDENTIAL> credential; | 
|  |  | 
|  | // peer_pubkey is the public key parsed from the peer's leaf certificate. | 
|  | UniquePtr<EVP_PKEY> peer_pubkey; | 
|  |  | 
|  | // new_session is the new mutable session being established by the current | 
|  | // handshake. It should not be cached. | 
|  | UniquePtr<SSL_SESSION> new_session; | 
|  |  | 
|  | // early_session is the session corresponding to the current 0-RTT state on | 
|  | // the client if |in_early_data| is true. | 
|  | UniquePtr<SSL_SESSION> early_session; | 
|  |  | 
|  | // ssl_ech_keys, for servers, is the set of ECH keys to use with this | 
|  | // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as | 
|  | // |SSL_CTX| rotates keys. | 
|  | UniquePtr<SSL_ECH_KEYS> ech_keys; | 
|  |  | 
|  | // selected_ech_config, for clients, is the ECHConfig the client uses to offer | 
|  | // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx| | 
|  | // will be initialized. | 
|  | UniquePtr<ECHConfig> selected_ech_config; | 
|  |  | 
|  | // new_cipher is the cipher being negotiated in this handshake. | 
|  | const SSL_CIPHER *new_cipher = nullptr; | 
|  |  | 
|  | // key_block is the record-layer key block for TLS 1.2 and earlier. | 
|  | Array<uint8_t> key_block; | 
|  |  | 
|  | // hints contains the handshake hints for this connection. If | 
|  | // |hints_requested| is true, this field is non-null and contains the pending | 
|  | // hints to filled as the predicted handshake progresses. Otherwise, this | 
|  | // field, if non-null, contains hints configured by the caller and will | 
|  | // influence the handshake on match. | 
|  | UniquePtr<SSL_HANDSHAKE_HINTS> hints; | 
|  |  | 
|  | // ech_is_inner, on the server, indicates whether the ClientHello contained an | 
|  | // inner ECH extension. | 
|  | bool ech_is_inner : 1; | 
|  |  | 
|  | // ech_authenticated_reject, on the client, indicates whether an ECH rejection | 
|  | // handshake has been authenticated. | 
|  | bool ech_authenticated_reject : 1; | 
|  |  | 
|  | // scts_requested is true if the SCT extension is in the ClientHello. | 
|  | bool scts_requested : 1; | 
|  |  | 
|  | // handshake_finalized is true once the handshake has completed, at which | 
|  | // point accessors should use the established state. | 
|  | bool handshake_finalized : 1; | 
|  |  | 
|  | // accept_psk_mode stores whether the client's PSK mode is compatible with our | 
|  | // preferences. | 
|  | bool accept_psk_mode : 1; | 
|  |  | 
|  | // cert_request is true if a client certificate was requested. | 
|  | bool cert_request : 1; | 
|  |  | 
|  | // certificate_status_expected is true if OCSP stapling was negotiated and the | 
|  | // server is expected to send a CertificateStatus message. (This is used on | 
|  | // both the client and server sides.) | 
|  | bool certificate_status_expected : 1; | 
|  |  | 
|  | // ocsp_stapling_requested is true if a client requested OCSP stapling. | 
|  | bool ocsp_stapling_requested : 1; | 
|  |  | 
|  | // should_ack_sni is used by a server and indicates that the SNI extension | 
|  | // should be echoed in the ServerHello. | 
|  | bool should_ack_sni : 1; | 
|  |  | 
|  | // in_false_start is true if there is a pending client handshake in False | 
|  | // Start. The client may write data at this point. | 
|  | bool in_false_start : 1; | 
|  |  | 
|  | // in_early_data is true if there is a pending handshake that has progressed | 
|  | // enough to send and receive early data. | 
|  | bool in_early_data : 1; | 
|  |  | 
|  | // early_data_offered is true if the client sent the early_data extension. | 
|  | bool early_data_offered : 1; | 
|  |  | 
|  | // can_early_read is true if application data may be read at this point in the | 
|  | // handshake. | 
|  | bool can_early_read : 1; | 
|  |  | 
|  | // can_early_write is true if application data may be written at this point in | 
|  | // the handshake. | 
|  | bool can_early_write : 1; | 
|  |  | 
|  | // is_early_version is true if the protocol version configured is not | 
|  | // necessarily the final version and is just the predicted 0-RTT version. | 
|  | bool is_early_version : 1; | 
|  |  | 
|  | // next_proto_neg_seen is one of NPN was negotiated. | 
|  | bool next_proto_neg_seen : 1; | 
|  |  | 
|  | // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent | 
|  | // or received. | 
|  | bool ticket_expected : 1; | 
|  |  | 
|  | // extended_master_secret is true if the extended master secret extension is | 
|  | // negotiated in this handshake. | 
|  | bool extended_master_secret : 1; | 
|  |  | 
|  | // pending_private_key_op is true if there is a pending private key operation | 
|  | // in progress. | 
|  | bool pending_private_key_op : 1; | 
|  |  | 
|  | // handback indicates that a server should pause the handshake after | 
|  | // finishing operations that require private key material, in such a way that | 
|  | // |SSL_get_error| returns |SSL_ERROR_HANDBACK|.  It is set by | 
|  | // |SSL_apply_handoff|. | 
|  | bool handback : 1; | 
|  |  | 
|  | // hints_requested indicates the caller has requested handshake hints. Only | 
|  | // the first round-trip of the handshake will complete, after which the | 
|  | // |hints| structure can be serialized. | 
|  | bool hints_requested : 1; | 
|  |  | 
|  | // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid. | 
|  | bool cert_compression_negotiated : 1; | 
|  |  | 
|  | // apply_jdk11_workaround is true if the peer is probably a JDK 11 client | 
|  | // which implemented TLS 1.3 incorrectly. | 
|  | bool apply_jdk11_workaround : 1; | 
|  |  | 
|  | // can_release_private_key is true if the private key will no longer be used | 
|  | // in this handshake. | 
|  | bool can_release_private_key : 1; | 
|  |  | 
|  | // channel_id_negotiated is true if Channel ID should be used in this | 
|  | // handshake. | 
|  | bool channel_id_negotiated : 1; | 
|  |  | 
|  | // received_hello_verify_request is true if we received a HelloVerifyRequest | 
|  | // message from the server. | 
|  | bool received_hello_verify_request : 1; | 
|  |  | 
|  | // client_version is the value sent or received in the ClientHello version. | 
|  | uint16_t client_version = 0; | 
|  |  | 
|  | // early_data_read is the amount of early data that has been read by the | 
|  | // record layer. | 
|  | uint16_t early_data_read = 0; | 
|  |  | 
|  | // early_data_written is the amount of early data that has been written by the | 
|  | // record layer. | 
|  | uint16_t early_data_written = 0; | 
|  |  | 
|  | // signature_algorithm is the signature algorithm to be used in signing with | 
|  | // the selected credential, or zero if not applicable or not yet selected. | 
|  | uint16_t signature_algorithm = 0; | 
|  |  | 
|  | // ech_config_id is the ECH config sent by the client. | 
|  | uint8_t ech_config_id = 0; | 
|  |  | 
|  | // session_id is the session ID in the ClientHello. | 
|  | InplaceVector<uint8_t, SSL_MAX_SSL_SESSION_ID_LENGTH> session_id; | 
|  |  | 
|  | // grease_seed is the entropy for GREASE values. | 
|  | uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; | 
|  | }; | 
|  |  | 
|  | // kMaxTickets is the maximum number of tickets to send immediately after the | 
|  | // handshake. We use a one-byte ticket nonce, and there is no point in sending | 
|  | // so many tickets. | 
|  | constexpr size_t kMaxTickets = 16; | 
|  |  | 
|  | UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl); | 
|  |  | 
|  | // ssl_check_message_type checks if |msg| has type |type|. If so it returns | 
|  | // one. Otherwise, it sends an alert and returns zero. | 
|  | bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); | 
|  |  | 
|  | // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 | 
|  | // on error. It sets |out_early_return| to one if we've completed the handshake | 
|  | // early. | 
|  | int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); | 
|  |  | 
|  | // The following are implementations of |do_handshake| for the client and | 
|  | // server. | 
|  | enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // The following functions return human-readable representations of the TLS | 
|  | // handshake states for debugging. | 
|  | const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_add_key_update queues a KeyUpdate message on |ssl|. |request_type| must | 
|  | // be one of |SSL_KEY_UPDATE_REQUESTED| or |SSL_KEY_UPDATE_NOT_REQUESTED|. | 
|  | bool tls13_add_key_update(SSL *ssl, int request_type); | 
|  |  | 
|  | // tls13_post_handshake processes a post-handshake message. It returns true on | 
|  | // success and false on failure. | 
|  | bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg); | 
|  |  | 
|  | bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, | 
|  | bool allow_anonymous); | 
|  | bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | // tls13_process_finished processes |msg| as a Finished message from the | 
|  | // peer. If |use_saved_value| is true, the verify_data is compared against | 
|  | // |hs->expected_client_finished| rather than computed fresh. | 
|  | bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, | 
|  | bool use_saved_value); | 
|  |  | 
|  | bool tls13_add_certificate(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the | 
|  | // handshake. If it returns |ssl_private_key_retry|, it should be called again | 
|  | // to retry when the signing operation is completed. | 
|  | enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | bool tls13_add_finished(SSL_HANDSHAKE *hs); | 
|  | bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); | 
|  | bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl, | 
|  | CBS *body); | 
|  |  | 
|  | // ssl_setup_extension_permutation computes a ClientHello extension permutation | 
|  | // for |hs|, if applicable. It returns true on success and false on error. | 
|  | bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_setup_key_shares computes client key shares and saves them in |hs|. It | 
|  | // returns true on success and false on failure. If |override_group_id| is zero, | 
|  | // it offers the default groups, including GREASE. If it is non-zero, it offers | 
|  | // a single key share of the specified group. | 
|  | bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id); | 
|  |  | 
|  | bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, | 
|  | Array<uint8_t> *out_secret, | 
|  | uint8_t *out_alert, CBS *contents); | 
|  | bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, | 
|  | Span<const uint8_t> *out_peer_key, | 
|  | uint8_t *out_alert, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  | bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); | 
|  |  | 
|  | bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, | 
|  | uint8_t *out_alert, | 
|  | CBS *contents); | 
|  | bool ssl_ext_pre_shared_key_parse_clienthello( | 
|  | SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, | 
|  | uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, | 
|  | const SSL_CLIENT_HELLO *client_hello, CBS *contents); | 
|  | bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); | 
|  |  | 
|  | // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and | 
|  | // returns whether it's valid. | 
|  | bool ssl_is_sct_list_valid(const CBS *contents); | 
|  |  | 
|  | // ssl_write_client_hello_without_extensions writes a ClientHello to |out|, | 
|  | // up to the extensions field. |type| determines the type of ClientHello to | 
|  | // write. If |omit_session_id| is true, the session ID is empty. | 
|  | bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs, | 
|  | CBB *cbb, | 
|  | ssl_client_hello_type_t type, | 
|  | bool empty_session_id); | 
|  |  | 
|  | // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing | 
|  | // flight. It returns true on success and false on error. | 
|  | bool ssl_add_client_hello(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | struct ParsedServerHello { | 
|  | CBS raw; | 
|  | uint16_t legacy_version = 0; | 
|  | CBS random; | 
|  | CBS session_id; | 
|  | uint16_t cipher_suite = 0; | 
|  | uint8_t compression_method = 0; | 
|  | CBS extensions; | 
|  | }; | 
|  |  | 
|  | // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes | 
|  | // the result to |*out| and returns true. Otherwise, it returns false and sets | 
|  | // |*out_alert| to an alert to send to the peer. | 
|  | bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert, | 
|  | const SSLMessage &msg); | 
|  |  | 
|  | enum ssl_cert_verify_context_t { | 
|  | ssl_cert_verify_server, | 
|  | ssl_cert_verify_client, | 
|  | ssl_cert_verify_channel_id, | 
|  | }; | 
|  |  | 
|  | // tls13_get_cert_verify_signature_input generates the message to be signed for | 
|  | // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the | 
|  | // type of signature. It sets |*out| to a newly allocated buffer containing the | 
|  | // result. This function returns true on success and false on failure. | 
|  | bool tls13_get_cert_verify_signature_input( | 
|  | SSL_HANDSHAKE *hs, Array<uint8_t> *out, | 
|  | enum ssl_cert_verify_context_t cert_verify_context); | 
|  |  | 
|  | // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list. | 
|  | bool ssl_is_valid_alpn_list(Span<const uint8_t> in); | 
|  |  | 
|  | // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server | 
|  | // selection for |hs->ssl|'s client preferences. | 
|  | bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, | 
|  | Span<const uint8_t> protocol); | 
|  |  | 
|  | // ssl_alpn_list_contains_protocol returns whether |list|, a serialized ALPN | 
|  | // protocol list, contains |protocol|. | 
|  | bool ssl_alpn_list_contains_protocol(Span<const uint8_t> list, | 
|  | Span<const uint8_t> protocol); | 
|  |  | 
|  | // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns | 
|  | // true on successful negotiation or if nothing was negotiated. It returns false | 
|  | // and sets |*out_alert| to an alert on error. | 
|  | bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  |  | 
|  | // ssl_get_local_application_settings looks up the configured ALPS value for | 
|  | // |protocol|. If found, it sets |*out_settings| to the value and returns true. | 
|  | // Otherwise, it returns false. | 
|  | bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs, | 
|  | Span<const uint8_t> *out_settings, | 
|  | Span<const uint8_t> protocol); | 
|  |  | 
|  | // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns | 
|  | // true on successful negotiation or if nothing was negotiated. It returns false | 
|  | // and sets |*out_alert| to an alert on error. | 
|  | bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  |  | 
|  | struct SSLExtension { | 
|  | SSLExtension(uint16_t type_arg, bool allowed_arg = true) | 
|  | : type(type_arg), allowed(allowed_arg), present(false) { | 
|  | CBS_init(&data, nullptr, 0); | 
|  | } | 
|  |  | 
|  | uint16_t type; | 
|  | bool allowed; | 
|  | bool present; | 
|  | CBS data; | 
|  | }; | 
|  |  | 
|  | // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances | 
|  | // it. It writes the parsed extensions to pointers in |extensions|. On success, | 
|  | // it fills in the |present| and |data| fields and returns true. Otherwise, it | 
|  | // sets |*out_alert| to an alert to send and returns false. Unknown extensions | 
|  | // are rejected unless |ignore_unknown| is true. | 
|  | bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, | 
|  | std::initializer_list<SSLExtension *> extensions, | 
|  | bool ignore_unknown); | 
|  |  | 
|  | // ssl_verify_peer_cert verifies the peer certificate for |hs|. | 
|  | enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); | 
|  | // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a | 
|  | // session. | 
|  | enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs, | 
|  | bool send_alert); | 
|  |  | 
|  | enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_send_finished adds a Finished message to the current flight of messages. | 
|  | // It returns true on success and false on error. | 
|  | bool ssl_send_finished(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current | 
|  | // flight of messages. It returns true on success and false on error. | 
|  | bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current | 
|  | // handshake. Note, in TLS 1.2 resumptions, this session is immutable. | 
|  | const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_done_writing_client_hello is called after the last ClientHello is written | 
|  | // by |hs|. It releases some memory that is no longer needed. | 
|  | void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs); | 
|  |  | 
|  |  | 
|  | // SSLKEYLOGFILE functions. | 
|  |  | 
|  | // ssl_log_secret logs |secret| with label |label|, if logging is enabled for | 
|  | // |ssl|. It returns true on success and false on failure. | 
|  | bool ssl_log_secret(const SSL *ssl, const char *label, | 
|  | Span<const uint8_t> secret); | 
|  |  | 
|  |  | 
|  | // ClientHello functions. | 
|  |  | 
|  | // ssl_client_hello_init parses |body| as a ClientHello message, excluding the | 
|  | // message header, and writes the result to |*out|. It returns true on success | 
|  | // and false on error. This function is exported for testing. | 
|  | OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out, | 
|  | Span<const uint8_t> body); | 
|  |  | 
|  | bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs, | 
|  | SSL_CLIENT_HELLO *out); | 
|  |  | 
|  | bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, | 
|  | CBS *out, uint16_t extension_type); | 
|  |  | 
|  | bool ssl_client_cipher_list_contains_cipher( | 
|  | const SSL_CLIENT_HELLO *client_hello, uint16_t id); | 
|  |  | 
|  |  | 
|  | // GREASE. | 
|  |  | 
|  | // ssl_get_grease_value returns a GREASE value for |hs|. For a given | 
|  | // connection, the values for each index will be deterministic. This allows the | 
|  | // same ClientHello be sent twice for a HelloRetryRequest or the same group be | 
|  | // advertised in both supported_groups and key_shares. | 
|  | uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs, | 
|  | enum ssl_grease_index_t index); | 
|  |  | 
|  |  | 
|  | // Signature algorithms. | 
|  |  | 
|  | // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature | 
|  | // algorithms and saves them on |hs|. It returns true on success and false on | 
|  | // error. | 
|  | bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); | 
|  |  | 
|  | // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm | 
|  | // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on | 
|  | // success and false if |pkey| may not be used at those versions. | 
|  | bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); | 
|  |  | 
|  | // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use | 
|  | // with |cred| based on the peer's preferences and the algorithms supported. It | 
|  | // returns true on success and false on error. | 
|  | bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, | 
|  | const SSL_CREDENTIAL *cred, uint16_t *out); | 
|  |  | 
|  | // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the | 
|  | // peer signature to |out|. It returns true on success and false on error. | 
|  | bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out); | 
|  |  | 
|  | // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer | 
|  | // signature from |pkey|. It returns true on success and false on error, setting | 
|  | // |*out_alert| to an alert to send. | 
|  | bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | uint16_t sigalg, EVP_PKEY *pkey); | 
|  |  | 
|  |  | 
|  | // Underdocumented functions. | 
|  | // | 
|  | // Functions below here haven't been touched up and may be underdocumented. | 
|  |  | 
|  | #define TLSEXT_CHANNEL_ID_SIZE 128 | 
|  |  | 
|  | // From RFC 4492, used in encoding the curve type in ECParameters | 
|  | #define NAMED_CURVE_TYPE 3 | 
|  |  | 
|  | struct CERT { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | explicit CERT(const SSL_X509_METHOD *x509_method); | 
|  | ~CERT(); | 
|  |  | 
|  | bool is_valid() const { return legacy_credential != nullptr; } | 
|  |  | 
|  | // credentials is the list of credentials to select between. Elements of this | 
|  | // array immutable. | 
|  | Vector<UniquePtr<SSL_CREDENTIAL>> credentials; | 
|  |  | 
|  | // legacy_credential is the credential configured by the legacy | 
|  | // non-credential-based APIs. If IsComplete() returns true, it is appended to | 
|  | // the list of credentials. | 
|  | UniquePtr<SSL_CREDENTIAL> legacy_credential; | 
|  |  | 
|  | // x509_method contains pointers to functions that might deal with |X509| | 
|  | // compatibility, or might be a no-op, depending on the application. | 
|  | const SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // x509_chain may contain a parsed copy of |chain[1..]| from the legacy | 
|  | // credential. This is only used as a cache in order to implement “get0” | 
|  | // functions that return a non-owning pointer to the certificate chain. | 
|  | STACK_OF(X509) *x509_chain = nullptr; | 
|  |  | 
|  | // x509_leaf may contain a parsed copy of the first element of |chain| from | 
|  | // the legacy credential. This is only used as a cache in order to implement | 
|  | // “get0” functions that return a non-owning pointer to the certificate chain. | 
|  | X509 *x509_leaf = nullptr; | 
|  |  | 
|  | // x509_stash contains the last |X509| object append to the legacy | 
|  | // credential's chain. This is a workaround for some third-party code that | 
|  | // continue to use an |X509| object even after passing ownership with an | 
|  | // “add0” function. | 
|  | X509 *x509_stash = nullptr; | 
|  |  | 
|  | // Certificate setup callback: if set is called whenever a | 
|  | // certificate may be required (client or server). the callback | 
|  | // can then examine any appropriate parameters and setup any | 
|  | // certificates required. This allows advanced applications | 
|  | // to select certificates on the fly: for example based on | 
|  | // supported signature algorithms or curves. | 
|  | int (*cert_cb)(SSL *ssl, void *arg) = nullptr; | 
|  | void *cert_cb_arg = nullptr; | 
|  |  | 
|  | // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX | 
|  | // store is used instead. | 
|  | X509_STORE *verify_store = nullptr; | 
|  |  | 
|  | // sid_ctx partitions the session space within a shared session cache or | 
|  | // ticket key. Only sessions with a matching value will be accepted. | 
|  | InplaceVector<uint8_t, SSL_MAX_SID_CTX_LENGTH> sid_ctx; | 
|  | }; | 
|  |  | 
|  | // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. | 
|  | struct SSL_PROTOCOL_METHOD { | 
|  | bool is_dtls; | 
|  | bool (*ssl_new)(SSL *ssl); | 
|  | void (*ssl_free)(SSL *ssl); | 
|  | // get_message sets |*out| to the current handshake message and returns true | 
|  | // if one has been received. It returns false if more input is needed. | 
|  | bool (*get_message)(const SSL *ssl, SSLMessage *out); | 
|  | // next_message is called to release the current handshake message. | 
|  | void (*next_message)(SSL *ssl); | 
|  | // has_unprocessed_handshake_data returns whether there is buffered | 
|  | // handshake data that has not been consumed by |get_message|. | 
|  | bool (*has_unprocessed_handshake_data)(const SSL *ssl); | 
|  | // Use the |ssl_open_handshake| wrapper. | 
|  | ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | // Use the |ssl_open_change_cipher_spec| wrapper. | 
|  | ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | // Use the |ssl_open_app_data| wrapper. | 
|  | ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | // write_app_data encrypts and writes |in| as application data. On success, it | 
|  | // returns one and sets |*out_bytes_written| to the number of bytes of |in| | 
|  | // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to | 
|  | // whether the operation failed because the caller needs to drive the | 
|  | // handshake. | 
|  | int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, | 
|  | size_t *out_bytes_written, Span<const uint8_t> in); | 
|  | int (*dispatch_alert)(SSL *ssl); | 
|  | // init_message begins a new handshake message of type |type|. |cbb| is the | 
|  | // root CBB to be passed into |finish_message|. |*body| is set to a child CBB | 
|  | // the caller should write to. It returns true on success and false on error. | 
|  | bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | // finish_message finishes a handshake message. It sets |*out_msg| to the | 
|  | // serialized message. It returns true on success and false on error. | 
|  | bool (*finish_message)(const SSL *ssl, CBB *cbb, | 
|  | bssl::Array<uint8_t> *out_msg); | 
|  | // add_message adds a handshake message to the pending flight. It returns | 
|  | // true on success and false on error. | 
|  | bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg); | 
|  | // add_change_cipher_spec adds a ChangeCipherSpec record to the pending | 
|  | // flight. It returns true on success and false on error. | 
|  | bool (*add_change_cipher_spec)(SSL *ssl); | 
|  | // finish_flight marks the pending flight as finished and ready to send. | 
|  | // |flush| must be called to write it. | 
|  | void (*finish_flight)(SSL *ssl); | 
|  | // schedule_ack schedules a DTLS 1.3 ACK to be sent, without an ACK delay. | 
|  | // |flush| must be called to write it. | 
|  | void (*schedule_ack)(SSL *ssl); | 
|  | // flush writes any scheduled data to the transport. It returns one on success | 
|  | // and <= 0 on error. | 
|  | int (*flush)(SSL *ssl); | 
|  | // on_handshake_complete is called when the handshake is complete. | 
|  | void (*on_handshake_complete)(SSL *ssl); | 
|  | // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and | 
|  | // |level|. In QUIC, |aead_ctx| is a placeholder object. In TLS 1.3, | 
|  | // |traffic_secret| is the original traffic secret. This function returns true | 
|  | // on success and false on error. | 
|  | // | 
|  | // TODO(crbug.com/371998381): Take the traffic secrets as input and let the | 
|  | // function create the SSLAEADContext. | 
|  | bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level, | 
|  | UniquePtr<SSLAEADContext> aead_ctx, | 
|  | Span<const uint8_t> traffic_secret); | 
|  | // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and | 
|  | // |level|. In QUIC, |aead_ctx| is a placeholder object In TLS 1.3, | 
|  | // |traffic_secret| is the original traffic secret. This function returns true | 
|  | // on success and false on error. | 
|  | // | 
|  | // TODO(crbug.com/371998381): Take the traffic secrets as input and let the | 
|  | // function create the SSLAEADContext. | 
|  | bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level, | 
|  | UniquePtr<SSLAEADContext> aead_ctx, | 
|  | Span<const uint8_t> traffic_secret); | 
|  | }; | 
|  |  | 
|  | // The following wrappers call |open_*| but handle |read_shutdown| correctly. | 
|  |  | 
|  | // ssl_open_handshake processes a record from |in| for reading a handshake | 
|  | // message. | 
|  | ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // ssl_open_change_cipher_spec processes a record from |in| for reading a | 
|  | // ChangeCipherSpec. | 
|  | ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | // ssl_open_app_data processes a record from |in| for reading application data. | 
|  | // On success, it returns |ssl_open_record_success| and sets |*out| to the | 
|  | // input. If it encounters a post-handshake message, it returns | 
|  | // |ssl_open_record_discard|. The caller should then retry, after processing any | 
|  | // messages received with |get_message|. | 
|  | ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | struct SSL_X509_METHOD { | 
|  | // check_CA_list returns one if |names| is a good list of X.509 distinguished | 
|  | // names and zero otherwise. This is used to ensure that we can reject | 
|  | // unparsable values at handshake time when using crypto/x509. | 
|  | bool (*check_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); | 
|  |  | 
|  | // cert_clear frees and NULLs all X509 certificate-related state. | 
|  | void (*cert_clear)(CERT *cert); | 
|  | // cert_free frees all X509-related state. | 
|  | void (*cert_free)(CERT *cert); | 
|  | // cert_flush_cached_chain drops any cached |X509|-based certificate chain | 
|  | // from |cert|. | 
|  | // cert_dup duplicates any needed fields from |cert| to |new_cert|. | 
|  | void (*cert_dup)(CERT *new_cert, const CERT *cert); | 
|  | void (*cert_flush_cached_chain)(CERT *cert); | 
|  | // cert_flush_cached_chain drops any cached |X509|-based leaf certificate | 
|  | // from |cert|. | 
|  | void (*cert_flush_cached_leaf)(CERT *cert); | 
|  |  | 
|  | // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| | 
|  | // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns | 
|  | // true on success or false on error. | 
|  | bool (*session_cache_objects)(SSL_SESSION *session); | 
|  | // session_dup duplicates any needed fields from |session| to |new_session|. | 
|  | // It returns true on success or false on error. | 
|  | bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); | 
|  | // session_clear frees any X509-related state from |session|. | 
|  | void (*session_clear)(SSL_SESSION *session); | 
|  | // session_verify_cert_chain verifies the certificate chain in |session|, | 
|  | // sets |session->verify_result| and returns true on success or false on | 
|  | // error. | 
|  | bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl, | 
|  | uint8_t *out_alert); | 
|  |  | 
|  | // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. | 
|  | void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); | 
|  | // ssl_new does any necessary initialisation of |hs|. It returns true on | 
|  | // success or false on error. | 
|  | bool (*ssl_new)(SSL_HANDSHAKE *hs); | 
|  | // ssl_free frees anything created by |ssl_new|. | 
|  | void (*ssl_config_free)(SSL_CONFIG *cfg); | 
|  | // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. | 
|  | void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg); | 
|  | // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if | 
|  | // necessary. On success, it updates |ssl|'s certificate configuration as | 
|  | // needed and returns true. Otherwise, it returns false. | 
|  | bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs); | 
|  | // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on | 
|  | // success or false on error. | 
|  | bool (*ssl_ctx_new)(SSL_CTX *ctx); | 
|  | // ssl_ctx_free frees anything created by |ssl_ctx_new|. | 
|  | void (*ssl_ctx_free)(SSL_CTX *ctx); | 
|  | // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. | 
|  | void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); | 
|  | }; | 
|  |  | 
|  | // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using | 
|  | // crypto/x509. | 
|  | extern const SSL_X509_METHOD ssl_crypto_x509_method; | 
|  |  | 
|  | // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid | 
|  | // crypto/x509. | 
|  | extern const SSL_X509_METHOD ssl_noop_x509_method; | 
|  |  | 
|  | struct TicketKey { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0}; | 
|  | uint8_t hmac_key[16] = {0}; | 
|  | uint8_t aes_key[16] = {0}; | 
|  | // next_rotation_tv_sec is the time (in seconds from the epoch) when the | 
|  | // current key should be superseded by a new key, or the time when a previous | 
|  | // key should be dropped. If zero, then the key should not be automatically | 
|  | // rotated. | 
|  | uint64_t next_rotation_tv_sec = 0; | 
|  | }; | 
|  |  | 
|  | struct CertCompressionAlg { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | ssl_cert_compression_func_t compress = nullptr; | 
|  | ssl_cert_decompression_func_t decompress = nullptr; | 
|  | uint16_t alg_id = 0; | 
|  | }; | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | DEFINE_LHASH_OF(SSL_SESSION) | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | // An ssl_shutdown_t describes the shutdown state of one end of the connection, | 
|  | // whether it is alive or has been shutdown via close_notify or fatal alert. | 
|  | enum ssl_shutdown_t { | 
|  | ssl_shutdown_none = 0, | 
|  | ssl_shutdown_close_notify = 1, | 
|  | ssl_shutdown_error = 2, | 
|  | }; | 
|  |  | 
|  | enum ssl_ech_status_t { | 
|  | // ssl_ech_none indicates ECH was not offered, or we have not gotten far | 
|  | // enough in the handshake to determine the status. | 
|  | ssl_ech_none, | 
|  | // ssl_ech_accepted indicates the server accepted ECH. | 
|  | ssl_ech_accepted, | 
|  | // ssl_ech_rejected indicates the server was offered ECH but rejected it. | 
|  | ssl_ech_rejected, | 
|  | }; | 
|  |  | 
|  | struct SSL3_STATE { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSL3_STATE(); | 
|  | ~SSL3_STATE(); | 
|  |  | 
|  | uint64_t read_sequence = 0; | 
|  | uint64_t write_sequence = 0; | 
|  |  | 
|  | uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; | 
|  | uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; | 
|  |  | 
|  | // read_buffer holds data from the transport to be processed. | 
|  | SSLBuffer read_buffer; | 
|  | // write_buffer holds data to be written to the transport. | 
|  | SSLBuffer write_buffer; | 
|  |  | 
|  | // pending_app_data is the unconsumed application data. It points into | 
|  | // |read_buffer|. | 
|  | Span<uint8_t> pending_app_data; | 
|  |  | 
|  | // unreported_bytes_written is the number of bytes successfully written to the | 
|  | // transport, but not yet reported to the caller. The next |SSL_write| will | 
|  | // skip this many bytes from the input. This is used if | 
|  | // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only | 
|  | // reports bytes written when the full caller input is written. | 
|  | size_t unreported_bytes_written = 0; | 
|  |  | 
|  | // pending_write, if |has_pending_write| is true, is the caller-supplied data | 
|  | // corresponding to the current pending write. This is used to check the | 
|  | // caller retried with a compatible buffer. | 
|  | Span<const uint8_t> pending_write; | 
|  |  | 
|  | // pending_write_type, if |has_pending_write| is true, is the record type | 
|  | // for the current pending write. | 
|  | // | 
|  | // TODO(davidben): Remove this when alerts are moved out of this write path. | 
|  | uint8_t pending_write_type = 0; | 
|  |  | 
|  | // read_shutdown is the shutdown state for the read half of the connection. | 
|  | enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; | 
|  |  | 
|  | // write_shutdown is the shutdown state for the write half of the connection. | 
|  | enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; | 
|  |  | 
|  | // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for | 
|  | // the receive half of the connection. | 
|  | UniquePtr<ERR_SAVE_STATE> read_error; | 
|  |  | 
|  | int total_renegotiations = 0; | 
|  |  | 
|  | // This holds a variable that indicates what we were doing when a 0 or -1 is | 
|  | // returned.  This is needed for non-blocking IO so we know what request | 
|  | // needs re-doing when in SSL_accept or SSL_connect | 
|  | int rwstate = SSL_ERROR_NONE; | 
|  |  | 
|  | enum ssl_encryption_level_t quic_read_level = ssl_encryption_initial; | 
|  | enum ssl_encryption_level_t quic_write_level = ssl_encryption_initial; | 
|  |  | 
|  | // version is the protocol version, or zero if the version has not yet been | 
|  | // set. In clients offering 0-RTT, this version will initially be set to the | 
|  | // early version, then switched to the final version. To distinguish these | 
|  | // cases, use |ssl_has_final_version|. | 
|  | uint16_t version = 0; | 
|  |  | 
|  | // early_data_skipped is the amount of early data that has been skipped by the | 
|  | // record layer. | 
|  | uint16_t early_data_skipped = 0; | 
|  |  | 
|  | // empty_record_count is the number of consecutive empty records received. | 
|  | uint8_t empty_record_count = 0; | 
|  |  | 
|  | // warning_alert_count is the number of consecutive warning alerts | 
|  | // received. | 
|  | uint8_t warning_alert_count = 0; | 
|  |  | 
|  | // key_update_count is the number of consecutive KeyUpdates received. | 
|  | uint8_t key_update_count = 0; | 
|  |  | 
|  | // ech_status indicates whether ECH was accepted by the server. | 
|  | ssl_ech_status_t ech_status = ssl_ech_none; | 
|  |  | 
|  | // skip_early_data instructs the record layer to skip unexpected early data | 
|  | // messages when 0RTT is rejected. | 
|  | bool skip_early_data : 1; | 
|  |  | 
|  | // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled | 
|  | // and future messages should use the record layer. | 
|  | bool v2_hello_done : 1; | 
|  |  | 
|  | // is_v2_hello is true if the current handshake message was derived from a | 
|  | // V2ClientHello rather than received from the peer directly. | 
|  | bool is_v2_hello : 1; | 
|  |  | 
|  | // has_message is true if the current handshake message has been returned | 
|  | // at least once by |get_message| and false otherwise. | 
|  | bool has_message : 1; | 
|  |  | 
|  | // initial_handshake_complete is true if the initial handshake has | 
|  | // completed. | 
|  | bool initial_handshake_complete : 1; | 
|  |  | 
|  | // session_reused indicates whether a session was resumed. | 
|  | bool session_reused : 1; | 
|  |  | 
|  | bool send_connection_binding : 1; | 
|  |  | 
|  | // channel_id_valid is true if, on the server, the client has negotiated a | 
|  | // Channel ID and the |channel_id| field is filled in. | 
|  | bool channel_id_valid : 1; | 
|  |  | 
|  | // key_update_pending is true if we are in the process of sending a KeyUpdate | 
|  | // message. As a DoS mitigation (and a requirement in DTLS), we never send | 
|  | // more than one KeyUpdate at once. In DTLS, this tracks whether there is an | 
|  | // unACKed KeyUpdate. | 
|  | bool key_update_pending : 1; | 
|  |  | 
|  | // early_data_accepted is true if early data was accepted by the server. | 
|  | bool early_data_accepted : 1; | 
|  |  | 
|  | // alert_dispatch is true there is an alert in |send_alert| to be sent. | 
|  | bool alert_dispatch : 1; | 
|  |  | 
|  | // renegotiate_pending is whether the read half of the channel is blocked on a | 
|  | // HelloRequest. | 
|  | bool renegotiate_pending : 1; | 
|  |  | 
|  | // used_hello_retry_request is whether the handshake used a TLS 1.3 | 
|  | // HelloRetryRequest message. | 
|  | bool used_hello_retry_request : 1; | 
|  |  | 
|  | // was_key_usage_invalid is whether the handshake succeeded despite using a | 
|  | // TLS mode which was incompatible with the leaf certificate's keyUsage | 
|  | // extension. | 
|  | bool was_key_usage_invalid : 1; | 
|  |  | 
|  | // hs_buf is the buffer of handshake data to process. | 
|  | UniquePtr<BUF_MEM> hs_buf; | 
|  |  | 
|  | // pending_hs_data contains the pending handshake data that has not yet | 
|  | // been encrypted to |pending_flight|. This allows packing the handshake into | 
|  | // fewer records. | 
|  | UniquePtr<BUF_MEM> pending_hs_data; | 
|  |  | 
|  | // pending_flight is the pending outgoing flight. This is used to flush each | 
|  | // handshake flight in a single write. |write_buffer| must be written out | 
|  | // before this data. | 
|  | UniquePtr<BUF_MEM> pending_flight; | 
|  |  | 
|  | // pending_flight_offset is the number of bytes of |pending_flight| which have | 
|  | // been successfully written. | 
|  | uint32_t pending_flight_offset = 0; | 
|  |  | 
|  | // ticket_age_skew is the difference, in seconds, between the client-sent | 
|  | // ticket age and the server-computed value in TLS 1.3 server connections | 
|  | // which resumed a session. | 
|  | int32_t ticket_age_skew = 0; | 
|  |  | 
|  | // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected. | 
|  | enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown; | 
|  |  | 
|  | // aead_read_ctx is the current read cipher state. | 
|  | UniquePtr<SSLAEADContext> aead_read_ctx; | 
|  |  | 
|  | // aead_write_ctx is the current write cipher state. | 
|  | UniquePtr<SSLAEADContext> aead_write_ctx; | 
|  |  | 
|  | // hs is the handshake state for the current handshake or NULL if there isn't | 
|  | // one. | 
|  | UniquePtr<SSL_HANDSHAKE> hs; | 
|  |  | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> write_traffic_secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> read_traffic_secret; | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> exporter_secret; | 
|  |  | 
|  | // Connection binding to prevent renegotiation attacks | 
|  | InplaceVector<uint8_t, 12> previous_client_finished; | 
|  | InplaceVector<uint8_t, 12> previous_server_finished; | 
|  |  | 
|  | uint8_t send_alert[2] = {0}; | 
|  |  | 
|  | // established_session is the session established by the connection. This | 
|  | // session is only filled upon the completion of the handshake and is | 
|  | // immutable. | 
|  | UniquePtr<SSL_SESSION> established_session; | 
|  |  | 
|  | // Next protocol negotiation. For the client, this is the protocol that we | 
|  | // sent in NextProtocol and is set when handling ServerHello extensions. | 
|  | // | 
|  | // For a server, this is the client's selected_protocol from NextProtocol and | 
|  | // is set when handling the NextProtocol message, before the Finished | 
|  | // message. | 
|  | Array<uint8_t> next_proto_negotiated; | 
|  |  | 
|  | // ALPN information | 
|  | // (we are in the process of transitioning from NPN to ALPN.) | 
|  |  | 
|  | // In a server these point to the selected ALPN protocol after the | 
|  | // ClientHello has been processed. In a client these contain the protocol | 
|  | // that the server selected once the ServerHello has been processed. | 
|  | Array<uint8_t> alpn_selected; | 
|  |  | 
|  | // hostname, on the server, is the value of the SNI extension. | 
|  | UniquePtr<char> hostname; | 
|  |  | 
|  | // For a server: | 
|  | //     If |channel_id_valid| is true, then this contains the | 
|  | //     verified Channel ID from the client: a P256 point, (x,y), where | 
|  | //     each are big-endian values. | 
|  | uint8_t channel_id[64] = {0}; | 
|  |  | 
|  | // Contains the QUIC transport params received by the peer. | 
|  | Array<uint8_t> peer_quic_transport_params; | 
|  |  | 
|  | // srtp_profile is the selected SRTP protection profile for | 
|  | // DTLS-SRTP. | 
|  | const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr; | 
|  | }; | 
|  |  | 
|  | // lengths of messages | 
|  | #define DTLS1_RT_MAX_HEADER_LENGTH 13 | 
|  |  | 
|  | // DTLS_PLAINTEXT_RECORD_HEADER_LENGTH is the length of the DTLS record header | 
|  | // for plaintext records (in DTLS 1.3) or DTLS versions <= 1.2. | 
|  | #define DTLS_PLAINTEXT_RECORD_HEADER_LENGTH 13 | 
|  |  | 
|  | // DTLS1_3_RECORD_HEADER_LENGTH is the length of the DTLS 1.3 record header | 
|  | // sent by BoringSSL for encrypted records. Note that received encrypted DTLS | 
|  | // 1.3 records might have a different length header. | 
|  | #define DTLS1_3_RECORD_HEADER_WRITE_LENGTH 5 | 
|  |  | 
|  | static_assert(DTLS1_RT_MAX_HEADER_LENGTH >= DTLS_PLAINTEXT_RECORD_HEADER_LENGTH, | 
|  | "DTLS1_RT_MAX_HEADER_LENGTH must not be smaller than defined " | 
|  | "record header lengths"); | 
|  | static_assert(DTLS1_RT_MAX_HEADER_LENGTH >= DTLS1_3_RECORD_HEADER_WRITE_LENGTH, | 
|  | "DTLS1_RT_MAX_HEADER_LENGTH must not be smaller than defined " | 
|  | "record header lengths"); | 
|  |  | 
|  | #define DTLS1_HM_HEADER_LENGTH 12 | 
|  |  | 
|  | // A DTLSMessageBitmap maintains a list of bits which may be marked to indicate | 
|  | // a portion of a message was received or ACKed. | 
|  | class DTLSMessageBitmap { | 
|  | public: | 
|  | // A Range represents a range of bits from |start|, inclusive, to |end|, | 
|  | // exclusive. | 
|  | struct Range { | 
|  | size_t start = 0; | 
|  | size_t end = 0; | 
|  |  | 
|  | bool empty() const { return start == end; } | 
|  | size_t size() const { return end - start; } | 
|  | bool operator==(const Range &r) const { | 
|  | return start == r.start && end == r.end; | 
|  | } | 
|  | bool operator!=(const Range &r) const { return !(*this == r); } | 
|  | }; | 
|  |  | 
|  | // Init initializes the structure with |num_bits| unmarked bits, from zero | 
|  | // to |num_bits - 1|. | 
|  | bool Init(size_t num_bits); | 
|  |  | 
|  | // MarkRange marks the bits from |start|, inclusive, to |end|, exclusive. | 
|  | void MarkRange(size_t start, size_t end); | 
|  |  | 
|  | // NextUnmarkedRange returns the next range of unmarked bits, starting from | 
|  | // |start|, inclusive. If all bits after |start| are marked, it returns an | 
|  | // empty range. | 
|  | Range NextUnmarkedRange(size_t start) const; | 
|  |  | 
|  | // IsComplete returns whether every bit in the bitmask has been marked. | 
|  | bool IsComplete() const { return bytes_.empty(); } | 
|  |  | 
|  | private: | 
|  | // bytes_ contains the unmarked bits. We maintain an invariant: if |bytes_| is | 
|  | // not empty, some bit is unset. | 
|  | Array<uint8_t> bytes_; | 
|  | // first_unmarked_byte_ is the index of first byte in |bytes_| that is not | 
|  | // 0xff. This is maintained to amortize checking if the message is complete. | 
|  | size_t first_unmarked_byte_ = 0; | 
|  | }; | 
|  |  | 
|  | struct hm_header_st { | 
|  | uint8_t type; | 
|  | uint32_t msg_len; | 
|  | uint16_t seq; | 
|  | uint32_t frag_off; | 
|  | uint32_t frag_len; | 
|  | }; | 
|  |  | 
|  | // An DTLSIncomingMessage is an incoming DTLS message, possibly not yet | 
|  | // assembled. | 
|  | struct DTLSIncomingMessage { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | Span<uint8_t> msg() { return MakeSpan(data).subspan(DTLS1_HM_HEADER_LENGTH); } | 
|  | Span<const uint8_t> msg() const { | 
|  | return MakeSpan(data).subspan(DTLS1_HM_HEADER_LENGTH); | 
|  | } | 
|  | size_t msg_len() const { return msg().size(); } | 
|  |  | 
|  | // type is the type of the message. | 
|  | uint8_t type = 0; | 
|  | // seq is the sequence number of this message. | 
|  | uint16_t seq = 0; | 
|  | // data contains the message, including the message header of length | 
|  | // |DTLS1_HM_HEADER_LENGTH|. | 
|  | Array<uint8_t> data; | 
|  | // reassembly tracks which parts of the message have been received. | 
|  | DTLSMessageBitmap reassembly; | 
|  | }; | 
|  |  | 
|  | struct DTLSOutgoingMessage { | 
|  | size_t msg_len() const { | 
|  | assert(!is_ccs); | 
|  | assert(data.size() >= DTLS1_HM_HEADER_LENGTH); | 
|  | return data.size() - DTLS1_HM_HEADER_LENGTH; | 
|  | } | 
|  |  | 
|  | bool IsFullyAcked() const { | 
|  | // ACKs only exist in DTLS 1.3, which does not send ChangeCipherSpec. | 
|  | return !is_ccs && acked.IsComplete(); | 
|  | } | 
|  |  | 
|  | Array<uint8_t> data; | 
|  | uint16_t epoch = 0; | 
|  | bool is_ccs = false; | 
|  | // acked tracks which bits of the message have been ACKed by the peer. If | 
|  | // |msg_len| is zero, it tracks one bit for whether the header has been | 
|  | // received. | 
|  | DTLSMessageBitmap acked; | 
|  | }; | 
|  |  | 
|  | struct OPENSSL_timeval { | 
|  | uint64_t tv_sec; | 
|  | uint32_t tv_usec; | 
|  | }; | 
|  |  | 
|  | struct DTLSTimer { | 
|  | public: | 
|  | static constexpr uint64_t kNever = UINT64_MAX; | 
|  |  | 
|  | // StartMicroseconds schedules the timer to expire the specified number of | 
|  | // microseconds from |now|. | 
|  | void StartMicroseconds(OPENSSL_timeval now, uint64_t microseconds); | 
|  |  | 
|  | // Stop disables the timer. | 
|  | void Stop(); | 
|  |  | 
|  | // IsExpired returns true if the timer was set and is expired at time |now|. | 
|  | bool IsExpired(OPENSSL_timeval now) const; | 
|  |  | 
|  | // IsSet returns true if the timer is scheduled or expired, and false if it is | 
|  | // stopped. | 
|  | bool IsSet() const; | 
|  |  | 
|  | // MicrosecondsRemaining returns the time remaining, in microseconds, at | 
|  | // |now|, or |kNever| if the timer is unset. | 
|  | uint64_t MicrosecondsRemaining(OPENSSL_timeval now) const; | 
|  |  | 
|  | private: | 
|  | // expire_time_ is the time when the timer expires, or zero if the timer is | 
|  | // unset. | 
|  | // | 
|  | // TODO(crbug.com/366284846): This is an extremely inconvenient time | 
|  | // representation. Switch libssl to something like a 64-bit count of | 
|  | // microseconds. While it's decidedly past 1970 now, zero is a less obviously | 
|  | // sound distinguished value for the monotonic clock, so maybe we should use a | 
|  | // different distinguished time, like |INT64_MAX| in the microseconds | 
|  | // representation. | 
|  | OPENSSL_timeval expire_time_ = {0, 0}; | 
|  | }; | 
|  |  | 
|  | // DTLS_MAX_EXTRA_WRITE_EPOCHS is the maximum number of additional write epochs | 
|  | // that DTLS may need to retain. | 
|  | // | 
|  | // The maximum is, as a DTLS 1.3 server, immediately after sending Finished. At | 
|  | // this point, the current epoch is the application write keys (epoch 3), but we | 
|  | // may have ServerHello (epoch 0) and EncryptedExtensions (epoch 1) to | 
|  | // retransmit. KeyUpdate does not increase this count. If the server were to | 
|  | // initiate KeyUpdate from this state, it would not apply the new epoch until | 
|  | // the client's ACKs have caught up. At that point, epochs 0 and 1 can be | 
|  | // discarded. | 
|  | #define DTLS_MAX_EXTRA_WRITE_EPOCHS 2 | 
|  |  | 
|  | // DTLS_MAX_ACK_BUFFER is the maximum number of records worth of data we'll keep | 
|  | // track of with DTLS 1.3 ACKs. When we exceed this value, information about | 
|  | // stale records will be dropped. This will not break the connection but may | 
|  | // cause ACKs to perform worse and retransmit unnecessary information. | 
|  | #define DTLS_MAX_ACK_BUFFER 32 | 
|  |  | 
|  | // A DTLSSentRecord records information about a record we sent. Each record | 
|  | // covers all bytes from |first_msg_start| (inclusive) of |first_msg| to | 
|  | // |last_msg_end| (exclusive) of |last_msg|. Messages are referenced by index | 
|  | // into |outgoing_messages|. |last_msg_end| may be |outgoing_messages.size()| if | 
|  | // |last_msg_end| is zero. | 
|  | // | 
|  | // When the message is empty, |first_msg_start| and |last_msg_end| are | 
|  | // maintained as if there is a single bit in the message representing the | 
|  | // header. See |acked| in DTLSOutgoingMessage. | 
|  | struct DTLSSentRecord { | 
|  | DTLSRecordNumber number; | 
|  | PackedSize<SSL_MAX_HANDSHAKE_FLIGHT> first_msg = 0; | 
|  | PackedSize<SSL_MAX_HANDSHAKE_FLIGHT> last_msg = 0; | 
|  | uint32_t first_msg_start = 0; | 
|  | uint32_t last_msg_end = 0; | 
|  | }; | 
|  |  | 
|  | enum class QueuedKeyUpdate { | 
|  | kNone, | 
|  | kUpdateNotRequested, | 
|  | kUpdateRequested, | 
|  | }; | 
|  |  | 
|  | // DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS is how long to retain the previous read | 
|  | // epoch in DTLS 1.3. This value is set based on the following: | 
|  | // | 
|  | // - Section 4.2.1 of RFC 9147 recommends retaining past read epochs for the | 
|  | //   default TCP MSL. This accommodates packet reordering with KeyUpdate. | 
|  | // | 
|  | // - Section 5.8.1 of RFC 9147 requires being capable of ACKing the client's | 
|  | //   final flight for at least twice the default MSL. That requires retaining | 
|  | //   epoch 2 after the handshake. | 
|  | // | 
|  | // - Section 4 of RFC 9293 defines the MSL to be two minutes. | 
|  | #define DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS (4 * 60) | 
|  |  | 
|  | struct DTLSPrevReadEpoch { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  | DTLSReadEpoch epoch; | 
|  | // expire is the expiration time of the read epoch, expressed as a POSIX | 
|  | // timestamp in seconds. | 
|  | uint64_t expire; | 
|  | }; | 
|  |  | 
|  | struct DTLS1_STATE { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | DTLS1_STATE(); | 
|  | ~DTLS1_STATE(); | 
|  |  | 
|  | bool Init(); | 
|  |  | 
|  | // has_change_cipher_spec is true if we have received a ChangeCipherSpec from | 
|  | // the peer in this epoch. | 
|  | bool has_change_cipher_spec : 1; | 
|  |  | 
|  | // outgoing_messages_complete is true if |outgoing_messages| has been | 
|  | // completed by an attempt to flush it. Future calls to |add_message| and | 
|  | // |add_change_cipher_spec| will start a new flight. | 
|  | bool outgoing_messages_complete : 1; | 
|  |  | 
|  | // flight_has_reply is true if the current outgoing flight is complete and has | 
|  | // processed at least one message. This is used to detect whether we or the | 
|  | // peer sent the final flight. | 
|  | bool flight_has_reply : 1; | 
|  |  | 
|  | // handshake_write_overflow and handshake_read_overflow are true if | 
|  | // handshake_write_seq and handshake_read_seq, respectively have overflowed. | 
|  | bool handshake_write_overflow : 1; | 
|  | bool handshake_read_overflow : 1; | 
|  |  | 
|  | // sending_flight and sending_ack are true if we are in the process of sending | 
|  | // a handshake flight and ACK, respectively. | 
|  | bool sending_flight : 1; | 
|  | bool sending_ack : 1; | 
|  |  | 
|  | // queued_key_update, if not kNone, indicates we've queued a KeyUpdate message | 
|  | // to send after the current flight is ACKed. | 
|  | QueuedKeyUpdate queued_key_update : 2; | 
|  |  | 
|  | uint16_t handshake_write_seq = 0; | 
|  | uint16_t handshake_read_seq = 0; | 
|  |  | 
|  | // read_epoch is the current read epoch. | 
|  | DTLSReadEpoch read_epoch; | 
|  |  | 
|  | // next_read_epoch is the next read epoch in DTLS 1.3. It will become | 
|  | // current once a record is received from it. | 
|  | UniquePtr<DTLSReadEpoch> next_read_epoch; | 
|  |  | 
|  | // prev_read_epoch is the previous read epoch in DTLS 1.3. | 
|  | UniquePtr<DTLSPrevReadEpoch> prev_read_epoch; | 
|  |  | 
|  | // write_epoch is the current DTLS write epoch. Non-retransmit records will | 
|  | // generally use this epoch. | 
|  | // TODO(crbug.com/381113363): 0-RTT will be the exception, when implemented. | 
|  | DTLSWriteEpoch write_epoch; | 
|  |  | 
|  | // extra_write_epochs is the collection available write epochs. | 
|  | InplaceVector<UniquePtr<DTLSWriteEpoch>, DTLS_MAX_EXTRA_WRITE_EPOCHS> | 
|  | extra_write_epochs; | 
|  |  | 
|  | // incoming_messages is a ring buffer of incoming handshake messages that have | 
|  | // yet to be processed. The front of the ring buffer is message number | 
|  | // |handshake_read_seq|, at position |handshake_read_seq| % | 
|  | // |SSL_MAX_HANDSHAKE_FLIGHT|. | 
|  | UniquePtr<DTLSIncomingMessage> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  |  | 
|  | // outgoing_messages is the queue of outgoing messages from the last handshake | 
|  | // flight. | 
|  | InplaceVector<DTLSOutgoingMessage, SSL_MAX_HANDSHAKE_FLIGHT> | 
|  | outgoing_messages; | 
|  |  | 
|  | // sent_records is a queue of records we sent, for processing ACKs. To save | 
|  | // memory in the steady state, the structure is stored on the heap and dropped | 
|  | // when empty. | 
|  | UniquePtr<MRUQueue<DTLSSentRecord, DTLS_MAX_ACK_BUFFER>> sent_records; | 
|  |  | 
|  | // records_to_ack is a queue of received records that we should ACK. This is | 
|  | // not stored on the heap because, in the steady state, DTLS 1.3 does not | 
|  | // necessarily empty this list. (We probably could drop records from here once | 
|  | // they are sufficiently old.) | 
|  | MRUQueue<DTLSRecordNumber, DTLS_MAX_ACK_BUFFER> records_to_ack; | 
|  |  | 
|  | // outgoing_written is the number of outgoing messages that have been | 
|  | // written. | 
|  | uint8_t outgoing_written = 0; | 
|  | // outgoing_offset is the number of bytes of the next outgoing message have | 
|  | // been written. | 
|  | uint32_t outgoing_offset = 0; | 
|  |  | 
|  | unsigned mtu = 0;  // max DTLS packet size | 
|  |  | 
|  | // num_timeouts is the number of times the retransmit timer has fired since | 
|  | // the last time it was reset. | 
|  | unsigned num_timeouts = 0; | 
|  |  | 
|  | // retransmit_timer tracks when to schedule the next DTLS retransmit if we do | 
|  | // not hear from the peer. | 
|  | DTLSTimer retransmit_timer; | 
|  |  | 
|  | // ack_timer tracks when to send an ACK. | 
|  | DTLSTimer ack_timer; | 
|  |  | 
|  | // timeout_duration_ms is the timeout duration in milliseconds. | 
|  | uint32_t timeout_duration_ms = 0; | 
|  | }; | 
|  |  | 
|  | // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS. | 
|  | struct ALPSConfig { | 
|  | Array<uint8_t> protocol; | 
|  | Array<uint8_t> settings; | 
|  | }; | 
|  |  | 
|  | // SSL_CONFIG contains configuration bits that can be shed after the handshake | 
|  | // completes.  Objects of this type are not shared; they are unique to a | 
|  | // particular |SSL|. | 
|  | // | 
|  | // See SSL_shed_handshake_config() for more about the conditions under which | 
|  | // configuration can be shed. | 
|  | struct SSL_CONFIG { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | explicit SSL_CONFIG(SSL *ssl_arg); | 
|  | ~SSL_CONFIG(); | 
|  |  | 
|  | // ssl is a non-owning pointer to the parent |SSL| object. | 
|  | SSL *const ssl = nullptr; | 
|  |  | 
|  | // conf_max_version is the maximum acceptable version configured by | 
|  | // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS | 
|  | // and is further constrained by |SSL_OP_NO_*|. | 
|  | uint16_t conf_max_version = 0; | 
|  |  | 
|  | // conf_min_version is the minimum acceptable version configured by | 
|  | // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS | 
|  | // and is further constrained by |SSL_OP_NO_*|. | 
|  | uint16_t conf_min_version = 0; | 
|  |  | 
|  | X509_VERIFY_PARAM *param = nullptr; | 
|  |  | 
|  | // crypto | 
|  | UniquePtr<SSLCipherPreferenceList> cipher_list; | 
|  |  | 
|  | // This is used to hold the local certificate used (i.e. the server | 
|  | // certificate for a server or the client certificate for a client). | 
|  | UniquePtr<CERT> cert; | 
|  |  | 
|  | int (*verify_callback)(int ok, | 
|  | X509_STORE_CTX *ctx) = | 
|  | nullptr;  // fail if callback returns 0 | 
|  |  | 
|  | enum ssl_verify_result_t (*custom_verify_callback)( | 
|  | SSL *ssl, uint8_t *out_alert) = nullptr; | 
|  | // Server-only: psk_identity_hint is the identity hint to send in | 
|  | // PSK-based key exchanges. | 
|  | UniquePtr<char> psk_identity_hint; | 
|  |  | 
|  | unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  | unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  |  | 
|  | // for server side, keep the list of CA_dn we can use | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; | 
|  |  | 
|  | // cached_x509_client_CA is a cache of parsed versions of the elements of | 
|  | // |client_CA|. | 
|  | STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; | 
|  |  | 
|  | // For client side, keep the list of CA distinguished names we can use | 
|  | // for the Certificate Authorities extension. | 
|  | // TODO(bbe) having this separate from the client side (above) is mildly | 
|  | // silly, but OpenSSL has *_client_CA API's for this exposed, and for the | 
|  | // moment we are not crossing those streams. | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> CA_names; | 
|  |  | 
|  | Array<uint16_t> supported_group_list;  // our list | 
|  |  | 
|  | // channel_id_private is the client's Channel ID private key, or null if | 
|  | // Channel ID should not be offered on this connection. | 
|  | UniquePtr<EVP_PKEY> channel_id_private; | 
|  |  | 
|  | // For a client, this contains the list of supported protocols in wire | 
|  | // format. | 
|  | Array<uint8_t> alpn_client_proto_list; | 
|  |  | 
|  | // alps_configs contains the list of supported protocols to use with ALPS, | 
|  | // along with their corresponding ALPS values. | 
|  | Vector<ALPSConfig> alps_configs; | 
|  |  | 
|  | // Contains the QUIC transport params that this endpoint will send. | 
|  | Array<uint8_t> quic_transport_params; | 
|  |  | 
|  | // Contains the context used to decide whether to accept early data in QUIC. | 
|  | Array<uint8_t> quic_early_data_context; | 
|  |  | 
|  | // verify_sigalgs, if not empty, is the set of signature algorithms | 
|  | // accepted from the peer in decreasing order of preference. | 
|  | Array<uint16_t> verify_sigalgs; | 
|  |  | 
|  | // srtp_profiles is the list of configured SRTP protection profiles for | 
|  | // DTLS-SRTP. | 
|  | UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; | 
|  |  | 
|  | // client_ech_config_list, if not empty, is a serialized ECHConfigList | 
|  | // structure for the client to use when negotiating ECH. | 
|  | Array<uint8_t> client_ech_config_list; | 
|  |  | 
|  | // compliance_policy limits the set of ciphers that can be selected when | 
|  | // negotiating a TLS 1.3 connection. | 
|  | enum ssl_compliance_policy_t compliance_policy = ssl_compliance_policy_none; | 
|  |  | 
|  | // verify_mode is a bitmask of |SSL_VERIFY_*| values. | 
|  | uint8_t verify_mode = SSL_VERIFY_NONE; | 
|  |  | 
|  | // ech_grease_enabled controls whether ECH GREASE may be sent in the | 
|  | // ClientHello. | 
|  | bool ech_grease_enabled : 1; | 
|  |  | 
|  | // Enable signed certificate time stamps. Currently client only. | 
|  | bool signed_cert_timestamps_enabled : 1; | 
|  |  | 
|  | // ocsp_stapling_enabled is only used by client connections and indicates | 
|  | // whether OCSP stapling will be requested. | 
|  | bool ocsp_stapling_enabled : 1; | 
|  |  | 
|  | // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means | 
|  | // that we'll accept Channel IDs from clients. It is ignored on the client. | 
|  | bool channel_id_enabled : 1; | 
|  |  | 
|  | // If enforce_rsa_key_usage is true, the handshake will fail if the | 
|  | // keyUsage extension is present and incompatible with the TLS usage. | 
|  | // This field is not read until after certificate verification. | 
|  | bool enforce_rsa_key_usage : 1; | 
|  |  | 
|  | // retain_only_sha256_of_client_certs is true if we should compute the SHA256 | 
|  | // hash of the peer's certificate and then discard it to save memory and | 
|  | // session space. Only effective on the server side. | 
|  | bool retain_only_sha256_of_client_certs : 1; | 
|  |  | 
|  | // handoff indicates that a server should stop after receiving the | 
|  | // ClientHello and pause the handshake in such a way that |SSL_get_error| | 
|  | // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| | 
|  | // element of the same name and may be cleared if the handoff is declined. | 
|  | bool handoff : 1; | 
|  |  | 
|  | // shed_handshake_config indicates that the handshake config (this object!) | 
|  | // should be freed after the handshake completes. | 
|  | bool shed_handshake_config : 1; | 
|  |  | 
|  | // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a | 
|  | // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806. | 
|  | bool jdk11_workaround : 1; | 
|  |  | 
|  | // QUIC drafts up to and including 32 used a different TLS extension | 
|  | // codepoint to convey QUIC's transport parameters. | 
|  | bool quic_use_legacy_codepoint : 1; | 
|  |  | 
|  | // permute_extensions is whether to permute extensions when sending messages. | 
|  | bool permute_extensions : 1; | 
|  |  | 
|  | // aes_hw_override if set indicates we should override checking for aes | 
|  | // hardware support, and use the value in aes_hw_override_value instead. | 
|  | bool aes_hw_override : 1; | 
|  |  | 
|  | // aes_hw_override_value is used for testing to indicate the support or lack | 
|  | // of support for AES hw. The value is only considered if |aes_hw_override| is | 
|  | // true. | 
|  | bool aes_hw_override_value : 1; | 
|  |  | 
|  | // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint | 
|  | // to negotiate and convey application settings. | 
|  | bool alps_use_new_codepoint : 1; | 
|  |  | 
|  | // check_client_certificate_type indicates whether the client, in TLS 1.2 and | 
|  | // below, will check its certificate against the server's requested | 
|  | // certificate types. | 
|  | bool check_client_certificate_type : 1; | 
|  |  | 
|  | // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will | 
|  | // check its certificate against the client's supported ECDSA curves. | 
|  | bool check_ecdsa_curve : 1; | 
|  | }; | 
|  |  | 
|  | // From RFC 8446, used in determining PSK modes. | 
|  | #define SSL_PSK_DHE_KE 0x1 | 
|  |  | 
|  | // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early | 
|  | // data that will be accepted. This value should be slightly below | 
|  | // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. | 
|  | static const size_t kMaxEarlyDataAccepted = 14336; | 
|  |  | 
|  | UniquePtr<CERT> ssl_cert_dup(CERT *cert); | 
|  | bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer); | 
|  | bool ssl_is_key_type_supported(int key_type); | 
|  | // ssl_compare_public_and_private_key returns true if |pubkey| is the public | 
|  | // counterpart to |privkey|. Otherwise it returns false and pushes a helpful | 
|  | // message on the error queue. | 
|  | bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, | 
|  | const EVP_PKEY *privkey); | 
|  | bool ssl_get_new_session(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_encrypt_ticket encrypt a ticket for |session| and writes the result to | 
|  | // |out|. It returns true on success and false on error. If, on success, nothing | 
|  | // was written to |out|, the caller should skip sending a ticket. | 
|  | bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); | 
|  |  | 
|  | // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on | 
|  | // error. | 
|  | UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method); | 
|  |  | 
|  | // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table | 
|  | // keyed on session IDs. | 
|  | uint32_t ssl_hash_session_id(Span<const uint8_t> session_id); | 
|  |  | 
|  | // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over | 
|  | // the parsed data. | 
|  | OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse( | 
|  | CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool); | 
|  |  | 
|  | // ssl_session_serialize writes |in| to |cbb| as if it were serialising a | 
|  | // session for Session-ID resumption. It returns true on success and false on | 
|  | // error. | 
|  | OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); | 
|  |  | 
|  | enum class SSLSessionType { | 
|  | // The session is not resumable. | 
|  | kNotResumable, | 
|  | // The session uses a TLS 1.2 session ID. | 
|  | kID, | 
|  | // The session uses a TLS 1.2 ticket. | 
|  | kTicket, | 
|  | // The session uses a TLS 1.3 pre-shared key. | 
|  | kPreSharedKey, | 
|  | }; | 
|  |  | 
|  | // ssl_session_get_type returns the type of |session|. | 
|  | SSLSessionType ssl_session_get_type(const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_is_context_valid returns whether |session|'s session ID context | 
|  | // matches the one set on |hs|. | 
|  | bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_is_time_valid returns true if |session| is still valid and false | 
|  | // if it has expired. | 
|  | bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_is_resumable returns whether |session| is resumable for |hs|. | 
|  | bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_protocol_version returns the protocol version associated with | 
|  | // |session|. Note that despite the name, this is not the same as | 
|  | // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. | 
|  | uint16_t ssl_session_protocol_version(const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_get_digest returns the digest used in |session|. | 
|  | const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); | 
|  |  | 
|  | void ssl_set_session(SSL *ssl, SSL_SESSION *session); | 
|  |  | 
|  | // ssl_get_prev_session looks up the previous session based on |client_hello|. | 
|  | // On success, it sets |*out_session| to the session or nullptr if none was | 
|  | // found. If the session could not be looked up synchronously, it returns | 
|  | // |ssl_hs_pending_session| and should be called again. If a ticket could not be | 
|  | // decrypted immediately it returns |ssl_hs_pending_ticket| and should also | 
|  | // be called again. Otherwise, it returns |ssl_hs_error|. | 
|  | enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, | 
|  | UniquePtr<SSL_SESSION> *out_session, | 
|  | bool *out_tickets_supported, | 
|  | bool *out_renew_ticket, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  |  | 
|  | // The following flags determine which parts of the session are duplicated. | 
|  | #define SSL_SESSION_DUP_AUTH_ONLY 0x0 | 
|  | #define SSL_SESSION_INCLUDE_TICKET 0x1 | 
|  | #define SSL_SESSION_INCLUDE_NONAUTH 0x2 | 
|  | #define SSL_SESSION_DUP_ALL \ | 
|  | (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) | 
|  |  | 
|  | // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the | 
|  | // fields in |session| or nullptr on error. The new session is non-resumable and | 
|  | // must be explicitly marked resumable once it has been filled in. | 
|  | OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session, | 
|  | int dup_flags); | 
|  |  | 
|  | // ssl_session_rebase_time updates |session|'s start time to the current time, | 
|  | // adjusting the timeout so the expiration time is unchanged. | 
|  | void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews | 
|  | // |session|'s timeout to |timeout| (measured from the current time). The | 
|  | // renewal is clamped to the session's auth_timeout. | 
|  | void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, | 
|  | uint32_t timeout); | 
|  |  | 
|  | void ssl_update_cache(SSL *ssl); | 
|  |  | 
|  | void ssl_send_alert(SSL *ssl, int level, int desc); | 
|  | int ssl_send_alert_impl(SSL *ssl, int level, int desc); | 
|  | bool tls_get_message(const SSL *ssl, SSLMessage *out); | 
|  | ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | void tls_next_message(SSL *ssl); | 
|  |  | 
|  | int tls_dispatch_alert(SSL *ssl); | 
|  | ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | int tls_write_app_data(SSL *ssl, bool *out_needs_handshake, | 
|  | size_t *out_bytes_written, Span<const uint8_t> in); | 
|  |  | 
|  | bool tls_new(SSL *ssl); | 
|  | void tls_free(SSL *ssl); | 
|  |  | 
|  | bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); | 
|  | bool tls_add_message(SSL *ssl, Array<uint8_t> msg); | 
|  | bool tls_add_change_cipher_spec(SSL *ssl); | 
|  | int tls_flush(SSL *ssl); | 
|  |  | 
|  | bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); | 
|  | bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg); | 
|  | bool dtls1_add_change_cipher_spec(SSL *ssl); | 
|  | void dtls1_finish_flight(SSL *ssl); | 
|  | void dtls1_schedule_ack(SSL *ssl); | 
|  | int dtls1_flush(SSL *ssl); | 
|  |  | 
|  | // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to | 
|  | // the pending flight. It returns true on success and false on error. | 
|  | bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); | 
|  |  | 
|  | // ssl_hash_message incorporates |msg| into the handshake hash. It returns true | 
|  | // on success and false on allocation failure. | 
|  | bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | ssl_open_record_t dtls1_process_ack(SSL *ssl, uint8_t *out_alert, | 
|  | DTLSRecordNumber ack_record_number, | 
|  | Span<const uint8_t> data); | 
|  | ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, | 
|  | size_t *out_bytes_written, Span<const uint8_t> in); | 
|  |  | 
|  | // dtls1_write_record sends a record. It returns one on success and <= 0 on | 
|  | // error. | 
|  | int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in, | 
|  | uint16_t epoch); | 
|  |  | 
|  | bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, | 
|  | CBS *out_body); | 
|  |  | 
|  | // DTLS1_MTU_TIMEOUTS is the maximum number of retransmit timeouts to expire | 
|  | // before starting to decrease the MTU. | 
|  | #define DTLS1_MTU_TIMEOUTS 2 | 
|  |  | 
|  | // DTLS1_MAX_TIMEOUTS is the maximum number of retransmit timeouts to expire | 
|  | // before failing the DTLS handshake. | 
|  | #define DTLS1_MAX_TIMEOUTS 12 | 
|  |  | 
|  | void dtls1_stop_timer(SSL *ssl); | 
|  |  | 
|  | unsigned int dtls1_min_mtu(void); | 
|  |  | 
|  | bool dtls1_new(SSL *ssl); | 
|  | void dtls1_free(SSL *ssl); | 
|  |  | 
|  | bool dtls1_process_handshake_fragments(SSL *ssl, uint8_t *out_alert, | 
|  | DTLSRecordNumber record_number, | 
|  | Span<const uint8_t> record); | 
|  | bool dtls1_get_message(const SSL *ssl, SSLMessage *out); | 
|  | ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | void dtls1_next_message(SSL *ssl); | 
|  | int dtls1_dispatch_alert(SSL *ssl); | 
|  |  | 
|  | // tls1_configure_aead configures either the read or write direction AEAD (as | 
|  | // determined by |direction|) using the keys generated by the TLS KDF. The | 
|  | // |key_block_cache| argument is used to store the generated key block, if | 
|  | // empty. Otherwise it's assumed that the key block is already contained within | 
|  | // it. It returns true on success or false on error. | 
|  | bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, | 
|  | Array<uint8_t> *key_block_cache, | 
|  | const SSL_SESSION *session, | 
|  | Span<const uint8_t> iv_override); | 
|  |  | 
|  | bool tls1_change_cipher_state(SSL_HANDSHAKE *hs, | 
|  | evp_aead_direction_t direction); | 
|  |  | 
|  | // tls1_generate_master_secret computes the master secret from |premaster| and | 
|  | // writes it to |out|. |out| must have size |SSL3_MASTER_SECRET_SIZE|. | 
|  | bool tls1_generate_master_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out, | 
|  | Span<const uint8_t> premaster); | 
|  |  | 
|  | // tls1_get_grouplist returns the locally-configured group preference list. | 
|  | Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl); | 
|  |  | 
|  | // tls1_check_group_id returns whether |group_id| is consistent with locally- | 
|  | // configured group preferences. | 
|  | bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id); | 
|  |  | 
|  | // tls1_get_shared_group sets |*out_group_id| to the first preferred shared | 
|  | // group between client and server preferences and returns true. If none may be | 
|  | // found, it returns false. | 
|  | bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); | 
|  |  | 
|  | // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|. | 
|  | // It returns true on success and false on failure. The |header_len| argument is | 
|  | // the length of the ClientHello written so far and is used to compute the | 
|  | // padding length. (It does not include the record header or handshake headers.) | 
|  | // | 
|  | // If |type| is |ssl_client_hello_inner|, this function also writes the | 
|  | // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be | 
|  | // nullptr. | 
|  | // | 
|  | // On success, the function sets |*out_needs_psk_binder| to whether the last | 
|  | // ClientHello extension was the pre_shared_key extension and needs a PSK binder | 
|  | // filled in. The caller should then update |out| and, if applicable, | 
|  | // |out_encoded| with the binder after completing the whole message. | 
|  | bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded, | 
|  | bool *out_needs_psk_binder, | 
|  | ssl_client_hello_type_t type, | 
|  | size_t header_len); | 
|  |  | 
|  | bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); | 
|  | bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  | bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions); | 
|  |  | 
|  | #define tlsext_tick_md EVP_sha256 | 
|  |  | 
|  | // ssl_process_ticket processes a session ticket from the client. It returns | 
|  | // one of: | 
|  | //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and | 
|  | //       |*out_renew_ticket| is set to whether the ticket should be renewed. | 
|  | //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a | 
|  | //       fresh ticket should be sent, but the given ticket cannot be used. | 
|  | //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. | 
|  | //       Retry later. | 
|  | //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection. | 
|  | enum ssl_ticket_aead_result_t ssl_process_ticket( | 
|  | SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session, | 
|  | bool *out_renew_ticket, Span<const uint8_t> ticket, | 
|  | Span<const uint8_t> session_id); | 
|  |  | 
|  | // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies | 
|  | // the signature. If the key is valid, it saves the Channel ID and returns true. | 
|  | // Otherwise, it returns false. | 
|  | bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | // tls1_write_channel_id generates a Channel ID message and puts the output in | 
|  | // |cbb|. |ssl->channel_id_private| must already be set before calling.  This | 
|  | // function returns true on success and false on error. | 
|  | bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes | 
|  | // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns | 
|  | // true on success and false on failure. | 
|  | bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); | 
|  |  | 
|  | // tls1_record_handshake_hashes_for_channel_id records the current handshake | 
|  | // hashes in |hs->new_session| so that Channel ID resumptions can sign that | 
|  | // data. | 
|  | bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_can_write returns whether |ssl| is allowed to write. | 
|  | bool ssl_can_write(const SSL *ssl); | 
|  |  | 
|  | // ssl_can_read returns wheter |ssl| is allowed to read. | 
|  | bool ssl_can_read(const SSL *ssl); | 
|  |  | 
|  | OPENSSL_timeval ssl_ctx_get_current_time(const SSL_CTX *ctx); | 
|  |  | 
|  | // ssl_reset_error_state resets state for |SSL_get_error|. | 
|  | void ssl_reset_error_state(SSL *ssl); | 
|  |  | 
|  | // ssl_set_read_error sets |ssl|'s read half into an error state, saving the | 
|  | // current state of the error queue. | 
|  | void ssl_set_read_error(SSL *ssl); | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  |  | 
|  | // Opaque C types. | 
|  | // | 
|  | // The following types are exported to C code as public typedefs, so they must | 
|  | // be defined outside of the namespace. | 
|  |  | 
|  | // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility | 
|  | // structure to support the legacy version-locked methods. | 
|  | struct ssl_method_st { | 
|  | // version, if non-zero, is the only protocol version acceptable to an | 
|  | // SSL_CTX initialized from this method. | 
|  | uint16_t version; | 
|  | // method is the underlying SSL_PROTOCOL_METHOD that initializes the | 
|  | // SSL_CTX. | 
|  | const bssl::SSL_PROTOCOL_METHOD *method; | 
|  | // x509_method contains pointers to functions that might deal with |X509| | 
|  | // compatibility, or might be a no-op, depending on the application. | 
|  | const bssl::SSL_X509_METHOD *x509_method; | 
|  | }; | 
|  |  | 
|  | struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> { | 
|  | explicit ssl_ctx_st(const SSL_METHOD *ssl_method); | 
|  | ssl_ctx_st(const ssl_ctx_st &) = delete; | 
|  | ssl_ctx_st &operator=(const ssl_ctx_st &) = delete; | 
|  |  | 
|  | const bssl::SSL_PROTOCOL_METHOD *method = nullptr; | 
|  | const bssl::SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // lock is used to protect various operations on this object. | 
|  | CRYPTO_MUTEX lock; | 
|  |  | 
|  | // conf_max_version is the maximum acceptable protocol version configured by | 
|  | // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS | 
|  | // and is further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_max_version = 0; | 
|  |  | 
|  | // conf_min_version is the minimum acceptable protocol version configured by | 
|  | // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS | 
|  | // and is further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_min_version = 0; | 
|  |  | 
|  | // num_tickets is the number of tickets to send immediately after the TLS 1.3 | 
|  | // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two | 
|  | /// in case the client makes several connections before getting a renewal. | 
|  | uint8_t num_tickets = 2; | 
|  |  | 
|  | // quic_method is the method table corresponding to the QUIC hooks. | 
|  | const SSL_QUIC_METHOD *quic_method = nullptr; | 
|  |  | 
|  | bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list; | 
|  |  | 
|  | X509_STORE *cert_store = nullptr; | 
|  | LHASH_OF(SSL_SESSION) *sessions = nullptr; | 
|  | // Most session-ids that will be cached, default is | 
|  | // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. | 
|  | unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; | 
|  | SSL_SESSION *session_cache_head = nullptr; | 
|  | SSL_SESSION *session_cache_tail = nullptr; | 
|  |  | 
|  | // handshakes_since_cache_flush is the number of successful handshakes since | 
|  | // the last cache flush. | 
|  | int handshakes_since_cache_flush = 0; | 
|  |  | 
|  | // This can have one of 2 values, ored together, | 
|  | // SSL_SESS_CACHE_CLIENT, | 
|  | // SSL_SESS_CACHE_SERVER, | 
|  | // Default is SSL_SESSION_CACHE_SERVER, which means only | 
|  | // SSL_accept which cache SSL_SESSIONS. | 
|  | int session_cache_mode = SSL_SESS_CACHE_SERVER; | 
|  |  | 
|  | // session_timeout is the default lifetime for new sessions in TLS 1.2 and | 
|  | // earlier, in seconds. | 
|  | uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // session_psk_dhe_timeout is the default lifetime for new sessions in TLS | 
|  | // 1.3, in seconds. | 
|  | uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT; | 
|  |  | 
|  | // If this callback is not null, it will be called each time a session id is | 
|  | // added to the cache.  If this function returns 1, it means that the | 
|  | // callback will do a SSL_SESSION_free() when it has finished using it. | 
|  | // Otherwise, on 0, it means the callback has finished with it. If | 
|  | // remove_session_cb is not null, it will be called when a session-id is | 
|  | // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free() | 
|  | // it. | 
|  | int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr; | 
|  | void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr; | 
|  | SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, | 
|  | int *copy) = nullptr; | 
|  |  | 
|  | // if defined, these override the X509_verify_cert() calls | 
|  | int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr; | 
|  | void *app_verify_arg = nullptr; | 
|  |  | 
|  | ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, | 
|  | uint8_t *out_alert) = nullptr; | 
|  |  | 
|  | // Default password callback. | 
|  | pem_password_cb *default_passwd_callback = nullptr; | 
|  |  | 
|  | // Default password callback user data. | 
|  | void *default_passwd_callback_userdata = nullptr; | 
|  |  | 
|  | // get client cert callback | 
|  | int (*client_cert_cb)(SSL *ssl, X509 **out_x509, | 
|  | EVP_PKEY **out_pkey) = nullptr; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data; | 
|  |  | 
|  | // Default values used when no per-SSL value is defined follow | 
|  |  | 
|  | void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; | 
|  |  | 
|  | // what we put in client cert requests | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; | 
|  |  | 
|  | // cached_x509_client_CA is a cache of parsed versions of the elements of | 
|  | // |client_CA|. | 
|  | STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; | 
|  |  | 
|  | // What we put in client hello in the CA extension. | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> CA_names; | 
|  |  | 
|  | // Default values to use in SSL structures follow (these are copied by | 
|  | // SSL_new) | 
|  |  | 
|  | uint32_t options = 0; | 
|  | // Disable the auto-chaining feature by default. wpa_supplicant relies on this | 
|  | // feature, but require callers opt into it. | 
|  | uint32_t mode = SSL_MODE_NO_AUTO_CHAIN; | 
|  | uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; | 
|  |  | 
|  | bssl::UniquePtr<bssl::CERT> cert; | 
|  |  | 
|  | // callback that allows applications to peek at protocol messages | 
|  | void (*msg_callback)(int is_write, int version, int content_type, | 
|  | const void *buf, size_t len, SSL *ssl, | 
|  | void *arg) = nullptr; | 
|  | void *msg_callback_arg = nullptr; | 
|  |  | 
|  | int verify_mode = SSL_VERIFY_NONE; | 
|  | int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) = | 
|  | nullptr;  // called 'verify_callback' in the SSL | 
|  |  | 
|  | X509_VERIFY_PARAM *param = nullptr; | 
|  |  | 
|  | // select_certificate_cb is called before most ClientHello processing and | 
|  | // before the decision whether to resume a session is made. See | 
|  | // |ssl_select_cert_result_t| for details of the return values. | 
|  | ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) = | 
|  | nullptr; | 
|  |  | 
|  | // dos_protection_cb is called once the resumption decision for a ClientHello | 
|  | // has been made. It returns one to continue the handshake or zero to | 
|  | // abort. | 
|  | int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr; | 
|  |  | 
|  | // Controls whether to verify certificates when resuming connections. They | 
|  | // were already verified when the connection was first made, so the default is | 
|  | // false. For now, this is only respected on clients, not servers. | 
|  | bool reverify_on_resume = false; | 
|  |  | 
|  | // Maximum amount of data to send in one fragment. actual record size can be | 
|  | // more than this due to padding and MAC overheads. | 
|  | uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; | 
|  |  | 
|  | // TLS extensions servername callback | 
|  | int (*servername_callback)(SSL *, int *, void *) = nullptr; | 
|  | void *servername_arg = nullptr; | 
|  |  | 
|  | // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the | 
|  | // first handshake and |ticket_key_prev| may be NULL at any time. | 
|  | // Automatically generated ticket keys are rotated as needed at handshake | 
|  | // time. Hence, all access must be synchronized through |lock|. | 
|  | bssl::UniquePtr<bssl::TicketKey> ticket_key_current; | 
|  | bssl::UniquePtr<bssl::TicketKey> ticket_key_prev; | 
|  |  | 
|  | // Callback to support customisation of ticket key setting | 
|  | int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, | 
|  | EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr; | 
|  |  | 
|  | // Server-only: psk_identity_hint is the default identity hint to send in | 
|  | // PSK-based key exchanges. | 
|  | bssl::UniquePtr<char> psk_identity_hint; | 
|  |  | 
|  | unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  | unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  |  | 
|  |  | 
|  | // Next protocol negotiation information | 
|  | // (for experimental NPN extension). | 
|  |  | 
|  | // For a server, this contains a callback function by which the set of | 
|  | // advertised protocols can be provided. | 
|  | int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, | 
|  | unsigned *out_len, void *arg) = nullptr; | 
|  | void *next_protos_advertised_cb_arg = nullptr; | 
|  | // For a client, this contains a callback function that selects the | 
|  | // next protocol from the list provided by the server. | 
|  | int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, | 
|  | const uint8_t *in, unsigned in_len, | 
|  | void *arg) = nullptr; | 
|  | void *next_proto_select_cb_arg = nullptr; | 
|  |  | 
|  | // ALPN information | 
|  | // (we are in the process of transitioning from NPN to ALPN.) | 
|  |  | 
|  | // For a server, this contains a callback function that allows the | 
|  | // server to select the protocol for the connection. | 
|  | //   out: on successful return, this must point to the raw protocol | 
|  | //        name (without the length prefix). | 
|  | //   outlen: on successful return, this contains the length of |*out|. | 
|  | //   in: points to the client's list of supported protocols in | 
|  | //       wire-format. | 
|  | //   inlen: the length of |in|. | 
|  | int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, | 
|  | const uint8_t *in, unsigned in_len, | 
|  | void *arg) = nullptr; | 
|  | void *alpn_select_cb_arg = nullptr; | 
|  |  | 
|  | // For a client, this contains the list of supported protocols in wire | 
|  | // format. | 
|  | bssl::Array<uint8_t> alpn_client_proto_list; | 
|  |  | 
|  | // SRTP profiles we are willing to do from RFC 5764 | 
|  | bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; | 
|  |  | 
|  | // Defined compression algorithms for certificates. | 
|  | bssl::Vector<bssl::CertCompressionAlg> cert_compression_algs; | 
|  |  | 
|  | // Supported group values inherited by SSL structure | 
|  | bssl::Array<uint16_t> supported_group_list; | 
|  |  | 
|  | // channel_id_private is the client's Channel ID private key, or null if | 
|  | // Channel ID should not be offered on this connection. | 
|  | bssl::UniquePtr<EVP_PKEY> channel_id_private; | 
|  |  | 
|  | // ech_keys contains the server's list of ECHConfig values and associated | 
|  | // private keys. This list may be swapped out at any time, so all access must | 
|  | // be synchronized through |lock|. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> ech_keys; | 
|  |  | 
|  | // keylog_callback, if not NULL, is the key logging callback. See | 
|  | // |SSL_CTX_set_keylog_callback|. | 
|  | void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr; | 
|  |  | 
|  | // current_time_cb, if not NULL, is the function to use to get the current | 
|  | // time. It sets |*out_clock| to the current time. The |ssl| argument is | 
|  | // always NULL. See |SSL_CTX_set_current_time_cb|. | 
|  | void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr; | 
|  |  | 
|  | // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate | 
|  | // memory. | 
|  | CRYPTO_BUFFER_POOL *pool = nullptr; | 
|  |  | 
|  | // ticket_aead_method contains function pointers for opening and sealing | 
|  | // session tickets. | 
|  | const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr; | 
|  |  | 
|  | // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL | 
|  | // compatibility. | 
|  | int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr; | 
|  | void *legacy_ocsp_callback_arg = nullptr; | 
|  |  | 
|  | // compliance_policy limits the set of ciphers that can be selected when | 
|  | // negotiating a TLS 1.3 connection. | 
|  | enum ssl_compliance_policy_t compliance_policy = ssl_compliance_policy_none; | 
|  |  | 
|  | // verify_sigalgs, if not empty, is the set of signature algorithms | 
|  | // accepted from the peer in decreasing order of preference. | 
|  | bssl::Array<uint16_t> verify_sigalgs; | 
|  |  | 
|  | // retain_only_sha256_of_client_certs is true if we should compute the SHA256 | 
|  | // hash of the peer's certificate and then discard it to save memory and | 
|  | // session space. Only effective on the server side. | 
|  | bool retain_only_sha256_of_client_certs : 1; | 
|  |  | 
|  | // quiet_shutdown is true if the connection should not send a close_notify on | 
|  | // shutdown. | 
|  | bool quiet_shutdown : 1; | 
|  |  | 
|  | // ocsp_stapling_enabled is only used by client connections and indicates | 
|  | // whether OCSP stapling will be requested. | 
|  | bool ocsp_stapling_enabled : 1; | 
|  |  | 
|  | // If true, a client will request certificate timestamps. | 
|  | bool signed_cert_timestamps_enabled : 1; | 
|  |  | 
|  | // channel_id_enabled is whether Channel ID is enabled. For a server, means | 
|  | // that we'll accept Channel IDs from clients.  For a client, means that we'll | 
|  | // advertise support. | 
|  | bool channel_id_enabled : 1; | 
|  |  | 
|  | // grease_enabled is whether GREASE (RFC 8701) is enabled. | 
|  | bool grease_enabled : 1; | 
|  |  | 
|  | // permute_extensions is whether to permute extensions when sending messages. | 
|  | bool permute_extensions : 1; | 
|  |  | 
|  | // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN | 
|  | // protocols from the peer. | 
|  | bool allow_unknown_alpn_protos : 1; | 
|  |  | 
|  | // false_start_allowed_without_alpn is whether False Start (if | 
|  | // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. | 
|  | bool false_start_allowed_without_alpn : 1; | 
|  |  | 
|  | // handoff indicates that a server should stop after receiving the | 
|  | // ClientHello and pause the handshake in such a way that |SSL_get_error| | 
|  | // returns |SSL_ERROR_HANDOFF|. | 
|  | bool handoff : 1; | 
|  |  | 
|  | // If enable_early_data is true, early data can be sent and accepted. | 
|  | bool enable_early_data : 1; | 
|  |  | 
|  | // aes_hw_override if set indicates we should override checking for AES | 
|  | // hardware support, and use the value in aes_hw_override_value instead. | 
|  | bool aes_hw_override : 1; | 
|  |  | 
|  | // aes_hw_override_value is used for testing to indicate the support or lack | 
|  | // of support for AES hardware. The value is only considered if | 
|  | // |aes_hw_override| is true. | 
|  | bool aes_hw_override_value : 1; | 
|  |  | 
|  | private: | 
|  | friend RefCounted; | 
|  | ~ssl_ctx_st(); | 
|  | }; | 
|  |  | 
|  | struct ssl_st { | 
|  | explicit ssl_st(SSL_CTX *ctx_arg); | 
|  | ssl_st(const ssl_st &) = delete; | 
|  | ssl_st &operator=(const ssl_st &) = delete; | 
|  | ~ssl_st(); | 
|  |  | 
|  | // method is the method table corresponding to the current protocol (DTLS or | 
|  | // TLS). | 
|  | const bssl::SSL_PROTOCOL_METHOD *method = nullptr; | 
|  |  | 
|  | // config is a container for handshake configuration.  Accesses to this field | 
|  | // should check for nullptr, since configuration may be shed after the | 
|  | // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use | 
|  | // that instead, and skip the null check.) | 
|  | bssl::UniquePtr<bssl::SSL_CONFIG> config; | 
|  |  | 
|  | uint16_t max_send_fragment = 0; | 
|  |  | 
|  | // There are 2 BIO's even though they are normally both the same. This is so | 
|  | // data can be read and written to different handlers | 
|  |  | 
|  | bssl::UniquePtr<BIO> rbio;  // used by SSL_read | 
|  | bssl::UniquePtr<BIO> wbio;  // used by SSL_write | 
|  |  | 
|  | // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. | 
|  | // Otherwise, it returns a value corresponding to what operation is needed to | 
|  | // progress. | 
|  | bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr; | 
|  |  | 
|  | bssl::SSL3_STATE *s3 = nullptr;   // TLS variables | 
|  | bssl::DTLS1_STATE *d1 = nullptr;  // DTLS variables | 
|  |  | 
|  | // callback that allows applications to peek at protocol messages | 
|  | void (*msg_callback)(int write_p, int version, int content_type, | 
|  | const void *buf, size_t len, SSL *ssl, | 
|  | void *arg) = nullptr; | 
|  | void *msg_callback_arg = nullptr; | 
|  |  | 
|  | // session info | 
|  |  | 
|  | // initial_timeout_duration_ms is the default DTLS timeout duration in | 
|  | // milliseconds. It's used to initialize the timer any time it's restarted. We | 
|  | // default to RFC 9147's recommendation for real-time applications, 400ms. | 
|  | uint32_t initial_timeout_duration_ms = 400; | 
|  |  | 
|  | // session is the configured session to be offered by the client. This session | 
|  | // is immutable. | 
|  | bssl::UniquePtr<SSL_SESSION> session; | 
|  |  | 
|  | void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx; | 
|  |  | 
|  | // session_ctx is the |SSL_CTX| used for the session cache and related | 
|  | // settings. | 
|  | bssl::UniquePtr<SSL_CTX> session_ctx; | 
|  |  | 
|  | // extra application data | 
|  | CRYPTO_EX_DATA ex_data; | 
|  |  | 
|  | uint32_t options = 0;  // protocol behaviour | 
|  | uint32_t mode = 0;     // API behaviour | 
|  | uint32_t max_cert_list = 0; | 
|  | bssl::UniquePtr<char> hostname; | 
|  |  | 
|  | // quic_method is the method table corresponding to the QUIC hooks. | 
|  | const SSL_QUIC_METHOD *quic_method = nullptr; | 
|  |  | 
|  | // renegotiate_mode controls how peer renegotiation attempts are handled. | 
|  | ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never; | 
|  |  | 
|  | // server is true iff the this SSL* is the server half. Note: before the SSL* | 
|  | // is initialized by either SSL_set_accept_state or SSL_set_connect_state, | 
|  | // the side is not determined. In this state, server is always false. | 
|  | bool server : 1; | 
|  |  | 
|  | // quiet_shutdown is true if the connection should not send a close_notify on | 
|  | // shutdown. | 
|  | bool quiet_shutdown : 1; | 
|  |  | 
|  | // If enable_early_data is true, early data can be sent and accepted. | 
|  | bool enable_early_data : 1; | 
|  | }; | 
|  |  | 
|  | struct ssl_session_st : public bssl::RefCounted<ssl_session_st> { | 
|  | explicit ssl_session_st(const bssl::SSL_X509_METHOD *method); | 
|  | ssl_session_st(const ssl_session_st &) = delete; | 
|  | ssl_session_st &operator=(const ssl_session_st &) = delete; | 
|  |  | 
|  | // ssl_version is the (D)TLS version that established the session. | 
|  | uint16_t ssl_version = 0; | 
|  |  | 
|  | // group_id is the ID of the ECDH group used to establish this session or zero | 
|  | // if not applicable or unknown. | 
|  | uint16_t group_id = 0; | 
|  |  | 
|  | // peer_signature_algorithm is the signature algorithm used to authenticate | 
|  | // the peer, or zero if not applicable or unknown. | 
|  | uint16_t peer_signature_algorithm = 0; | 
|  |  | 
|  | // secret, in TLS 1.2 and below, is the master secret associated with the | 
|  | // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to | 
|  | // the caller, but it stores the resumption secret when stored on |SSL| | 
|  | // objects. | 
|  | bssl::InplaceVector<uint8_t, SSL_MAX_MASTER_KEY_LENGTH> secret; | 
|  |  | 
|  | bssl::InplaceVector<uint8_t, SSL_MAX_SSL_SESSION_ID_LENGTH> session_id; | 
|  |  | 
|  | // this is used to determine whether the session is being reused in | 
|  | // the appropriate context. It is up to the application to set this, | 
|  | // via SSL_new | 
|  | bssl::InplaceVector<uint8_t, SSL_MAX_SID_CTX_LENGTH> sid_ctx; | 
|  |  | 
|  | bssl::UniquePtr<char> psk_identity; | 
|  |  | 
|  | // certs contains the certificate chain from the peer, starting with the leaf | 
|  | // certificate. | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs; | 
|  |  | 
|  | const bssl::SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // x509_peer is the peer's certificate. | 
|  | X509 *x509_peer = nullptr; | 
|  |  | 
|  | // x509_chain is the certificate chain sent by the peer. NOTE: for historical | 
|  | // reasons, when a client (so the peer is a server), the chain includes | 
|  | // |peer|, but when a server it does not. | 
|  | STACK_OF(X509) *x509_chain = nullptr; | 
|  |  | 
|  | // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that | 
|  | // omits the leaf certificate. This exists because OpenSSL, historically, | 
|  | // didn't include the leaf certificate in the chain for a server, but did for | 
|  | // a client. The |x509_chain| always includes it and, if an API call requires | 
|  | // a chain without, it is stored here. | 
|  | STACK_OF(X509) *x509_chain_without_leaf = nullptr; | 
|  |  | 
|  | // verify_result is the result of certificate verification in the case of | 
|  | // non-fatal certificate errors. | 
|  | long verify_result = X509_V_ERR_INVALID_CALL; | 
|  |  | 
|  | // timeout is the lifetime of the session in seconds, measured from |time|. | 
|  | // This is renewable up to |auth_timeout|. | 
|  | uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // auth_timeout is the non-renewable lifetime of the session in seconds, | 
|  | // measured from |time|. | 
|  | uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // time is the time the session was issued, measured in seconds from the UNIX | 
|  | // epoch. | 
|  | uint64_t time = 0; | 
|  |  | 
|  | const SSL_CIPHER *cipher = nullptr; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data;  // application specific data | 
|  |  | 
|  | // These are used to make removal of session-ids more efficient and to | 
|  | // implement a maximum cache size. | 
|  | SSL_SESSION *prev = nullptr, *next = nullptr; | 
|  |  | 
|  | bssl::Array<uint8_t> ticket; | 
|  |  | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; | 
|  |  | 
|  | // The OCSP response that came with the session. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; | 
|  |  | 
|  | // peer_sha256 contains the SHA-256 hash of the peer's certificate if | 
|  | // |peer_sha256_valid| is true. | 
|  | uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0}; | 
|  |  | 
|  | // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or | 
|  | // SHA-2, depending on TLS version) for the original, full handshake that | 
|  | // created a session. This is used by Channel IDs during resumption. | 
|  | bssl::InplaceVector<uint8_t, EVP_MAX_MD_SIZE> original_handshake_hash; | 
|  |  | 
|  | uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds | 
|  |  | 
|  | uint32_t ticket_age_add = 0; | 
|  |  | 
|  | // ticket_max_early_data is the maximum amount of data allowed to be sent as | 
|  | // early data. If zero, 0-RTT is disallowed. | 
|  | uint32_t ticket_max_early_data = 0; | 
|  |  | 
|  | // early_alpn is the ALPN protocol from the initial handshake. This is only | 
|  | // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT | 
|  | // resumptions. For the current connection's ALPN protocol, see | 
|  | // |alpn_selected| on |SSL3_STATE|. | 
|  | bssl::Array<uint8_t> early_alpn; | 
|  |  | 
|  | // local_application_settings, if |has_application_settings| is true, is the | 
|  | // local ALPS value for this connection. | 
|  | bssl::Array<uint8_t> local_application_settings; | 
|  |  | 
|  | // peer_application_settings, if |has_application_settings| is true, is the | 
|  | // peer ALPS value for this connection. | 
|  | bssl::Array<uint8_t> peer_application_settings; | 
|  |  | 
|  | // extended_master_secret is whether the master secret in this session was | 
|  | // generated using EMS and thus isn't vulnerable to the Triple Handshake | 
|  | // attack. | 
|  | bool extended_master_secret : 1; | 
|  |  | 
|  | // peer_sha256_valid is whether |peer_sha256| is valid. | 
|  | bool peer_sha256_valid : 1;  // Non-zero if peer_sha256 is valid | 
|  |  | 
|  | // not_resumable is used to indicate that session resumption is disallowed. | 
|  | bool not_resumable : 1; | 
|  |  | 
|  | // ticket_age_add_valid is whether |ticket_age_add| is valid. | 
|  | bool ticket_age_add_valid : 1; | 
|  |  | 
|  | // is_server is whether this session was created by a server. | 
|  | bool is_server : 1; | 
|  |  | 
|  | // is_quic indicates whether this session was created using QUIC. | 
|  | bool is_quic : 1; | 
|  |  | 
|  | // has_application_settings indicates whether ALPS was negotiated in this | 
|  | // session. | 
|  | bool has_application_settings : 1; | 
|  |  | 
|  | // quic_early_data_context is used to determine whether early data must be | 
|  | // rejected when performing a QUIC handshake. | 
|  | bssl::Array<uint8_t> quic_early_data_context; | 
|  |  | 
|  | private: | 
|  | friend RefCounted; | 
|  | ~ssl_session_st(); | 
|  | }; | 
|  |  | 
|  | struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> { | 
|  | ssl_ech_keys_st() : RefCounted(CheckSubClass()) {} | 
|  |  | 
|  | bssl::Vector<bssl::UniquePtr<bssl::ECHServerConfig>> configs; | 
|  |  | 
|  | private: | 
|  | friend RefCounted; | 
|  | ~ssl_ech_keys_st() = default; | 
|  | }; | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_SSL_INTERNAL_H |