blob: 10d34697a82678a974d62d3d1134ca80744416dd [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/span.h>
#include "../internal.h"
#include "../test/test_util.h"
#include "internal.h"
TEST(CBSTest, Skip) {
static const uint8_t kData[] = {1, 2, 3};
CBS data;
CBS_init(&data, kData, sizeof(kData));
EXPECT_EQ(3u, CBS_len(&data));
EXPECT_TRUE(CBS_skip(&data, 1));
EXPECT_EQ(2u, CBS_len(&data));
EXPECT_TRUE(CBS_skip(&data, 2));
EXPECT_EQ(0u, CBS_len(&data));
EXPECT_FALSE(CBS_skip(&data, 1));
}
TEST(CBSTest, GetUint) {
static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
CBS data;
CBS_init(&data, kData, sizeof(kData));
ASSERT_TRUE(CBS_get_u8(&data, &u8));
EXPECT_EQ(1u, u8);
ASSERT_TRUE(CBS_get_u16(&data, &u16));
EXPECT_EQ(0x203u, u16);
ASSERT_TRUE(CBS_get_u24(&data, &u32));
EXPECT_EQ(0x40506u, u32);
ASSERT_TRUE(CBS_get_u32(&data, &u32));
EXPECT_EQ(0x708090au, u32);
ASSERT_TRUE(CBS_get_u64(&data, &u64));
EXPECT_EQ(0xb0c0d0e0f101112u, u64);
ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
EXPECT_EQ(0x14u, u8);
ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
EXPECT_EQ(0x13u, u8);
EXPECT_FALSE(CBS_get_u8(&data, &u8));
EXPECT_FALSE(CBS_get_last_u8(&data, &u8));
CBS_init(&data, kData, sizeof(kData));
ASSERT_TRUE(CBS_get_u16le(&data, &u16));
EXPECT_EQ(0x0201u, u16);
ASSERT_TRUE(CBS_get_u32le(&data, &u32));
EXPECT_EQ(0x06050403u, u32);
ASSERT_TRUE(CBS_get_u64le(&data, &u64));
EXPECT_EQ(0x0e0d0c0b0a090807u, u64);
}
TEST(CBSTest, GetPrefixed) {
static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1};
uint8_t u8;
uint16_t u16;
uint32_t u32;
CBS data, prefixed;
CBS_init(&data, kData, sizeof(kData));
ASSERT_TRUE(CBS_get_u8_length_prefixed(&data, &prefixed));
EXPECT_EQ(1u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u8(&prefixed, &u8));
EXPECT_EQ(2u, u8);
ASSERT_TRUE(CBS_get_u16_length_prefixed(&data, &prefixed));
EXPECT_EQ(2u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u16(&prefixed, &u16));
EXPECT_EQ(0x304u, u16);
ASSERT_TRUE(CBS_get_u24_length_prefixed(&data, &prefixed));
EXPECT_EQ(3u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u24(&prefixed, &u32));
EXPECT_EQ(0x30201u, u32);
}
TEST(CBSTest, GetPrefixedBad) {
static const uint8_t kData1[] = {2, 1};
static const uint8_t kData2[] = {0, 2, 1};
static const uint8_t kData3[] = {0, 0, 2, 1};
CBS data, prefixed;
CBS_init(&data, kData1, sizeof(kData1));
EXPECT_FALSE(CBS_get_u8_length_prefixed(&data, &prefixed));
CBS_init(&data, kData2, sizeof(kData2));
EXPECT_FALSE(CBS_get_u16_length_prefixed(&data, &prefixed));
CBS_init(&data, kData3, sizeof(kData3));
EXPECT_FALSE(CBS_get_u24_length_prefixed(&data, &prefixed));
}
TEST(CBSTest, GetUntilFirst) {
static const uint8_t kData[] = {0, 1, 2, 3, 0, 1, 2, 3};
CBS data;
CBS_init(&data, kData, sizeof(kData));
CBS prefix;
EXPECT_FALSE(CBS_get_until_first(&data, &prefix, 4));
EXPECT_EQ(CBS_data(&data), kData);
EXPECT_EQ(CBS_len(&data), sizeof(kData));
ASSERT_TRUE(CBS_get_until_first(&data, &prefix, 0));
EXPECT_EQ(CBS_len(&prefix), 0u);
EXPECT_EQ(CBS_data(&data), kData);
EXPECT_EQ(CBS_len(&data), sizeof(kData));
ASSERT_TRUE(CBS_get_until_first(&data, &prefix, 2));
EXPECT_EQ(CBS_data(&prefix), kData);
EXPECT_EQ(CBS_len(&prefix), 2u);
EXPECT_EQ(CBS_data(&data), kData + 2);
EXPECT_EQ(CBS_len(&data), sizeof(kData) - 2);
}
TEST(CBSTest, GetASN1) {
static const uint8_t kData1[] = {0x30, 2, 1, 2};
static const uint8_t kData2[] = {0x30, 3, 1, 2};
static const uint8_t kData3[] = {0x30, 0x80};
static const uint8_t kData4[] = {0x30, 0x81, 1, 1};
static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80};
static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1};
static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1};
static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1};
static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff};
CBS data, contents;
int present;
uint64_t value;
CBS_init(&data, kData1, sizeof(kData1));
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_BOOLEAN));
EXPECT_TRUE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData2, sizeof(kData2));
// data is truncated
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData3, sizeof(kData3));
// zero byte length of length
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData4, sizeof(kData4));
// long form mistakenly used.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData5, sizeof(kData5));
// length takes too many bytes.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData1, sizeof(kData1));
// wrong tag.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, 0x31));
CBS_init(&data, NULL, 0);
// peek at empty data.
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
CBS_init(&data, NULL, 0);
// optional elements at empty data.
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, NULL,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
EXPECT_EQ(42u, value);
CBS_init(&data, kData6, sizeof(kData6));
// optional element.
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
EXPECT_TRUE(present);
EXPECT_EQ(Bytes("\x04\x01\x01"),
Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData6, sizeof(kData6));
// optional octet string.
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
EXPECT_TRUE(present);
EXPECT_EQ(Bytes("\x01"), Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData7, sizeof(kData7));
// invalid optional octet string.
EXPECT_FALSE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
CBS_init(&data, kData8, sizeof(kData8));
// optional integer.
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
EXPECT_EQ(42u, value);
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
EXPECT_EQ(1u, value);
CBS_init(&data, kData9, sizeof(kData9));
// invalid optional integer.
EXPECT_FALSE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
CBS_ASN1_TAG tag;
CBS_init(&data, kData1, sizeof(kData1));
ASSERT_TRUE(CBS_get_any_asn1(&data, &contents, &tag));
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
size_t header_len;
CBS_init(&data, kData1, sizeof(kData1));
ASSERT_TRUE(CBS_get_any_asn1_element(&data, &contents, &tag, &header_len));
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
EXPECT_EQ(2u, header_len);
EXPECT_EQ(Bytes("\x30\x02\x01\x02"),
Bytes(CBS_data(&contents), CBS_len(&contents)));
}
TEST(CBSTest, ParseASN1Tag) {
const struct {
bool ok;
CBS_ASN1_TAG tag;
std::vector<uint8_t> in;
} kTests[] = {
{true, CBS_ASN1_SEQUENCE, {0x30, 0}},
{true, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4, {0xa4, 0}},
{true, CBS_ASN1_APPLICATION | 30, {0x5e, 0}},
{true, CBS_ASN1_APPLICATION | 31, {0x5f, 0x1f, 0}},
{true, CBS_ASN1_APPLICATION | 32, {0x5f, 0x20, 0}},
{true,
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff,
{0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 0}},
// Tag number fits in |uint32_t| but not |CBS_ASN1_TAG_NUMBER_MASK|.
{false, 0, {0xff, 0x82, 0xff, 0xff, 0xff, 0x7f, 0}},
// Tag number does not fit in |uint32_t|.
{false, 0, {0xff, 0x90, 0x80, 0x80, 0x80, 0, 0}},
// Tag number is not minimally-encoded
{false, 0, {0x5f, 0x80, 0x1f, 0}},
// Tag number should have used short form.
{false, 0, {0x5f, 0x80, 0x1e, 0}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.in));
CBS_ASN1_TAG tag;
CBS cbs, child;
CBS_init(&cbs, t.in.data(), t.in.size());
ASSERT_EQ(t.ok, !!CBS_get_any_asn1(&cbs, &child, &tag));
if (t.ok) {
EXPECT_EQ(t.tag, tag);
EXPECT_EQ(0u, CBS_len(&child));
EXPECT_EQ(0u, CBS_len(&cbs));
CBS_init(&cbs, t.in.data(), t.in.size());
EXPECT_TRUE(CBS_peek_asn1_tag(&cbs, t.tag));
EXPECT_FALSE(CBS_peek_asn1_tag(&cbs, t.tag + 1));
EXPECT_TRUE(CBS_get_asn1(&cbs, &child, t.tag));
EXPECT_EQ(0u, CBS_len(&child));
EXPECT_EQ(0u, CBS_len(&cbs));
CBS_init(&cbs, t.in.data(), t.in.size());
EXPECT_FALSE(CBS_get_asn1(&cbs, &child, t.tag + 1));
}
}
}
TEST(CBSTest, GetOptionalASN1Bool) {
static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff};
static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00};
static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01};
CBS data;
CBS_init(&data, NULL, 0);
int val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
EXPECT_EQ(0, val);
CBS_init(&data, kTrue, sizeof(kTrue));
val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
EXPECT_EQ(1, val);
CBS_init(&data, kFalse, sizeof(kFalse));
val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
EXPECT_EQ(0, val);
CBS_init(&data, kInvalid, sizeof(kInvalid));
EXPECT_FALSE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
}
// Test that CBB_init may be used on an uninitialized input.
TEST(CBBTest, InitUninitialized) {
CBB cbb;
ASSERT_TRUE(CBB_init(&cbb, 100));
CBB_cleanup(&cbb);
}
TEST(CBBTest, Basic) {
static const uint8_t kExpected[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14,
0x03, 0x02, 0x0a, 0x09, 0x08, 0x07, 0x12, 0x11, 0x10, 0x0f,
0x0e, 0x0d, 0x0c, 0x0b, 0x00, 0x00, 0x00, 0x00};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 100));
cbb.Reset();
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_zeros(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
ASSERT_TRUE(CBB_add_u16(cbb.get(), 0x203));
ASSERT_TRUE(CBB_add_u24(cbb.get(), 0x40506));
ASSERT_TRUE(CBB_add_u32(cbb.get(), 0x708090a));
ASSERT_TRUE(CBB_add_u64(cbb.get(), 0xb0c0d0e0f101112));
ASSERT_TRUE(CBB_add_bytes(cbb.get(), (const uint8_t *)"\x13\x14", 2));
ASSERT_TRUE(CBB_add_u16le(cbb.get(), 0x203));
ASSERT_TRUE(CBB_add_u32le(cbb.get(), 0x708090a));
ASSERT_TRUE(CBB_add_u64le(cbb.get(), 0xb0c0d0e0f101112));
ASSERT_TRUE(CBB_add_zeros(cbb.get(), 4));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, Fixed) {
CBB cbb;
uint8_t buf[1];
uint8_t *out_buf;
size_t out_size;
ASSERT_TRUE(CBB_init_fixed(&cbb, NULL, 0));
ASSERT_TRUE(CBB_finish(&cbb, &out_buf, &out_size));
EXPECT_EQ(NULL, out_buf);
EXPECT_EQ(0u, out_size);
ASSERT_TRUE(CBB_init_fixed(&cbb, buf, 1));
ASSERT_TRUE(CBB_add_u8(&cbb, 1));
ASSERT_TRUE(CBB_finish(&cbb, &out_buf, &out_size));
EXPECT_EQ(buf, out_buf);
EXPECT_EQ(1u, out_size);
EXPECT_EQ(1u, buf[0]);
ASSERT_TRUE(CBB_init_fixed(&cbb, buf, 1));
ASSERT_TRUE(CBB_add_u8(&cbb, 1));
EXPECT_FALSE(CBB_add_u8(&cbb, 2));
// We do not need |CBB_cleanup| or |bssl::ScopedCBB| here because a fixed
// |CBB| has no allocations. Leak-checking tools will confirm there was
// nothing to clean up.
// However, it should be harmless to call |CBB_cleanup|.
CBB cbb2;
ASSERT_TRUE(CBB_init_fixed(&cbb2, buf, 1));
ASSERT_TRUE(CBB_add_u8(&cbb2, 1));
EXPECT_FALSE(CBB_add_u8(&cbb2, 2));
CBB_cleanup(&cbb2);
}
// Test that calling CBB_finish on a child does nothing.
TEST(CBBTest, FinishChild) {
CBB child;
uint8_t *out_buf;
size_t out_size;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 16));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
EXPECT_FALSE(CBB_finish(&child, &out_buf, &out_size));
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
bssl::UniquePtr<uint8_t> scoper(out_buf);
ASSERT_EQ(1u, out_size);
EXPECT_EQ(0u, out_buf[0]);
}
TEST(CBBTest, Prefixed) {
static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3,
4, 5, 6, 5, 4, 1, 0, 1, 2};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
CBB contents, inner_contents, inner_inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
EXPECT_EQ(0u, CBB_len(cbb.get()));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 1));
EXPECT_EQ(1u, CBB_len(&contents));
ASSERT_TRUE(CBB_flush(cbb.get()));
EXPECT_EQ(3u, CBB_len(cbb.get()));
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u16(&contents, 0x203));
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u24(&contents, 0x40506));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_contents, 1));
ASSERT_TRUE(
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 2));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, DiscardChild) {
bssl::ScopedCBB cbb;
CBB contents, inner_contents, inner_inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 0xaa));
// Discarding |cbb|'s children preserves the byte written.
CBB_discard_child(cbb.get());
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 0xbb));
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u16(&contents, 0xcccc));
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u24(&contents, 0xdddddd));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 0xff));
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_contents, 0x42));
ASSERT_TRUE(
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 0x99));
// Discard everything from |inner_contents| down.
CBB_discard_child(&contents);
uint8_t *buf;
size_t buf_len;
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
static const uint8_t kExpected[] = {
0xaa,
0,
1, 0xbb,
0, 2, 0xcc, 0xcc,
0, 0, 3, 0xdd, 0xdd, 0xdd,
1, 0xff,
};
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, Misuse) {
bssl::ScopedCBB cbb;
CBB child, contents;
uint8_t *buf;
size_t buf_len;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
ASSERT_TRUE(CBB_add_u8(&child, 1));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 2));
// Since we wrote to |cbb|, |child| is now invalid and attempts to write to
// it should fail.
EXPECT_FALSE(CBB_add_u8(&child, 1));
EXPECT_FALSE(CBB_add_u16(&child, 1));
EXPECT_FALSE(CBB_add_u24(&child, 1));
EXPECT_FALSE(CBB_add_u8_length_prefixed(&child, &contents));
EXPECT_FALSE(CBB_add_u16_length_prefixed(&child, &contents));
EXPECT_FALSE(CBB_add_asn1(&child, &contents, 1));
EXPECT_FALSE(CBB_add_bytes(&child, (const uint8_t*) "a", 1));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes("\x01\x01\x02"), Bytes(buf, buf_len));
}
TEST(CBBTest, ASN1) {
static const uint8_t kExpected[] = {
// SEQUENCE { 1 2 3 }
0x30, 3, 1, 2, 3,
// [4 CONSTRUCTED] { 4 5 6 }
0xa4, 3, 4, 5, 6,
// [APPLICATION 30 PRIMITIVE] { 7 8 9 }
0x5e, 3, 7, 8, 9,
// [APPLICATION 31 PRIMITIVE] { 10 11 12 }
0x5f, 0x1f, 3, 10, 11, 12,
// [PRIVATE 2^29-1 CONSTRUCTED] { 13 14 15 }
0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 3, 13, 14, 15,
};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
CBB contents, inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x01\x02\x03", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x04\x05\x06", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_APPLICATION | 30));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x07\x08\x09", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_APPLICATION | 31));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0a\x0b\x0c", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0d\x0e\x0f", 3));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
std::vector<uint8_t> test_data(100000, 0x42);
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 130));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(3u + 130u, buf_len);
EXPECT_EQ(Bytes("\x30\x81\x82"), Bytes(buf, 3));
EXPECT_EQ(Bytes(test_data.data(), 130), Bytes(buf + 3, 130));
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 1000));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(4u + 1000u, buf_len);
EXPECT_EQ(Bytes("\x30\x82\x03\xe8"), Bytes(buf, 4));
EXPECT_EQ(Bytes(test_data.data(), 1000), Bytes(buf + 4, 1000));
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&contents, &inner_contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&inner_contents, test_data.data(), 100000));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(5u + 5u + 100000u, buf_len);
EXPECT_EQ(Bytes("\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0"), Bytes(buf, 10));
EXPECT_EQ(Bytes(test_data.data(), test_data.size()), Bytes(buf + 10, 100000));
}
static void ExpectBerConvert(const char *name,
bssl::Span<const uint8_t> der_expected,
bssl::Span<const uint8_t> ber) {
SCOPED_TRACE(name);
CBS in, out;
uint8_t *storage;
CBS_init(&in, ber.data(), ber.size());
ASSERT_TRUE(CBS_asn1_ber_to_der(&in, &out, &storage));
bssl::UniquePtr<uint8_t> scoper(storage);
EXPECT_EQ(Bytes(der_expected), Bytes(CBS_data(&out), CBS_len(&out)));
if (storage != nullptr) {
EXPECT_NE(Bytes(der_expected), Bytes(ber));
} else {
EXPECT_EQ(Bytes(der_expected), Bytes(ber));
}
}
TEST(CBSTest, BerConvert) {
static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00};
// kNonMinimalLengthBER has a non-minimally encoded length.
static const uint8_t kNonMinimalLengthBER[] = {0x02, 0x82, 0x00, 0x01, 0x01};
static const uint8_t kNonMinimalLengthDER[] = {0x02, 0x01, 0x01};
// kIndefBER contains a SEQUENCE with an indefinite length.
static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00};
static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02};
// kIndefBER2 contains a constructed [APPLICATION 31] with an indefinite
// length.
static const uint8_t kIndefBER2[] = {0x7f, 0x1f, 0x80, 0x01,
0x01, 0x02, 0x00, 0x00};
static const uint8_t kIndefDER2[] = {0x7f, 0x1f, 0x03, 0x01, 0x01, 0x02};
// kOctetStringBER contains an indefinite length OCTET STRING with two parts.
// These parts need to be concatenated in DER form.
static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0, 1,
0x04, 0x02, 2, 3, 0x00, 0x00};
static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3};
// kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite
// length elements extensively.
static const uint8_t kNSSBER[] = {
0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90,
0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04,
0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b,
0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00,
};
static const uint8_t kNSSDER[] = {
0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06,
0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84,
0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8,
0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38,
0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0,
0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0,
};
// kConstructedStringBER contains a deeply-nested constructed OCTET STRING.
// The BER conversion collapses this to one level deep, but not completely.
static const uint8_t kConstructedStringBER[] = {
0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01,
0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03,
};
static const uint8_t kConstructedStringDER[] = {
0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03,
};
// kConstructedBitString contains a BER constructed BIT STRING. These are not
// supported and thus are left unchanged.
static const uint8_t kConstructedBitStringBER[] = {
0x23, 0x0a, 0x03, 0x03, 0x00, 0x12, 0x34, 0x03, 0x03, 0x00, 0x56, 0x78};
ExpectBerConvert("kSimpleBER", kSimpleBER, kSimpleBER);
ExpectBerConvert("kNonMinimalLengthBER", kNonMinimalLengthDER,
kNonMinimalLengthBER);
ExpectBerConvert("kIndefBER", kIndefDER, kIndefBER);
ExpectBerConvert("kIndefBER2", kIndefDER2, kIndefBER2);
ExpectBerConvert("kOctetStringBER", kOctetStringDER, kOctetStringBER);
ExpectBerConvert("kNSSBER", kNSSDER, kNSSBER);
ExpectBerConvert("kConstructedStringBER", kConstructedStringDER,
kConstructedStringBER);
ExpectBerConvert("kConstructedBitStringBER", kConstructedBitStringBER,
kConstructedBitStringBER);
}
struct BERTest {
const char *in_hex;
bool ok;
bool ber_found;
bool indefinite;
CBS_ASN1_TAG tag;
};
static const BERTest kBERTests[] = {
// Trivial cases, also valid DER.
{"0100", true, false, false, 1},
{"020101", true, false, false, 2},
// Non-minimally encoded lengths.
{"02810101", true, true, false, 2},
{"0282000101", true, true, false, 2},
{"028300000101", true, true, false, 2},
{"02840000000101", true, true, false, 2},
// Technically valid BER, but not handled.
{"02850000000101", false, false, false, 0},
// Indefinite length, but not constructed.
{"0280", false, false, false, 0},
// Indefinite length.
{"2280", true, true, true, CBS_ASN1_CONSTRUCTED | 2},
// Indefinite length with multi-byte tag.
{"bf1f80", true, true, true,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 31},
// Invalid extended tag zero (X.690 8.1.2.4.2.c)
{"3f0000", false, false, false, 0},
// Should be a low-number tag form, even in BER.
{"1f0100", false, false, false, 0},
{"1f4000", true, false, false, 0x40},
// Non-minimal tags are invalid, even in BER.
{"1f804000", false, false, false, 0},
// EOCs and other forms of tag [UNIVERSAL 0] are rejected as elements.
{"0000", false, false, false, 0},
{"000100", false, false, false, 0},
{"00800000", false, false, false, 0},
{"2000", false, false, false, 0},
};
TEST(CBSTest, BERElementTest) {
for (const auto &test : kBERTests) {
SCOPED_TRACE(test.in_hex);
std::vector<uint8_t> in_bytes;
ASSERT_TRUE(DecodeHex(&in_bytes, test.in_hex));
CBS in(in_bytes);
CBS out;
CBS_ASN1_TAG tag;
size_t header_len;
int ber_found;
int indefinite;
int ok = CBS_get_any_ber_asn1_element(&in, &out, &tag, &header_len,
&ber_found, &indefinite);
ASSERT_TRUE((ok == 1) == test.ok);
if (!test.ok) {
continue;
}
EXPECT_EQ(test.ber_found ? 1 : 0, ber_found);
EXPECT_EQ(test.indefinite ? 1 : 0, indefinite);
EXPECT_LE(header_len, in_bytes.size());
EXPECT_EQ(CBS_len(&out), in_bytes.size());
EXPECT_EQ(CBS_len(&in), 0u);
EXPECT_EQ(Bytes(out), Bytes(in_bytes));
EXPECT_EQ(tag, test.tag);
}
}
struct ImplicitStringTest {
const char *in;
size_t in_len;
bool ok;
const char *out;
size_t out_len;
};
static const ImplicitStringTest kImplicitStringTests[] = {
// A properly-encoded string.
{"\x80\x03\x61\x61\x61", 5, true, "aaa", 3},
// An implicit-tagged string.
{"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3},
// |CBS_get_asn1_implicit_string| only accepts one level deep of nesting.
{"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr,
0},
// The outer tag must match.
{"\x81\x03\x61\x61\x61", 5, false, nullptr, 0},
{"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0},
// The inner tag must match.
{"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0},
};
TEST(CBSTest, ImplicitString) {
for (const auto &test : kImplicitStringTests) {
SCOPED_TRACE(Bytes(test.in, test.in_len));
uint8_t *storage = nullptr;
CBS in, out;
CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len);
int ok = CBS_get_asn1_implicit_string(&in, &out, &storage,
CBS_ASN1_CONTEXT_SPECIFIC | 0,
CBS_ASN1_OCTETSTRING);
bssl::UniquePtr<uint8_t> scoper(storage);
EXPECT_EQ(test.ok, static_cast<bool>(ok));
if (ok) {
EXPECT_EQ(Bytes(test.out, test.out_len),
Bytes(CBS_data(&out), CBS_len(&out)));
}
}
}
struct ASN1Uint64Test {
uint64_t value;
const char *encoding;
size_t encoding_len;
};
static const ASN1Uint64Test kASN1Uint64Tests[] = {
{0, "\x02\x01\x00", 3},
{1, "\x02\x01\x01", 3},
{127, "\x02\x01\x7f", 3},
{128, "\x02\x02\x00\x80", 4},
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7},
{UINT64_C(0x0102030405060708),
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{UINT64_C(0xffffffffffffffff),
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidUint64Test {
const char *encoding;
size_t encoding_len;
bool overflow;
};
static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = {
// Bad tag.
{"\x03\x01\x00", 3, false},
// Empty contents.
{"\x02\x00", 2, false},
// Negative number.
{"\x02\x01\x80", 3, false},
// Overflow.
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11, true},
// Leading zeros.
{"\x02\x02\x00\x01", 4, false},
};
TEST(CBSTest, ASN1Uint64) {
for (const ASN1Uint64Test &test : kASN1Uint64Tests) {
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len));
SCOPED_TRACE(test.value);
CBS cbs;
uint64_t value;
uint8_t *out;
size_t len;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
ASSERT_TRUE(CBS_get_asn1_uint64(&cbs, &value));
EXPECT_EQ(0u, CBS_len(&cbs));
EXPECT_EQ(test.value, value);
CBS child;
int is_negative;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
ASSERT_TRUE(CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER));
EXPECT_TRUE(CBS_is_valid_asn1_integer(&child, &is_negative));
EXPECT_EQ(0, is_negative);
EXPECT_TRUE(CBS_is_unsigned_asn1_integer(&child));
{
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_uint64(cbb.get(), test.value));
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> scoper(out);
EXPECT_EQ(Bytes(test.encoding, test.encoding_len), Bytes(out, len));
}
{
// Overwrite the tag.
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_uint64_with_tag(cbb.get(), test.value,
CBS_ASN1_CONTEXT_SPECIFIC | 1));
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> scoper(out);
std::vector<uint8_t> expected(test.encoding,
test.encoding + test.encoding_len);
expected[0] = 0x81;
EXPECT_EQ(Bytes(expected), Bytes(out, len));
}
}
for (const ASN1InvalidUint64Test &test : kASN1InvalidUint64Tests) {
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len));
CBS cbs;
uint64_t value;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
EXPECT_FALSE(CBS_get_asn1_uint64(&cbs, &value));
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
CBS child;
if (CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)) {
EXPECT_EQ(test.overflow, !!CBS_is_unsigned_asn1_integer(&child));
}
}
}
struct ASN1Int64Test {
int64_t value;
const char *encoding;
size_t encoding_len;
};
static const ASN1Int64Test kASN1Int64Tests[] = {
{0, "\x02\x01\x00", 3},
{1, "\x02\x01\x01", 3},
{-1, "\x02\x01\xff", 3},
{127, "\x02\x01\x7f", 3},
{-127, "\x02\x01\x81", 3},
{128, "\x02\x02\x00\x80", 4},
{-128, "\x02\x01\x80", 3},
{129, "\x02\x02\x00\x81", 4},
{-129, "\x02\x02\xff\x7f", 4},
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7},
{INT64_C(0x0102030405060708), "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08",
10},
{INT64_MIN, "\x02\x08\x80\x00\x00\x00\x00\x00\x00\x00", 10},
{INT64_MAX, "\x02\x08\x7f\xff\xff\xff\xff\xff\xff\xff", 10},
};
struct ASN1InvalidInt64Test {
const char *encoding;
size_t encoding_len;
bool overflow;
};
static const ASN1InvalidInt64Test kASN1InvalidInt64Tests[] = {
// Bad tag.
{"\x03\x01\x00", 3, false},
// Empty contents.
{"\x02\x00", 2, false},
// Overflow.
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11, true},
// Underflow.
{"\x02\x09\x08\xff\xff\xff\xff\xff\xff\xff\xff", 11, true},
// Leading zeros.
{"\x02\x02\x00\x01", 4, false},
// Leading 0xff.
{"\x02\x02\xff\xff", 4, false},
};
TEST(CBSTest, ASN1Int64) {
for (const ASN1Int64Test &test : kASN1Int64Tests) {
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len));
SCOPED_TRACE(test.value);
CBS cbs;
int64_t value;
uint8_t *out;
size_t len;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
ASSERT_TRUE(CBS_get_asn1_int64(&cbs, &value));
EXPECT_EQ(0u, CBS_len(&cbs));
EXPECT_EQ(test.value, value);
CBS child;
int is_negative;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
ASSERT_TRUE(CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER));
EXPECT_TRUE(CBS_is_valid_asn1_integer(&child, &is_negative));
EXPECT_EQ(test.value < 0, !!is_negative);
EXPECT_EQ(test.value >= 0, !!CBS_is_unsigned_asn1_integer(&child));
{
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_int64(cbb.get(), test.value));
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> scoper(out);
EXPECT_EQ(Bytes(test.encoding, test.encoding_len), Bytes(out, len));
}
{
// Overwrite the tag.
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_int64_with_tag(cbb.get(), test.value,
CBS_ASN1_CONTEXT_SPECIFIC | 1));
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> scoper(out);
std::vector<uint8_t> expected(test.encoding,
test.encoding + test.encoding_len);
expected[0] = 0x81;
EXPECT_EQ(Bytes(expected), Bytes(out, len));
}
}
for (const ASN1InvalidInt64Test &test : kASN1InvalidInt64Tests) {
SCOPED_TRACE(Bytes(test.encoding, test.encoding_len));
CBS cbs;
int64_t value;
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
EXPECT_FALSE(CBS_get_asn1_int64(&cbs, &value));
CBS_init(&cbs, (const uint8_t *)test.encoding, test.encoding_len);
CBS child;
if (CBS_get_asn1(&cbs, &child, CBS_ASN1_INTEGER)) {
EXPECT_EQ(test.overflow, !!CBS_is_valid_asn1_integer(&child, NULL));
}
}
}
TEST(CBBTest, Zero) {
CBB cbb;
CBB_zero(&cbb);
// Calling |CBB_cleanup| on a zero-state |CBB| must not crash.
CBB_cleanup(&cbb);
}
TEST(CBBTest, Reserve) {
uint8_t buf[10];
uint8_t *ptr;
size_t len;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
// Too large.
EXPECT_FALSE(CBB_reserve(cbb.get(), &ptr, 11));
cbb.Reset();
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
// Successfully reserve the entire space.
ASSERT_TRUE(CBB_reserve(cbb.get(), &ptr, 10));
EXPECT_EQ(buf, ptr);
// Advancing under the maximum bytes is legal.
ASSERT_TRUE(CBB_did_write(cbb.get(), 5));
ASSERT_TRUE(CBB_finish(cbb.get(), NULL, &len));
EXPECT_EQ(5u, len);
}
// Test that CBB errors are sticky; once on operation on CBB fails, all
// subsequent ones do.
TEST(CBBTest, StickyError) {
// Write an input that exceeds the limit for its length prefix.
bssl::ScopedCBB cbb;
CBB child;
static const uint8_t kZeros[256] = {0};
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
ASSERT_TRUE(CBB_add_bytes(&child, kZeros, sizeof(kZeros)));
ASSERT_FALSE(CBB_flush(cbb.get()));
// All future operations should fail.
uint8_t *ptr;
size_t len;
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
// Write an input that cannot fit in a fixed CBB.
cbb.Reset();
uint8_t buf;
ASSERT_TRUE(CBB_init_fixed(cbb.get(), &buf, 1));
ASSERT_FALSE(CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros)));
// All future operations should fail.
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
// Write a u32 that cannot fit in a u24.
cbb.Reset();
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_FALSE(CBB_add_u24(cbb.get(), 1u << 24));
// All future operations should fail.
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
}
TEST(CBSTest, BitString) {
static const std::vector<uint8_t> kValidBitStrings[] = {
{0x00}, // 0 bits
{0x07, 0x80}, // 1 bit
{0x04, 0xf0}, // 4 bits
{0x00, 0xff}, // 8 bits
{0x06, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0}, // 42 bits
};
for (const auto& test : kValidBitStrings) {
SCOPED_TRACE(Bytes(test.data(), test.size()));
CBS cbs;
CBS_init(&cbs, test.data(), test.size());
EXPECT_TRUE(CBS_is_valid_asn1_bitstring(&cbs));
}
static const std::vector<uint8_t> kInvalidBitStrings[] = {
// BIT STRINGs always have a leading byte.
std::vector<uint8_t>{},
// It's not possible to take an unused bit off the empty string.
{0x01},
// There can be at most 7 unused bits.
{0x08, 0xff},
{0xff, 0xff},
// All unused bits must be cleared.
{0x06, 0xff, 0xc1},
};
for (const auto& test : kInvalidBitStrings) {
SCOPED_TRACE(Bytes(test.data(), test.size()));
CBS cbs;
CBS_init(&cbs, test.data(), test.size());
EXPECT_FALSE(CBS_is_valid_asn1_bitstring(&cbs));
// CBS_asn1_bitstring_has_bit returns false on invalid inputs.
EXPECT_FALSE(CBS_asn1_bitstring_has_bit(&cbs, 0));
}
static const struct {
std::vector<uint8_t> in;
unsigned bit;
bool bit_set;
} kBitTests[] = {
// Basic tests.
{{0x00}, 0, false},
{{0x07, 0x80}, 0, true},
{{0x06, 0x0f, 0x40}, 0, false},
{{0x06, 0x0f, 0x40}, 1, false},
{{0x06, 0x0f, 0x40}, 2, false},
{{0x06, 0x0f, 0x40}, 3, false},
{{0x06, 0x0f, 0x40}, 4, true},
{{0x06, 0x0f, 0x40}, 5, true},
{{0x06, 0x0f, 0x40}, 6, true},
{{0x06, 0x0f, 0x40}, 7, true},
{{0x06, 0x0f, 0x40}, 8, false},
{{0x06, 0x0f, 0x40}, 9, true},
// Out-of-bounds bits return 0.
{{0x06, 0x0f, 0x40}, 10, false},
{{0x06, 0x0f, 0x40}, 15, false},
{{0x06, 0x0f, 0x40}, 16, false},
{{0x06, 0x0f, 0x40}, 1000, false},
};
for (const auto& test : kBitTests) {
SCOPED_TRACE(Bytes(test.in.data(), test.in.size()));
SCOPED_TRACE(test.bit);
CBS cbs;
CBS_init(&cbs, test.in.data(), test.in.size());
EXPECT_EQ(static_cast<int>(test.bit_set),
CBS_asn1_bitstring_has_bit(&cbs, test.bit));
}
}
TEST(CBBTest, AddOIDFromText) {
const struct {
const char *text;
std::vector<uint8_t> der;
} kValidOIDs[] = {
// Some valid values.
{"0.0", {0x00}},
{"0.2.3.4", {0x2, 0x3, 0x4}},
{"1.2.3.4", {0x2a, 0x3, 0x4}},
{"2.2.3.4", {0x52, 0x3, 0x4}},
{"1.2.840.113554.4.1.72585",
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09}},
// Test edge cases around the first component.
{"0.39", {0x27}},
{"1.0", {0x28}},
{"1.39", {0x4f}},
{"2.0", {0x50}},
{"2.1", {0x51}},
{"2.40", {0x78}},
// Edge cases near an overflow.
{"1.2.18446744073709551615",
{0x2a, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
{"2.18446744073709551535",
{0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
};
const char *kInvalidTexts[] = {
// Invalid second component.
"0.40",
"1.40",
// Invalid first component.
"3.1",
// The empty string is not an OID.
"",
// No empty components.
".1.2.3.4.5",
"1..2.3.4.5",
"1.2.3.4.5.",
// There must be at least two components.
"1",
// No extra leading zeros.
"00.1.2.3.4",
"01.1.2.3.4",
// Overflow for both components or 40*A + B.
"1.2.18446744073709551616",
"2.18446744073709551536",
};
const struct {
std::vector<uint8_t> der;
// If true, |der| is valid but has a component that exceeds 2^64-1.
bool overflow;
} kInvalidDER[] = {
// The empty string is not an OID.
{{}, false},
// Non-minimal representation.
{{0x80, 0x01}, false},
// Unterminated integer.
{{0x01, 0x02, 0x83}, false},
// Overflow. This is the DER representation of
// 1.2.840.113554.4.1.72585.18446744073709551616. (The final value is
// 2^64.)
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09,
0x82, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00},
true},
};
for (const auto &t : kValidOIDs) {
SCOPED_TRACE(t.text);
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_oid_from_text(cbb.get(), t.text, strlen(t.text)));
uint8_t *out;
size_t len;
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> free_out(out);
EXPECT_EQ(Bytes(t.der), Bytes(out, len));
CBS cbs;
CBS_init(&cbs, t.der.data(), t.der.size());
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
ASSERT_TRUE(text.get());
EXPECT_STREQ(t.text, text.get());
EXPECT_TRUE(CBS_is_valid_asn1_oid(&cbs));
}
for (const char *t : kInvalidTexts) {
SCOPED_TRACE(t);
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
EXPECT_FALSE(CBB_add_asn1_oid_from_text(cbb.get(), t, strlen(t)));
}
for (const auto &t : kInvalidDER) {
SCOPED_TRACE(Bytes(t.der));
CBS cbs;
CBS_init(&cbs, t.der.data(), t.der.size());
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
EXPECT_FALSE(text);
EXPECT_EQ(t.overflow ? 1 : 0, CBS_is_valid_asn1_oid(&cbs));
}
}
TEST(CBBTest, FlushASN1SetOf) {
const struct {
std::vector<uint8_t> in, out;
} kValidInputs[] = {
// No elements.
{{}, {}},
// One element.
{{0x30, 0x00}, {0x30, 0x00}},
// Two identical elements.
{{0x30, 0x00, 0x30, 0x00}, {0x30, 0x00, 0x30, 0x00}},
// clang-format off
{{0x30, 0x02, 0x00, 0x00,
0x30, 0x00,
0x01, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x00,
0x30, 0x00,
0x30, 0x03, 0x00, 0x00, 0x01,
0x30, 0x01, 0x00,
0x01, 0x01, 0x00},
{0x01, 0x00,
0x01, 0x01, 0x00,
0x30, 0x00,
0x30, 0x00,
0x30, 0x01, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x01}},
// clang-format on
};
for (const auto &t : kValidInputs) {
SCOPED_TRACE(Bytes(t.in));
bssl::ScopedCBB cbb;
CBB child;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
ASSERT_TRUE(CBB_add_bytes(&child, t.in.data(), t.in.size()));
ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
// Running it again should be idempotent.
ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
// The ASN.1 header remain intact.
ASSERT_TRUE(CBB_flush(cbb.get()));
EXPECT_EQ(0x31, CBB_data(cbb.get())[0]);
}
const std::vector<uint8_t> kInvalidInputs[] = {
{0x30},
{0x30, 0x01},
{0x30, 0x00, 0x30, 0x00, 0x30, 0x01},
};
for (const auto &t : kInvalidInputs) {
SCOPED_TRACE(Bytes(t));
bssl::ScopedCBB cbb;
CBB child;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
ASSERT_TRUE(CBB_add_bytes(&child, t.data(), t.size()));
EXPECT_FALSE(CBB_flush_asn1_set_of(&child));
}
}
template <class T>
static std::vector<uint8_t> LiteralToBytes(const T *str) {
std::vector<uint8_t> ret;
for (; *str != 0; str++) {
for (size_t i = 0; i < sizeof(T); i++) {
ret.push_back(static_cast<uint8_t>(*str >> (8 * (sizeof(T) - 1 - i))));
}
}
return ret;
}
static std::vector<uint32_t> LiteralToCodePoints(const char32_t *str) {
std::vector<uint32_t> ret;
for (; *str != 0; str++) {
ret.push_back(static_cast<uint32_t>(*str));
}
return ret;
}
TEST(CBBTest, Unicode) {
struct {
int (*decode)(CBS *, uint32_t *);
int (*encode)(CBB *, uint32_t);
std::vector<uint8_t> in;
std::vector<uint32_t> out;
bool ok;
} kTests[] = {
{cbs_get_utf8, cbb_add_utf8,
// This test string captures all four cases in UTF-8.
LiteralToBytes(u8"Hello, 世界! ¡Hola, 🌎!"),
LiteralToCodePoints(U"Hello, 世界! ¡Hola, 🌎!"), true},
// Some invalid inputs adapted from
// http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt
// 2.1 First possible sequence of a certain length. (5- and 6-bit
// sequences no longer exist.)
{cbs_get_utf8, cbb_add_utf8, {0xf8, 0x88, 0x80, 0x80, 0x80}, {}, false},
{cbs_get_utf8,
cbb_add_utf8,
{0xfc, 0x84, 0x80, 0x80, 0x80, 0x80},
{},
false},
// 3.1 Unexpected continuation bytes.
{cbs_get_utf8, cbb_add_utf8, {0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xbf}, {}, false},
// 3.2 Lonely start characters.
{cbs_get_utf8, cbb_add_utf8, {0xc0, ' '}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xe0, ' '}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, ' '}, {}, false},
// 3.3 Sequences with last continuation byte missing
{cbs_get_utf8, cbb_add_utf8, {0xc0}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80}, {}, false},
// Variation of the above with unexpected spaces.
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, ' '}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, ' '}, {}, false},
// 4.1 Examples of an overlong ASCII character
{cbs_get_utf8, cbb_add_utf8, {0xc0, 0xaf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, 0xaf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, 0xaf}, {}, false},
// 4.2 Maximum overlong sequences
{cbs_get_utf8, cbb_add_utf8, {0xc1, 0xbf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x9f, 0xbf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x8f, 0xbf, 0xbf}, {}, false},
// 4.3 Overlong representation of the NUL character
{cbs_get_utf8, cbb_add_utf8, {0xc0, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xe0, 0x80, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x80, 0x80, 0x80}, {}, false},
// 5.1 Single UTF-16 surrogates
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xa0, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xad, 0xbf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xae, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xb0, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xbe, 0x80}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xed, 0xbf, 0xbf}, {}, false},
// 5.2 Paired UTF-16 surrogates
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xa0, 0x80, 0xed, 0xb0, 0x80},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xa0, 0x80, 0xed, 0xbf, 0xbf},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xad, 0xbf, 0xed, 0xb0, 0x80},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xad, 0xbf, 0xed, 0xbf, 0xbf},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xae, 0x80, 0xed, 0xb0, 0x80},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xae, 0x80, 0xed, 0xbf, 0xbf},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xaf, 0xbf, 0xed, 0xb0, 0x80},
{},
false},
{cbs_get_utf8,
cbb_add_utf8,
{0xed, 0xaf, 0xbf, 0xed, 0xbf, 0xbf},
{},
false},
// 5.3 Noncharacter code positions
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xbf, 0xbe}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xbf, 0xbf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xb7, 0x90}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xef, 0xb7, 0xaf}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x9f, 0xbf, 0xbe}, {}, false},
{cbs_get_utf8, cbb_add_utf8, {0xf0, 0x9f, 0xbf, 0xbf}, {}, false},
{cbs_get_latin1, cbb_add_latin1, LiteralToBytes("\xa1Hola!"),
LiteralToCodePoints(U"¡Hola!"), true},
// UCS-2 matches UTF-16 on the BMP.
{cbs_get_ucs2_be, cbb_add_ucs2_be, LiteralToBytes(u"Hello, 世界!"),
LiteralToCodePoints(U"Hello, 世界!"), true},
// It does not support characters beyond the BMP.
{cbs_get_ucs2_be, cbb_add_ucs2_be,
LiteralToBytes(u"Hello, 世界! ¡Hola, 🌎!"),
LiteralToCodePoints(U"Hello, 世界! ¡Hola, "), false},
// Unpaired surrogates and non-characters are also rejected.
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0xd8, 0x00}, {}, false},
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0xff, 0xfe}, {}, false},
{cbs_get_utf32_be, cbb_add_utf32_be,
LiteralToBytes(U"Hello, 世界! ¡Hola, 🌎!"),
LiteralToCodePoints(U"Hello, 世界! ¡Hola, 🌎!"), true},
// Unpaired surrogates and non-characters are rejected.
{cbs_get_utf32_be, cbb_add_utf32_be, {0x00, 0x00, 0xd8, 0x00}, {}, false},
{cbs_get_utf32_be, cbb_add_utf32_be, {0x00, 0x00, 0xff, 0xfe}, {}, false},
// Test that the NUL character can be encoded.
{cbs_get_latin1, cbb_add_latin1, {0}, {0}, true},
{cbs_get_utf8, cbb_add_utf8, {0}, {0}, true},
{cbs_get_ucs2_be, cbb_add_ucs2_be, {0, 0}, {0}, true},
{cbs_get_utf32_be, cbb_add_utf32_be, {0, 0, 0, 0}, {0}, true},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.in));
// Test decoding.
CBS cbs;
CBS_init(&cbs, t.in.data(), t.in.size());
std::vector<uint32_t> out;
bool ok = true;
while (CBS_len(&cbs) != 0) {
uint32_t u;
if (!t.decode(&cbs, &u)) {
ok = false;
break;
}
out.push_back(u);
}
EXPECT_EQ(t.ok, ok);
EXPECT_EQ(t.out, out);
// Test encoding.
if (t.ok) {
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
for (uint32_t u : t.out) {
ASSERT_TRUE(t.encode(cbb.get(), u));
}
EXPECT_EQ(Bytes(t.in), Bytes(CBB_data(cbb.get()), CBB_len(cbb.get())));
}
}
static const uint32_t kBadCodePoints[] = {
// Surrogate pairs.
0xd800,
0xdfff,
// Non-characters.
0xfffe,
0xffff,
0xfdd0,
0x1fffe,
0x1ffff,
// Too big.
0x110000,
};
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
for (uint32_t v : kBadCodePoints) {
SCOPED_TRACE(v);
EXPECT_FALSE(cbb_add_utf8(cbb.get(), v));
EXPECT_FALSE(cbb_add_latin1(cbb.get(), v));
EXPECT_FALSE(cbb_add_ucs2_be(cbb.get(), v));
EXPECT_FALSE(cbb_add_utf32_be(cbb.get(), v));
}
// Additional values that are out of range.
EXPECT_FALSE(cbb_add_latin1(cbb.get(), 0x100));
EXPECT_FALSE(cbb_add_ucs2_be(cbb.get(), 0x10000));
EXPECT_EQ(1u, cbb_get_utf8_len(0));
EXPECT_EQ(1u, cbb_get_utf8_len(0x7f));
EXPECT_EQ(2u, cbb_get_utf8_len(0x80));
EXPECT_EQ(2u, cbb_get_utf8_len(0x7ff));
EXPECT_EQ(3u, cbb_get_utf8_len(0x800));
EXPECT_EQ(3u, cbb_get_utf8_len(0xffff));
EXPECT_EQ(4u, cbb_get_utf8_len(0x10000));
EXPECT_EQ(4u, cbb_get_utf8_len(0x10ffff));
}
TEST(CBSTest, BogusTime) {
static const struct {
const char *timestring;
} kBogusTimeTests[] = {
{""},
{"invalidtimesZ"},
{"Z"},
{"0000"},
{"9999Z"},
{"00000000000000000000000000000Z"},
{"19491231235959"},
{"500101000000.001Z"},
{"500101000000+6"},
{"-1970010100000Z"},
{"7a0101000000Z"},
{"20500101000000-6"},
{"20500101000000.001"},
{"20500229000000Z"},
{"220229000000Z"},
{"20500132000000Z"},
{"220132000000Z"},
{"20500332000000Z"},
{"220332000000Z"},
{"20500532000000Z"},
{"220532000000Z"},
{"20500732000000Z"},
{"220732000000Z"},
{"20500832000000Z"},
{"220832000000Z"},
{"20501032000000Z"},
{"221032000000Z"},
{"20501232000000Z"},
{"221232000000Z"},
{"20500431000000Z"},
{"220431000000Z"},
{"20500631000000Z"},
{"220631000000Z"},
{"20500931000000Z"},
{"220931000000Z"},
{"20501131000000Z"},
{"221131000000Z"},
{"20501100000000Z"},
{"221100000000Z"},
{"19500101000000+0600"},
};
for (const auto &t : kBogusTimeTests) {
SCOPED_TRACE(t.timestring);
CBS cbs;
CBS_init(&cbs, (const uint8_t *)t.timestring, strlen(t.timestring));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1));
}
static const struct {
const char *timestring;
} kUTCTZTests[] = {
{"480711220333-0700"},
{"140704000000-0700"},
{"480222202332-0500"},
{"480726113216-0000"},
{"480726113216-2359"},
};
for (const auto &t : kUTCTZTests) {
SCOPED_TRACE(t.timestring);
CBS cbs;
CBS_init(&cbs, (const uint8_t *)t.timestring, strlen(t.timestring));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/1));
EXPECT_TRUE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/0));
}
static const struct {
const char *timestring;
} kBogusUTCTZTests[] = {
{"480711220333-0160"},
{"140704000000-9999"},
{"480222202332-2400"},
};
for (const auto &t : kBogusUTCTZTests) {
SCOPED_TRACE(t.timestring);
CBS cbs;
CBS_init(&cbs, (const uint8_t *)t.timestring, strlen(t.timestring));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1));
}
static const struct {
const char *timestring;
} kGenTZTests[] = {
{"20480711220333-0000"},
{"20140704000000-0100"},
{"20460311174630-0300"},
{"20140704000000-2359"},
};
for (const auto &t : kGenTZTests) {
SCOPED_TRACE(t.timestring);
CBS cbs;
CBS_init(&cbs, (const uint8_t *)t.timestring, strlen(t.timestring));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0));
EXPECT_TRUE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/1));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/0));
}
static const struct {
const char *timestring;
} kBogusGenTZTests[] = {
{"20480222202332-2400"},
{"20140704000000-9999"},
{"20480726113216-0160"},
};
for (const auto &t : kBogusGenTZTests) {
SCOPED_TRACE(t.timestring);
CBS cbs;
CBS_init(&cbs, (const uint8_t *)t.timestring, strlen(t.timestring));
EXPECT_FALSE(CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0));
EXPECT_FALSE(CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1));
}
}
TEST(CBSTest, GetU64Decimal) {
const struct {
uint64_t val;
const char *text;
} kTests[] = {
{0, "0"},
{1, "1"},
{123456, "123456"},
// 2^64 - 1
{UINT64_C(18446744073709551615), "18446744073709551615"},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.text);
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(t.text), strlen(t.text));
uint64_t v;
ASSERT_TRUE(CBS_get_u64_decimal(&cbs, &v));
EXPECT_EQ(v, t.val);
EXPECT_EQ(CBS_data(&cbs),
reinterpret_cast<const uint8_t *>(t.text) + strlen(t.text));
EXPECT_EQ(CBS_len(&cbs), 0u);
std::string str(t.text);
str += "Z";
CBS_init(&cbs, reinterpret_cast<const uint8_t *>(str.data()), str.size());
ASSERT_TRUE(CBS_get_u64_decimal(&cbs, &v));
EXPECT_EQ(v, t.val);
EXPECT_EQ(CBS_data(&cbs),
reinterpret_cast<const uint8_t *>(str.data()) + strlen(t.text));
EXPECT_EQ(CBS_len(&cbs), 1u);
}
static const char *kInvalidTests[] = {
"",
"nope",
"-1",
// 2^64
"18446744073709551616",
// Overflows at multiplying by 10.
"18446744073709551620",
};
for (const char *invalid : kInvalidTests) {
SCOPED_TRACE(invalid);
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t *>(invalid), strlen(invalid));
uint64_t v;
EXPECT_FALSE(CBS_get_u64_decimal(&cbs, &v));
}
}