| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| // Most method functions in this file are designed to work with non-trivial |
| // representations of field elements if necessary (see ecp_mont.c): while |
| // standard modular addition and subtraction are used, the field_mul and |
| // field_sqr methods will be used for multiplication, and field_encode and |
| // field_decode (if defined) will be used for converting between |
| // representations. |
| // |
| // Functions here specifically assume that if a non-trivial representation is |
| // used, it is a Montgomery representation (i.e. 'encoding' means multiplying |
| // by some factor R). |
| |
| int ec_GFp_simple_group_init(EC_GROUP *group) { |
| BN_init(&group->field); |
| group->a_is_minus3 = 0; |
| return 1; |
| } |
| |
| void ec_GFp_simple_group_finish(EC_GROUP *group) { |
| BN_free(&group->field); |
| } |
| |
| int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx) { |
| int ret = 0; |
| BN_CTX *new_ctx = NULL; |
| |
| // p must be a prime > 3 |
| if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
| return 0; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) { |
| goto err; |
| } |
| |
| // group->field |
| if (!BN_copy(&group->field, p)) { |
| goto err; |
| } |
| BN_set_negative(&group->field, 0); |
| // Store the field in minimal form, so it can be used with |BN_ULONG| arrays. |
| bn_set_minimal_width(&group->field); |
| |
| // group->a |
| if (!BN_nnmod(tmp, a, &group->field, ctx) || |
| !ec_bignum_to_felem(group, &group->a, tmp)) { |
| goto err; |
| } |
| |
| // group->a_is_minus3 |
| if (!BN_add_word(tmp, 3)) { |
| goto err; |
| } |
| group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); |
| |
| // group->b |
| if (!BN_nnmod(tmp, b, &group->field, ctx) || |
| !ec_bignum_to_felem(group, &group->b, tmp)) { |
| goto err; |
| } |
| |
| if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| BIGNUM *b) { |
| if ((p != NULL && !BN_copy(p, &group->field)) || |
| (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || |
| (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) { |
| return BN_num_bits(&group->field); |
| } |
| |
| void ec_GFp_simple_point_init(EC_RAW_POINT *point) { |
| OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); |
| OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); |
| OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); |
| } |
| |
| void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { |
| OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); |
| OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); |
| OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); |
| } |
| |
| void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
| EC_RAW_POINT *point) { |
| // Although it is strictly only necessary to zero Z, we zero the entire point |
| // in case |point| was stack-allocated and yet to be initialized. |
| ec_GFp_simple_point_init(point); |
| } |
| |
| int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| EC_RAW_POINT *point, |
| const BIGNUM *x, |
| const BIGNUM *y) { |
| if (x == NULL || y == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (!ec_bignum_to_felem(group, &point->X, x) || |
| !ec_bignum_to_felem(group, &point->Y, y)) { |
| return 0; |
| } |
| OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM)); |
| |
| return 1; |
| } |
| |
| void ec_GFp_simple_add(const EC_GROUP *group, EC_RAW_POINT *out, |
| const EC_RAW_POINT *a, const EC_RAW_POINT *b) { |
| if (a == b) { |
| ec_GFp_simple_dbl(group, out, a); |
| return; |
| } |
| |
| |
| // The method is taken from: |
| // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467> |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544> |
| void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| const EC_FELEM *b) = group->meth->felem_mul; |
| void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| group->meth->felem_sqr; |
| |
| EC_FELEM x_out, y_out, z_out; |
| BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); |
| BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); |
| |
| // z1z1 = z1z1 = z1**2 |
| EC_FELEM z1z1; |
| felem_sqr(group, &z1z1, &a->Z); |
| |
| // z2z2 = z2**2 |
| EC_FELEM z2z2; |
| felem_sqr(group, &z2z2, &b->Z); |
| |
| // u1 = x1*z2z2 |
| EC_FELEM u1; |
| felem_mul(group, &u1, &a->X, &z2z2); |
| |
| // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 |
| EC_FELEM two_z1z2; |
| ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); |
| felem_sqr(group, &two_z1z2, &two_z1z2); |
| ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); |
| ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); |
| |
| // s1 = y1 * z2**3 |
| EC_FELEM s1; |
| felem_mul(group, &s1, &b->Z, &z2z2); |
| felem_mul(group, &s1, &s1, &a->Y); |
| |
| // u2 = x2*z1z1 |
| EC_FELEM u2; |
| felem_mul(group, &u2, &b->X, &z1z1); |
| |
| // h = u2 - u1 |
| EC_FELEM h; |
| ec_felem_sub(group, &h, &u2, &u1); |
| |
| BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); |
| |
| // z_out = two_z1z2 * h |
| felem_mul(group, &z_out, &h, &two_z1z2); |
| |
| // z1z1z1 = z1 * z1z1 |
| EC_FELEM z1z1z1; |
| felem_mul(group, &z1z1z1, &a->Z, &z1z1); |
| |
| // s2 = y2 * z1**3 |
| EC_FELEM s2; |
| felem_mul(group, &s2, &b->Y, &z1z1z1); |
| |
| // r = (s2 - s1)*2 |
| EC_FELEM r; |
| ec_felem_sub(group, &r, &s2, &s1); |
| ec_felem_add(group, &r, &r, &r); |
| |
| BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); |
| |
| // This case will never occur in the constant-time |ec_GFp_simple_mul|. |
| if (!xneq && !yneq && z1nz && z2nz) { |
| ec_GFp_simple_dbl(group, out, a); |
| return; |
| } |
| |
| // I = (2h)**2 |
| EC_FELEM i; |
| ec_felem_add(group, &i, &h, &h); |
| felem_sqr(group, &i, &i); |
| |
| // J = h * I |
| EC_FELEM j; |
| felem_mul(group, &j, &h, &i); |
| |
| // V = U1 * I |
| EC_FELEM v; |
| felem_mul(group, &v, &u1, &i); |
| |
| // x_out = r**2 - J - 2V |
| felem_sqr(group, &x_out, &r); |
| ec_felem_sub(group, &x_out, &x_out, &j); |
| ec_felem_sub(group, &x_out, &x_out, &v); |
| ec_felem_sub(group, &x_out, &x_out, &v); |
| |
| // y_out = r(V-x_out) - 2 * s1 * J |
| ec_felem_sub(group, &y_out, &v, &x_out); |
| felem_mul(group, &y_out, &y_out, &r); |
| EC_FELEM s1j; |
| felem_mul(group, &s1j, &s1, &j); |
| ec_felem_sub(group, &y_out, &y_out, &s1j); |
| ec_felem_sub(group, &y_out, &y_out, &s1j); |
| |
| ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); |
| ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); |
| ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); |
| ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); |
| ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); |
| ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); |
| } |
| |
| void ec_GFp_simple_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_RAW_POINT *a) { |
| void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| const EC_FELEM *b) = group->meth->felem_mul; |
| void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| group->meth->felem_sqr; |
| |
| if (group->a_is_minus3) { |
| // The method is taken from: |
| // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> |
| // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> |
| EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; |
| // delta = z^2 |
| felem_sqr(group, &delta, &a->Z); |
| // gamma = y^2 |
| felem_sqr(group, &gamma, &a->Y); |
| // beta = x*gamma |
| felem_mul(group, &beta, &a->X, &gamma); |
| |
| // alpha = 3*(x-delta)*(x+delta) |
| ec_felem_sub(group, &ftmp, &a->X, &delta); |
| ec_felem_add(group, &ftmp2, &a->X, &delta); |
| |
| ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); |
| ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); |
| felem_mul(group, &alpha, &ftmp, &ftmp2); |
| |
| // x' = alpha^2 - 8*beta |
| felem_sqr(group, &r->X, &alpha); |
| ec_felem_add(group, &fourbeta, &beta, &beta); |
| ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); |
| ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); |
| ec_felem_sub(group, &r->X, &r->X, &tmptmp); |
| |
| // z' = (y + z)^2 - gamma - delta |
| ec_felem_add(group, &delta, &gamma, &delta); |
| ec_felem_add(group, &ftmp, &a->Y, &a->Z); |
| felem_sqr(group, &r->Z, &ftmp); |
| ec_felem_sub(group, &r->Z, &r->Z, &delta); |
| |
| // y' = alpha*(4*beta - x') - 8*gamma^2 |
| ec_felem_sub(group, &r->Y, &fourbeta, &r->X); |
| ec_felem_add(group, &gamma, &gamma, &gamma); |
| felem_sqr(group, &gamma, &gamma); |
| felem_mul(group, &r->Y, &alpha, &r->Y); |
| ec_felem_add(group, &gamma, &gamma, &gamma); |
| ec_felem_sub(group, &r->Y, &r->Y, &gamma); |
| } else { |
| // The method is taken from: |
| // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl |
| // |
| // Coq transcription and correctness proof: |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102> |
| // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534> |
| EC_FELEM xx, yy, yyyy, zz; |
| felem_sqr(group, &xx, &a->X); |
| felem_sqr(group, &yy, &a->Y); |
| felem_sqr(group, &yyyy, &yy); |
| felem_sqr(group, &zz, &a->Z); |
| |
| // s = 2*((x_in + yy)^2 - xx - yyyy) |
| EC_FELEM s; |
| ec_felem_add(group, &s, &a->X, &yy); |
| felem_sqr(group, &s, &s); |
| ec_felem_sub(group, &s, &s, &xx); |
| ec_felem_sub(group, &s, &s, &yyyy); |
| ec_felem_add(group, &s, &s, &s); |
| |
| // m = 3*xx + a*zz^2 |
| EC_FELEM m; |
| felem_sqr(group, &m, &zz); |
| felem_mul(group, &m, &group->a, &m); |
| ec_felem_add(group, &m, &m, &xx); |
| ec_felem_add(group, &m, &m, &xx); |
| ec_felem_add(group, &m, &m, &xx); |
| |
| // x_out = m^2 - 2*s |
| felem_sqr(group, &r->X, &m); |
| ec_felem_sub(group, &r->X, &r->X, &s); |
| ec_felem_sub(group, &r->X, &r->X, &s); |
| |
| // z_out = (y_in + z_in)^2 - yy - zz |
| ec_felem_add(group, &r->Z, &a->Y, &a->Z); |
| felem_sqr(group, &r->Z, &r->Z); |
| ec_felem_sub(group, &r->Z, &r->Z, &yy); |
| ec_felem_sub(group, &r->Z, &r->Z, &zz); |
| |
| // y_out = m*(s-x_out) - 8*yyyy |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_add(group, &yyyy, &yyyy, &yyyy); |
| ec_felem_sub(group, &r->Y, &s, &r->X); |
| felem_mul(group, &r->Y, &r->Y, &m); |
| ec_felem_sub(group, &r->Y, &r->Y, &yyyy); |
| } |
| } |
| |
| void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { |
| ec_felem_neg(group, &point->Y, &point->Y); |
| } |
| |
| int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, |
| const EC_RAW_POINT *point) { |
| return ec_felem_non_zero_mask(group, &point->Z) == 0; |
| } |
| |
| int ec_GFp_simple_is_on_curve(const EC_GROUP *group, |
| const EC_RAW_POINT *point) { |
| if (ec_GFp_simple_is_at_infinity(group, point)) { |
| return 1; |
| } |
| |
| // We have a curve defined by a Weierstrass equation |
| // y^2 = x^3 + a*x + b. |
| // The point to consider is given in Jacobian projective coordinates |
| // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
| // Substituting this and multiplying by Z^6 transforms the above equation |
| // into |
| // Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
| // To test this, we add up the right-hand side in 'rh'. |
| |
| void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| const EC_FELEM *b) = group->meth->felem_mul; |
| void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| group->meth->felem_sqr; |
| |
| // rh := X^2 |
| EC_FELEM rh; |
| felem_sqr(group, &rh, &point->X); |
| |
| EC_FELEM tmp, Z4, Z6; |
| if (!ec_felem_equal(group, &point->Z, &group->one)) { |
| felem_sqr(group, &tmp, &point->Z); |
| felem_sqr(group, &Z4, &tmp); |
| felem_mul(group, &Z6, &Z4, &tmp); |
| |
| // rh := (rh + a*Z^4)*X |
| if (group->a_is_minus3) { |
| ec_felem_add(group, &tmp, &Z4, &Z4); |
| ec_felem_add(group, &tmp, &tmp, &Z4); |
| ec_felem_sub(group, &rh, &rh, &tmp); |
| felem_mul(group, &rh, &rh, &point->X); |
| } else { |
| felem_mul(group, &tmp, &Z4, &group->a); |
| ec_felem_add(group, &rh, &rh, &tmp); |
| felem_mul(group, &rh, &rh, &point->X); |
| } |
| |
| // rh := rh + b*Z^6 |
| felem_mul(group, &tmp, &group->b, &Z6); |
| ec_felem_add(group, &rh, &rh, &tmp); |
| } else { |
| // rh := (rh + a)*X |
| ec_felem_add(group, &rh, &rh, &group->a); |
| felem_mul(group, &rh, &rh, &point->X); |
| // rh := rh + b |
| ec_felem_add(group, &rh, &rh, &group->b); |
| } |
| |
| // 'lh' := Y^2 |
| felem_sqr(group, &tmp, &point->Y); |
| return ec_felem_equal(group, &tmp, &rh); |
| } |
| |
| int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a, |
| const EC_RAW_POINT *b) { |
| // Note this function returns zero if |a| and |b| are equal and 1 if they are |
| // not equal. |
| if (ec_GFp_simple_is_at_infinity(group, a)) { |
| return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1; |
| } |
| |
| if (ec_GFp_simple_is_at_infinity(group, b)) { |
| return 1; |
| } |
| |
| int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one); |
| int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one); |
| |
| if (a_Z_is_one && b_Z_is_one) { |
| return !ec_felem_equal(group, &a->X, &b->X) || |
| !ec_felem_equal(group, &a->Y, &b->Y); |
| } |
| |
| void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| const EC_FELEM *b) = group->meth->felem_mul; |
| void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| group->meth->felem_sqr; |
| |
| // We have to decide whether |
| // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
| // or equivalently, whether |
| // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
| |
| EC_FELEM tmp1, tmp2, Za23, Zb23; |
| const EC_FELEM *tmp1_, *tmp2_; |
| if (!b_Z_is_one) { |
| felem_sqr(group, &Zb23, &b->Z); |
| felem_mul(group, &tmp1, &a->X, &Zb23); |
| tmp1_ = &tmp1; |
| } else { |
| tmp1_ = &a->X; |
| } |
| if (!a_Z_is_one) { |
| felem_sqr(group, &Za23, &a->Z); |
| felem_mul(group, &tmp2, &b->X, &Za23); |
| tmp2_ = &tmp2; |
| } else { |
| tmp2_ = &b->X; |
| } |
| |
| // Compare X_a*Z_b^2 with X_b*Z_a^2. |
| if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
| return 1; // The points differ. |
| } |
| |
| if (!b_Z_is_one) { |
| felem_mul(group, &Zb23, &Zb23, &b->Z); |
| felem_mul(group, &tmp1, &a->Y, &Zb23); |
| // tmp1_ = &tmp1 |
| } else { |
| tmp1_ = &a->Y; |
| } |
| if (!a_Z_is_one) { |
| felem_mul(group, &Za23, &Za23, &a->Z); |
| felem_mul(group, &tmp2, &b->Y, &Za23); |
| // tmp2_ = &tmp2 |
| } else { |
| tmp2_ = &b->Y; |
| } |
| |
| // Compare Y_a*Z_b^3 with Y_b*Z_a^3. |
| if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
| return 1; // The points differ. |
| } |
| |
| // The points are equal. |
| return 0; |
| } |