| // Copyright 2014 The BoringSSL Authors | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 | #include <unistd.h> | 
 | #endif | 
 |  | 
 | #include <openssl/chacha.h> | 
 | #include <openssl/ctrdrbg.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "../../bcm_support.h" | 
 | #include "../bcm_interface.h" | 
 | #include "../delocate.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | // It's assumed that the operating system always has an unfailing source of | 
 | // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating | 
 | // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the | 
 | // process—we don't try to handle it.) | 
 | // | 
 | // In addition, the hardware may provide a low-latency RNG. Intel's rdrand | 
 | // instruction is the canonical example of this. When a hardware RNG is | 
 | // available we don't need to worry about an RNG failure arising from fork()ing | 
 | // the process or moving a VM, so we can keep thread-local RNG state and use it | 
 | // as an additional-data input to CTR-DRBG. | 
 | // | 
 | // (We assume that the OS entropy is safe from fork()ing and VM duplication. | 
 | // This might be a bit of a leap of faith, esp on Windows, but there's nothing | 
 | // that we can do about it.) | 
 |  | 
 | // kReseedInterval is the number of generate calls made to CTR-DRBG before | 
 | // reseeding. | 
 | static const unsigned kReseedInterval = 4096; | 
 |  | 
 | // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the | 
 | // continuous random number generator test in FIPS 140-2, section 4.9.2. | 
 | #define CRNGT_BLOCK_SIZE 16 | 
 |  | 
 | namespace { | 
 | // rand_thread_state contains the per-thread state for the RNG. | 
 | struct rand_thread_state { | 
 |   CTR_DRBG_STATE drbg; | 
 |   uint64_t fork_generation; | 
 |   // calls is the number of generate calls made on |drbg| since it was last | 
 |   // (re)seeded. This is bound by |kReseedInterval|. | 
 |   unsigned calls; | 
 |   // last_block_valid is non-zero iff |last_block| contains data from | 
 |   // |get_seed_entropy|. | 
 |   int last_block_valid; | 
 |   // fork_unsafe_buffering is non-zero iff, when |drbg| was last (re)seeded, | 
 |   // fork-unsafe buffering was enabled. | 
 |   int fork_unsafe_buffering; | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 |   // last_block contains the previous block from |get_seed_entropy|. | 
 |   uint8_t last_block[CRNGT_BLOCK_SIZE]; | 
 |   // next and prev form a NULL-terminated, double-linked list of all states in | 
 |   // a process. | 
 |   struct rand_thread_state *next, *prev; | 
 |   // clear_drbg_lock synchronizes between uses of |drbg| and | 
 |   // |rand_thread_state_clear_all| clearing it. This lock should be uncontended | 
 |   // in the common case, except on shutdown. | 
 |   CRYPTO_MUTEX clear_drbg_lock; | 
 | #endif | 
 | }; | 
 | }  // namespace | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 | // thread_states_list is the head of a linked-list of all |rand_thread_state| | 
 | // objects in the process, one per thread. This is needed because FIPS requires | 
 | // that they be zeroed on process exit, but thread-local destructors aren't | 
 | // called when the whole process is exiting. | 
 | DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list, nullptr) | 
 | DEFINE_STATIC_MUTEX(thread_states_list_lock) | 
 |  | 
 | static void rand_thread_state_clear_all(void) __attribute__((destructor)); | 
 | static void rand_thread_state_clear_all(void) { | 
 |   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
 |   for (struct rand_thread_state *cur = *thread_states_list_bss_get(); | 
 |        cur != NULL; cur = cur->next) { | 
 |     CRYPTO_MUTEX_lock_write(&cur->clear_drbg_lock); | 
 |     CTR_DRBG_clear(&cur->drbg); | 
 |   } | 
 |   // The locks are deliberately left locked so that any threads that are still | 
 |   // running will hang if they try to call |BCM_rand_bytes|. It also ensures | 
 |   // |rand_thread_state_free| cannot free any thread state while we've taken the | 
 |   // lock. | 
 | } | 
 | #endif | 
 |  | 
 | // rand_thread_state_free frees a |rand_thread_state|. This is called when a | 
 | // thread exits. | 
 | static void rand_thread_state_free(void *state_in) { | 
 |   struct rand_thread_state *state = | 
 |       reinterpret_cast<rand_thread_state *>(state_in); | 
 |  | 
 |   if (state_in == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 |   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
 |  | 
 |   if (state->prev != NULL) { | 
 |     state->prev->next = state->next; | 
 |   } else if (*thread_states_list_bss_get() == state) { | 
 |     // |state->prev| may be NULL either if it is the head of the list, | 
 |     // or if |state| is freed before it was added to the list at all. | 
 |     // Compare against the head of the list to distinguish these cases. | 
 |     *thread_states_list_bss_get() = state->next; | 
 |   } | 
 |  | 
 |   if (state->next != NULL) { | 
 |     state->next->prev = state->prev; | 
 |   } | 
 |  | 
 |   CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); | 
 |  | 
 |   CTR_DRBG_clear(&state->drbg); | 
 | #endif | 
 |  | 
 |   OPENSSL_free(state); | 
 | } | 
 |  | 
 | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ | 
 |     !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) | 
 | // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand| | 
 | // returned true. | 
 | static int rdrand(uint8_t *buf, const size_t len) { | 
 |   const size_t len_multiple8 = len & ~7; | 
 |   if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { | 
 |     return 0; | 
 |   } | 
 |   const size_t remainder = len - len_multiple8; | 
 |  | 
 |   if (remainder != 0) { | 
 |     assert(remainder < 8); | 
 |  | 
 |     uint8_t rand_buf[8]; | 
 |     if (!CRYPTO_rdrand(rand_buf)) { | 
 |       return 0; | 
 |     } | 
 |     OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int rdrand(uint8_t *buf, size_t len) { return 0; } | 
 |  | 
 | #endif | 
 |  | 
 | bcm_status BCM_rand_bytes_hwrng(uint8_t *buf, const size_t len) { | 
 |   if (!have_rdrand()) { | 
 |     return bcm_status::failure; | 
 |   } | 
 |   if (rdrand(buf, len)) { | 
 |     return bcm_status::not_approved; | 
 |   } | 
 |   return bcm_status::failure; | 
 | } | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 |  | 
 | // In passive entropy mode, entropy is supplied from outside of the module via | 
 | // |BCM_rand_load_entropy| and is stored in global instance of the following | 
 | // structure. | 
 |  | 
 | struct entropy_buffer { | 
 |   // bytes contains entropy suitable for seeding a DRBG. | 
 |   uint8_t bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_SEED_LEN * BORINGSSL_FIPS_OVERREAD]; | 
 |   // bytes_valid indicates the number of bytes of |bytes| that contain valid | 
 |   // data. | 
 |   size_t bytes_valid; | 
 |   // want_additional_input is true if any of the contents of |bytes| were | 
 |   // obtained via a method other than from the kernel. In these cases entropy | 
 |   // from the kernel is also provided via an additional input to the DRBG. | 
 |   int want_additional_input; | 
 | }; | 
 |  | 
 | DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer, {}) | 
 | DEFINE_STATIC_MUTEX(entropy_buffer_lock) | 
 |  | 
 | bcm_infallible BCM_rand_load_entropy(const uint8_t *entropy, size_t entropy_len, | 
 |                                      int want_additional_input) { | 
 |   struct entropy_buffer *const buffer = entropy_buffer_bss_get(); | 
 |  | 
 |   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
 |   const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid; | 
 |   if (entropy_len > space) { | 
 |     entropy_len = space; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len); | 
 |   buffer->bytes_valid += entropy_len; | 
 |   buffer->want_additional_input |= want_additional_input && (entropy_len != 0); | 
 |   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
 |   return bcm_infallible::not_approved; | 
 | } | 
 |  | 
 | // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the | 
 | // global |entropy_buffer|. | 
 | static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, | 
 |                              int *out_want_additional_input) { | 
 |   struct entropy_buffer *const buffer = entropy_buffer_bss_get(); | 
 |   if (out_entropy_len > sizeof(buffer->bytes)) { | 
 |     abort(); | 
 |   } | 
 |  | 
 |   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
 |   while (buffer->bytes_valid < out_entropy_len) { | 
 |     CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
 |     RAND_need_entropy(out_entropy_len - buffer->bytes_valid); | 
 |     CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
 |   } | 
 |  | 
 |   *out_want_additional_input = buffer->want_additional_input; | 
 |   OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len); | 
 |   OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len], | 
 |                   buffer->bytes_valid - out_entropy_len); | 
 |   buffer->bytes_valid -= out_entropy_len; | 
 |   if (buffer->bytes_valid == 0) { | 
 |     buffer->want_additional_input = 0; | 
 |   } | 
 |  | 
 |   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
 | } | 
 |  | 
 | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally | 
 | // fill |additional_input| with entropy to supplement |seed|. It sets | 
 | // |*out_additional_input_len| to the number of extra bytes. | 
 | static void rand_get_seed(struct rand_thread_state *state, | 
 |                           uint8_t seed[CTR_DRBG_SEED_LEN], | 
 |                           uint8_t additional_input[CTR_DRBG_SEED_LEN], | 
 |                           size_t *out_additional_input_len) { | 
 |   uint8_t entropy_bytes[sizeof(state->last_block) + | 
 |                         CTR_DRBG_SEED_LEN * BORINGSSL_FIPS_OVERREAD]; | 
 |   uint8_t *entropy = entropy_bytes; | 
 |   size_t entropy_len = sizeof(entropy_bytes); | 
 |  | 
 |   if (state->last_block_valid) { | 
 |     // No need to fill |state->last_block| with entropy from the read. | 
 |     entropy += sizeof(state->last_block); | 
 |     entropy_len -= sizeof(state->last_block); | 
 |   } | 
 |  | 
 |   int want_additional_input; | 
 |   get_seed_entropy(entropy, entropy_len, &want_additional_input); | 
 |  | 
 |   if (!state->last_block_valid) { | 
 |     OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block)); | 
 |     entropy += sizeof(state->last_block); | 
 |     entropy_len -= sizeof(state->last_block); | 
 |   } | 
 |  | 
 |   // See FIPS 140-2, section 4.9.2. This is the “continuous random number | 
 |   // generator test” which causes the program to randomly abort. Hopefully the | 
 |   // rate of failure is small enough not to be a problem in practice. | 
 |   if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) == | 
 |       0) { | 
 |     fprintf(CRYPTO_get_stderr(), "CRNGT failed.\n"); | 
 |     BORINGSSL_FIPS_abort(); | 
 |   } | 
 |  | 
 |   assert(entropy_len % CRNGT_BLOCK_SIZE == 0); | 
 |   for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) { | 
 |     if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i, | 
 |                       CRNGT_BLOCK_SIZE) == 0) { | 
 |       fprintf(CRYPTO_get_stderr(), "CRNGT failed.\n"); | 
 |       BORINGSSL_FIPS_abort(); | 
 |     } | 
 |   } | 
 |   OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE, | 
 |                  CRNGT_BLOCK_SIZE); | 
 |  | 
 |   assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_SEED_LEN); | 
 |   OPENSSL_memcpy(seed, entropy, CTR_DRBG_SEED_LEN); | 
 |  | 
 |   for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) { | 
 |     for (size_t j = 0; j < CTR_DRBG_SEED_LEN; j++) { | 
 |       seed[j] ^= entropy[CTR_DRBG_SEED_LEN * i + j]; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we used something other than system entropy then also read from the | 
 |   // system. This avoids solely relying on the hardware. | 
 |   // TODO(crbug.com/446280903): Once this change sticks, switch | 
 |   // |get_seed_entropy| to draw from the OS instead of RDRAND. | 
 |   *out_additional_input_len = 0; | 
 |   if (want_additional_input) { | 
 |     CRYPTO_sysrand(additional_input, CTR_DRBG_SEED_LEN); | 
 |     *out_additional_input_len = CTR_DRBG_SEED_LEN; | 
 |   } | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally | 
 | // fill |additional_input| with entropy to supplement |seed|. It sets | 
 | // |*out_additional_input_len| to the number of extra bytes. | 
 | static void rand_get_seed(struct rand_thread_state *state, | 
 |                           uint8_t seed[CTR_DRBG_SEED_LEN], | 
 |                           uint8_t additional_input[CTR_DRBG_SEED_LEN], | 
 |                           size_t *out_additional_input_len) { | 
 |   // If not in FIPS mode, we don't overread from the system entropy source and | 
 |   // we don't depend only on the hardware RDRAND. | 
 |   CRYPTO_sysrand_for_seed(seed, CTR_DRBG_SEED_LEN); | 
 |   *out_additional_input_len = 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | bcm_infallible BCM_rand_bytes_with_additional_data( | 
 |     uint8_t *out, size_t out_len, const uint8_t user_additional_data[32]) { | 
 |   if (out_len == 0) { | 
 |     return bcm_infallible::approved; | 
 |   } | 
 |  | 
 |   const uint64_t fork_generation = CRYPTO_get_fork_generation(); | 
 |   const int fork_unsafe_buffering = rand_fork_unsafe_buffering_enabled(); | 
 |  | 
 |   // Additional data is mixed into every CTR-DRBG call to protect, as best we | 
 |   // can, against forks & VM clones. We do not over-read this information and | 
 |   // don't reseed with it so, from the point of view of FIPS, this doesn't | 
 |   // provide “prediction resistance”. But, in practice, it does. | 
 |   uint8_t additional_data[32]; | 
 |   // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can | 
 |   // be _slower_ than a system call. | 
 |   if (!have_fast_rdrand() || | 
 |       !rdrand(additional_data, sizeof(additional_data))) { | 
 |     // Without a hardware RNG to save us from address-space duplication, the OS | 
 |     // entropy is used. This can be expensive (one read per |RAND_bytes| call) | 
 |     // and so is disabled when we have fork detection, or if the application has | 
 |     // promised not to fork. | 
 |     if (fork_generation != 0 || fork_unsafe_buffering) { | 
 |       OPENSSL_memset(additional_data, 0, sizeof(additional_data)); | 
 |     } else { | 
 |       CRYPTO_sysrand(additional_data, sizeof(additional_data)); | 
 |     } | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < sizeof(additional_data); i++) { | 
 |     additional_data[i] ^= user_additional_data[i]; | 
 |   } | 
 |  | 
 |   struct rand_thread_state stack_state; | 
 |   struct rand_thread_state *state = reinterpret_cast<rand_thread_state *>( | 
 |       CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND)); | 
 |  | 
 |   if (state == NULL) { | 
 |     state = reinterpret_cast<rand_thread_state *>( | 
 |         OPENSSL_zalloc(sizeof(struct rand_thread_state))); | 
 |     if (state == NULL || | 
 |         !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, | 
 |                                  rand_thread_state_free)) { | 
 |       // If the system is out of memory, use an ephemeral state on the | 
 |       // stack. | 
 |       state = &stack_state; | 
 |     } | 
 |  | 
 |     state->last_block_valid = 0; | 
 |     uint8_t seed[CTR_DRBG_SEED_LEN]; | 
 |     uint8_t personalization[CTR_DRBG_SEED_LEN] = {0}; | 
 |     size_t personalization_len = 0; | 
 |     rand_get_seed(state, seed, personalization, &personalization_len); | 
 |  | 
 |     if (!CTR_DRBG_init(&state->drbg, /*df=*/true, seed, 32u, seed + 32, | 
 |                        personalization, personalization_len)) { | 
 |       abort(); | 
 |     } | 
 |     state->calls = 0; | 
 |     state->fork_generation = fork_generation; | 
 |     state->fork_unsafe_buffering = fork_unsafe_buffering; | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 |     CRYPTO_MUTEX_init(&state->clear_drbg_lock); | 
 |     if (state != &stack_state) { | 
 |       CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
 |       struct rand_thread_state **states_list = thread_states_list_bss_get(); | 
 |       state->next = *states_list; | 
 |       if (state->next != NULL) { | 
 |         state->next->prev = state; | 
 |       } | 
 |       state->prev = NULL; | 
 |       *states_list = state; | 
 |       CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get()); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   if (state->calls >= kReseedInterval || | 
 |       // If we've forked since |state| was last seeded, reseed. | 
 |       state->fork_generation != fork_generation || | 
 |       // If |state| was seeded from a state with different fork-safety | 
 |       // preferences, reseed. Suppose |state| was fork-safe, then forked into | 
 |       // two children, but each of the children never fork and disable fork | 
 |       // safety. The children must reseed to avoid working from the same PRNG | 
 |       // state. | 
 |       state->fork_unsafe_buffering != fork_unsafe_buffering) { | 
 |     uint8_t seed[CTR_DRBG_SEED_LEN]; | 
 |     uint8_t reseed_additional_data[CTR_DRBG_SEED_LEN] = {0}; | 
 |     size_t reseed_additional_data_len = 0; | 
 |     rand_get_seed(state, seed, reseed_additional_data, | 
 |                   &reseed_additional_data_len); | 
 | #if defined(BORINGSSL_FIPS) | 
 |     // Take a read lock around accesses to |state->drbg|. This is needed to | 
 |     // avoid returning bad entropy if we race with | 
 |     // |rand_thread_state_clear_all|. | 
 |     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); | 
 | #endif | 
 |     if (!CTR_DRBG_reseed_ex(&state->drbg, seed, sizeof(seed), | 
 |                             reseed_additional_data, | 
 |                             reseed_additional_data_len)) { | 
 |       abort(); | 
 |     } | 
 |     state->calls = 0; | 
 |     state->fork_generation = fork_generation; | 
 |     state->fork_unsafe_buffering = fork_unsafe_buffering; | 
 |   } else { | 
 | #if defined(BORINGSSL_FIPS) | 
 |     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock); | 
 | #endif | 
 |   } | 
 |  | 
 |   int first_call = 1; | 
 |   while (out_len > 0) { | 
 |     size_t todo = out_len; | 
 |     if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) { | 
 |       todo = CTR_DRBG_MAX_GENERATE_LENGTH; | 
 |     } | 
 |  | 
 |     if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data, | 
 |                            first_call ? sizeof(additional_data) : 0)) { | 
 |       abort(); | 
 |     } | 
 |  | 
 |     out += todo; | 
 |     out_len -= todo; | 
 |     // Though we only check before entering the loop, this cannot add enough to | 
 |     // overflow a |size_t|. | 
 |     state->calls++; | 
 |     first_call = 0; | 
 |   } | 
 |  | 
 |   if (state == &stack_state) { | 
 |     CTR_DRBG_clear(&state->drbg); | 
 |   } | 
 |  | 
 | #if defined(BORINGSSL_FIPS) | 
 |   CRYPTO_MUTEX_unlock_read(&state->clear_drbg_lock); | 
 | #endif | 
 |   return bcm_infallible::approved; | 
 | } | 
 |  | 
 | bcm_infallible BCM_rand_bytes(uint8_t *out, size_t out_len) { | 
 |   static const uint8_t kZeroAdditionalData[32] = {0}; | 
 |   BCM_rand_bytes_with_additional_data(out, out_len, kZeroAdditionalData); | 
 |   return bcm_infallible::approved; | 
 | } |