blob: 53cd012ad17d77d56dedba0a514aa2dbc4e8cdcb [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "verify_name_match.h"
#include <gtest/gtest.h>
#include "string_util.h"
#include "test_helpers.h"
namespace bssl {
namespace {
// Loads test data from file. The filename is constructed from the parameters:
// |prefix| describes the type of data being tested, e.g. "ascii",
// "unicode_bmp", "unicode_supplementary", and "invalid".
// |value_type| indicates what ASN.1 type is used to encode the data.
// |suffix| indicates any additional modifications, such as caseswapping,
// whitespace adding, etc.
::testing::AssertionResult LoadTestData(const std::string &prefix,
const std::string &value_type,
const std::string &suffix,
std::string *result) {
std::string path = "testdata/verify_name_match_unittest/names/" + prefix +
"-" + value_type + "-" + suffix + ".pem";
const PemBlockMapping mappings[] = {
{"NAME", result},
};
return ReadTestDataFromPemFile(path, mappings);
}
bool TypesAreComparable(const std::string &type_1, const std::string &type_2) {
if (type_1 == type_2) {
return true;
}
if ((type_1 == "PRINTABLESTRING" || type_1 == "UTF8" ||
type_1 == "BMPSTRING" || type_1 == "UNIVERSALSTRING") &&
(type_2 == "PRINTABLESTRING" || type_2 == "UTF8" ||
type_2 == "BMPSTRING" || type_2 == "UNIVERSALSTRING")) {
return true;
}
return false;
}
// All string types.
static const char *kValueTypes[] = {"PRINTABLESTRING", "T61STRING", "UTF8",
"BMPSTRING", "UNIVERSALSTRING"};
// String types that can encode the Unicode Basic Multilingual Plane.
static const char *kUnicodeBMPValueTypes[] = {"UTF8", "BMPSTRING",
"UNIVERSALSTRING"};
// String types that can encode the Unicode Supplementary Planes.
static const char *kUnicodeSupplementaryValueTypes[] = {"UTF8",
"UNIVERSALSTRING"};
static const char *kMangleTypes[] = {"unmangled", "case_swap",
"extra_whitespace"};
} // namespace
class VerifyNameMatchSimpleTest
: public ::testing::TestWithParam<
::testing::tuple<const char *, const char *>> {
public:
std::string value_type() const { return ::testing::get<0>(GetParam()); }
std::string suffix() const { return ::testing::get<1>(GetParam()); }
};
// Compare each input against itself, verifies that all input data is parsed
// successfully.
TEST_P(VerifyNameMatchSimpleTest, ExactEquality) {
std::string der;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix(), &der));
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der),
SequenceValueFromString(der)));
std::string der_extra_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-extra_attr",
&der_extra_attr));
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der_extra_attr),
SequenceValueFromString(der_extra_attr)));
std::string der_extra_rdn;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-extra_rdn",
&der_extra_rdn));
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der_extra_rdn),
SequenceValueFromString(der_extra_rdn)));
}
// Ensure that a Name does not match another Name which is exactly the same but
// with an extra attribute in one Relative Distinguished Name.
TEST_P(VerifyNameMatchSimpleTest, ExtraAttrDoesNotMatch) {
std::string der;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix(), &der));
std::string der_extra_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-extra_attr",
&der_extra_attr));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der),
SequenceValueFromString(der_extra_attr)));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der_extra_attr),
SequenceValueFromString(der)));
}
// Ensure that a Name does not match another Name which has the same number of
// RDNs and attributes, but where one of the attributes is duplicated in one of
// the names but not in the other.
TEST_P(VerifyNameMatchSimpleTest, DupeAttrDoesNotMatch) {
std::string der_dupe_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-dupe_attr",
&der_dupe_attr));
std::string der_extra_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-extra_attr",
&der_extra_attr));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der_dupe_attr),
SequenceValueFromString(der_extra_attr)));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der_extra_attr),
SequenceValueFromString(der_dupe_attr)));
// However, the name with a dupe attribute should match itself.
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der_dupe_attr),
SequenceValueFromString(der_dupe_attr)));
}
// Ensure that a Name does not match another Name which is exactly the same but
// with an extra Relative Distinguished Name.
TEST_P(VerifyNameMatchSimpleTest, ExtraRdnDoesNotMatch) {
std::string der;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix(), &der));
std::string der_extra_rdn;
ASSERT_TRUE(LoadTestData("ascii", value_type(), suffix() + "-extra_rdn",
&der_extra_rdn));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der),
SequenceValueFromString(der_extra_rdn)));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der_extra_rdn),
SequenceValueFromString(der)));
}
// Runs VerifyNameMatchSimpleTest for all combinations of value_type and and
// suffix.
INSTANTIATE_TEST_SUITE_P(InstantiationName, VerifyNameMatchSimpleTest,
::testing::Combine(::testing::ValuesIn(kValueTypes),
::testing::ValuesIn(kMangleTypes)));
class VerifyNameMatchNormalizationTest
: public ::testing::TestWithParam<::testing::tuple<bool, const char *>> {
public:
bool expected_result() const { return ::testing::get<0>(GetParam()); }
std::string value_type() const { return ::testing::get<1>(GetParam()); }
};
// Verify matching is case insensitive (for the types which currently support
// normalization).
TEST_P(VerifyNameMatchNormalizationTest, CaseInsensitivity) {
std::string normal;
ASSERT_TRUE(LoadTestData("ascii", value_type(), "unmangled", &normal));
std::string case_swap;
ASSERT_TRUE(LoadTestData("ascii", value_type(), "case_swap", &case_swap));
EXPECT_EQ(expected_result(),
VerifyNameMatch(SequenceValueFromString(normal),
SequenceValueFromString(case_swap)));
EXPECT_EQ(expected_result(),
VerifyNameMatch(SequenceValueFromString(case_swap),
SequenceValueFromString(normal)));
}
// Verify matching folds whitespace (for the types which currently support
// normalization).
TEST_P(VerifyNameMatchNormalizationTest, CollapseWhitespace) {
std::string normal;
ASSERT_TRUE(LoadTestData("ascii", value_type(), "unmangled", &normal));
std::string whitespace;
ASSERT_TRUE(
LoadTestData("ascii", value_type(), "extra_whitespace", &whitespace));
EXPECT_EQ(expected_result(),
VerifyNameMatch(SequenceValueFromString(normal),
SequenceValueFromString(whitespace)));
EXPECT_EQ(expected_result(),
VerifyNameMatch(SequenceValueFromString(whitespace),
SequenceValueFromString(normal)));
}
// Runs VerifyNameMatchNormalizationTest for each (expected_result, value_type)
// tuple.
INSTANTIATE_TEST_SUITE_P(
InstantiationName, VerifyNameMatchNormalizationTest,
::testing::Values(
::testing::make_tuple(true,
static_cast<const char *>("PRINTABLESTRING")),
::testing::make_tuple(false, static_cast<const char *>("T61STRING")),
::testing::make_tuple(true, static_cast<const char *>("UTF8")),
::testing::make_tuple(true, static_cast<const char *>("BMPSTRING")),
::testing::make_tuple(true,
static_cast<const char *>("UNIVERSALSTRING"))));
class VerifyNameMatchDifferingTypesTest
: public ::testing::TestWithParam<
::testing::tuple<const char *, const char *>> {
public:
std::string value_type_1() const { return ::testing::get<0>(GetParam()); }
std::string value_type_2() const { return ::testing::get<1>(GetParam()); }
};
TEST_P(VerifyNameMatchDifferingTypesTest, NormalizableTypesAreEqual) {
std::string der_1;
ASSERT_TRUE(LoadTestData("ascii", value_type_1(), "unmangled", &der_1));
std::string der_2;
ASSERT_TRUE(LoadTestData("ascii", value_type_2(), "unmangled", &der_2));
if (TypesAreComparable(value_type_1(), value_type_2())) {
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der_1),
SequenceValueFromString(der_2)));
} else {
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der_1),
SequenceValueFromString(der_2)));
}
}
TEST_P(VerifyNameMatchDifferingTypesTest, NormalizableTypesInSubtrees) {
std::string der_1;
ASSERT_TRUE(LoadTestData("ascii", value_type_1(), "unmangled", &der_1));
std::string der_1_extra_rdn;
ASSERT_TRUE(LoadTestData("ascii", value_type_1(), "unmangled-extra_rdn",
&der_1_extra_rdn));
std::string der_1_extra_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type_1(), "unmangled-extra_attr",
&der_1_extra_attr));
std::string der_2;
ASSERT_TRUE(LoadTestData("ascii", value_type_2(), "unmangled", &der_2));
std::string der_2_extra_rdn;
ASSERT_TRUE(LoadTestData("ascii", value_type_2(), "unmangled-extra_rdn",
&der_2_extra_rdn));
std::string der_2_extra_attr;
ASSERT_TRUE(LoadTestData("ascii", value_type_2(), "unmangled-extra_attr",
&der_2_extra_attr));
if (TypesAreComparable(value_type_1(), value_type_2())) {
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(der_1),
SequenceValueFromString(der_2)));
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(der_2),
SequenceValueFromString(der_1)));
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(der_1_extra_rdn),
SequenceValueFromString(der_2)));
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(der_2_extra_rdn),
SequenceValueFromString(der_1)));
} else {
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_1),
SequenceValueFromString(der_2)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_2),
SequenceValueFromString(der_1)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_1_extra_rdn),
SequenceValueFromString(der_2)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_2_extra_rdn),
SequenceValueFromString(der_1)));
}
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_1),
SequenceValueFromString(der_2_extra_rdn)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_2),
SequenceValueFromString(der_1_extra_rdn)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_1_extra_attr),
SequenceValueFromString(der_2)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_2_extra_attr),
SequenceValueFromString(der_1)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_1),
SequenceValueFromString(der_2_extra_attr)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(der_2),
SequenceValueFromString(der_1_extra_attr)));
}
// Runs VerifyNameMatchDifferingTypesTest for all combinations of value types in
// value_type1 and value_type_2.
INSTANTIATE_TEST_SUITE_P(InstantiationName, VerifyNameMatchDifferingTypesTest,
::testing::Combine(::testing::ValuesIn(kValueTypes),
::testing::ValuesIn(kValueTypes)));
class VerifyNameMatchUnicodeConversionTest
: public ::testing::TestWithParam<::testing::tuple<
const char *, ::testing::tuple<const char *, const char *>>> {
public:
std::string prefix() const { return ::testing::get<0>(GetParam()); }
std::string value_type_1() const {
return ::testing::get<0>(::testing::get<1>(GetParam()));
}
std::string value_type_2() const {
return ::testing::get<1>(::testing::get<1>(GetParam()));
}
};
TEST_P(VerifyNameMatchUnicodeConversionTest, UnicodeConversionsAreEqual) {
std::string der_1;
ASSERT_TRUE(LoadTestData(prefix(), value_type_1(), "unmangled", &der_1));
std::string der_2;
ASSERT_TRUE(LoadTestData(prefix(), value_type_2(), "unmangled", &der_2));
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(der_1),
SequenceValueFromString(der_2)));
}
// Runs VerifyNameMatchUnicodeConversionTest with prefix="unicode_bmp" for all
// combinations of Basic Multilingual Plane-capable value types in value_type1
// and value_type_2.
INSTANTIATE_TEST_SUITE_P(
BMPConversion, VerifyNameMatchUnicodeConversionTest,
::testing::Combine(
::testing::Values("unicode_bmp"),
::testing::Combine(::testing::ValuesIn(kUnicodeBMPValueTypes),
::testing::ValuesIn(kUnicodeBMPValueTypes))));
// Runs VerifyNameMatchUnicodeConversionTest with prefix="unicode_supplementary"
// for all combinations of Unicode Supplementary Plane-capable value types in
// value_type1 and value_type_2.
INSTANTIATE_TEST_SUITE_P(
SMPConversion, VerifyNameMatchUnicodeConversionTest,
::testing::Combine(
::testing::Values("unicode_supplementary"),
::testing::Combine(
::testing::ValuesIn(kUnicodeSupplementaryValueTypes),
::testing::ValuesIn(kUnicodeSupplementaryValueTypes))));
// Matching should fail if a PrintableString contains invalid characters.
TEST(VerifyNameMatchInvalidDataTest, FailOnInvalidPrintableStringChars) {
std::string der;
ASSERT_TRUE(LoadTestData("ascii", "PRINTABLESTRING", "unmangled", &der));
// Find a known location inside a PrintableString in the DER-encoded data.
size_t replace_location = der.find("0123456789");
ASSERT_NE(std::string::npos, replace_location);
for (int c = 0; c < 256; ++c) {
SCOPED_TRACE(c);
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') ||
(c >= '0' && c <= '9')) {
continue;
}
switch (c) {
case ' ':
case '\'':
case '(':
case ')':
case '*':
case '+':
case ',':
case '-':
case '.':
case '/':
case ':':
case '=':
case '?':
continue;
}
der.replace(replace_location, 1, 1, c);
// Verification should fail due to the invalid character.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(der),
SequenceValueFromString(der)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(
NormalizeName(SequenceValueFromString(der), &normalized_der, &errors));
}
}
// Matching should fail if an IA5String contains invalid characters.
TEST(VerifyNameMatchInvalidDataTest, FailOnInvalidIA5StringChars) {
std::string der;
ASSERT_TRUE(LoadTestData("ascii", "mixed", "rdn_dupetype_sorting_1", &der));
// Find a known location inside an IA5String in the DER-encoded data.
size_t replace_location = der.find("eXaMple");
ASSERT_NE(std::string::npos, replace_location);
for (int c = 0; c < 256; ++c) {
SCOPED_TRACE(c);
der.replace(replace_location, 1, 1, c);
bool expected_result = (c <= 127);
EXPECT_EQ(expected_result, VerifyNameMatch(SequenceValueFromString(der),
SequenceValueFromString(der)));
std::string normalized_der;
CertErrors errors;
EXPECT_EQ(expected_result, NormalizeName(SequenceValueFromString(der),
&normalized_der, &errors));
}
}
TEST(VerifyNameMatchInvalidDataTest, FailOnAttributeTypeAndValueExtraData) {
std::string invalid;
ASSERT_TRUE(
LoadTestData("invalid", "AttributeTypeAndValue", "extradata", &invalid));
// Verification should fail due to extra element in AttributeTypeAndValue
// sequence.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnAttributeTypeAndValueShort) {
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "AttributeTypeAndValue", "onlyOneElement",
&invalid));
// Verification should fail due to AttributeTypeAndValue sequence having only
// one element.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnAttributeTypeAndValueEmpty) {
std::string invalid;
ASSERT_TRUE(
LoadTestData("invalid", "AttributeTypeAndValue", "empty", &invalid));
// Verification should fail due to empty AttributeTypeAndValue sequence.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnBadAttributeType) {
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "AttributeTypeAndValue",
"badAttributeType", &invalid));
// Verification should fail due to Attribute Type not being an OID.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnAttributeTypeAndValueNotSequence) {
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "AttributeTypeAndValue", "setNotSequence",
&invalid));
// Verification should fail due to AttributeTypeAndValue being a Set instead
// of a Sequence.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnRdnNotSet) {
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "RDN", "sequenceInsteadOfSet", &invalid));
// Verification should fail due to RDN being a Sequence instead of a Set.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchInvalidDataTest, FailOnEmptyRdn) {
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "RDN", "empty", &invalid));
// Verification should fail due to RDN having zero AttributeTypeAndValues.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
// Matching should fail if a BMPString contains surrogates.
TEST(VerifyNameMatchInvalidDataTest, FailOnBmpStringSurrogates) {
std::string normal;
ASSERT_TRUE(LoadTestData("unicode_bmp", "BMPSTRING", "unmangled", &normal));
// Find a known location inside a BMPSTRING in the DER-encoded data.
size_t replace_location = normal.find("\x67\x71\x4e\xac");
ASSERT_NE(std::string::npos, replace_location);
// Replace with U+1D400 MATHEMATICAL BOLD CAPITAL A, which requires surrogates
// to represent.
std::string invalid =
normal.replace(replace_location, 4, std::string("\xd8\x35\xdc\x00", 4));
// Verification should fail due to the invalid codepoints.
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
std::string normalized_der;
CertErrors errors;
EXPECT_FALSE(NormalizeName(SequenceValueFromString(invalid), &normalized_der,
&errors));
}
TEST(VerifyNameMatchTest, EmptyNameMatching) {
std::string empty;
ASSERT_TRUE(LoadTestData("valid", "Name", "empty", &empty));
// Empty names are equal.
EXPECT_TRUE(VerifyNameMatch(SequenceValueFromString(empty),
SequenceValueFromString(empty)));
// An empty name normalized is unchanged.
std::string normalized_empty_der;
CertErrors errors;
EXPECT_TRUE(NormalizeName(SequenceValueFromString(empty),
&normalized_empty_der, &errors));
EXPECT_EQ(SequenceValueFromString(empty), der::Input(normalized_empty_der));
// An empty name is not equal to non-empty name.
std::string non_empty;
ASSERT_TRUE(
LoadTestData("ascii", "PRINTABLESTRING", "unmangled", &non_empty));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(empty),
SequenceValueFromString(non_empty)));
EXPECT_FALSE(VerifyNameMatch(SequenceValueFromString(non_empty),
SequenceValueFromString(empty)));
}
// Matching should succeed when the RDNs are sorted differently but are still
// equal after normalizing.
TEST(VerifyNameMatchRDNSorting, Simple) {
std::string a;
ASSERT_TRUE(LoadTestData("ascii", "PRINTABLESTRING", "rdn_sorting_1", &a));
std::string b;
ASSERT_TRUE(LoadTestData("ascii", "PRINTABLESTRING", "rdn_sorting_2", &b));
EXPECT_TRUE(
VerifyNameMatch(SequenceValueFromString(a), SequenceValueFromString(b)));
EXPECT_TRUE(
VerifyNameMatch(SequenceValueFromString(b), SequenceValueFromString(a)));
}
// Matching should succeed when the RDNs are sorted differently but are still
// equal after normalizing, even in malformed RDNs that contain multiple
// elements with the same type.
TEST(VerifyNameMatchRDNSorting, DuplicateTypes) {
std::string a;
ASSERT_TRUE(LoadTestData("ascii", "mixed", "rdn_dupetype_sorting_1", &a));
std::string b;
ASSERT_TRUE(LoadTestData("ascii", "mixed", "rdn_dupetype_sorting_2", &b));
EXPECT_TRUE(
VerifyNameMatch(SequenceValueFromString(a), SequenceValueFromString(b)));
EXPECT_TRUE(
VerifyNameMatch(SequenceValueFromString(b), SequenceValueFromString(a)));
}
TEST(VerifyNameInSubtreeInvalidDataTest, FailOnEmptyRdn) {
std::string valid;
ASSERT_TRUE(LoadTestData("ascii", "PRINTABLESTRING", "unmangled", &valid));
std::string invalid;
ASSERT_TRUE(LoadTestData("invalid", "RDN", "empty", &invalid));
// For both |name| and |parent|, a RelativeDistinguishedName must have at
// least one AttributeTypeAndValue.
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(valid),
SequenceValueFromString(invalid)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(invalid),
SequenceValueFromString(valid)));
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(invalid),
SequenceValueFromString(invalid)));
}
TEST(VerifyNameInSubtreeTest, EmptyNameMatching) {
std::string empty;
ASSERT_TRUE(LoadTestData("valid", "Name", "empty", &empty));
std::string non_empty;
ASSERT_TRUE(
LoadTestData("ascii", "PRINTABLESTRING", "unmangled", &non_empty));
// Empty name is in the subtree defined by empty name.
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(empty),
SequenceValueFromString(empty)));
// Any non-empty name is in the subtree defined by empty name.
EXPECT_TRUE(VerifyNameInSubtree(SequenceValueFromString(non_empty),
SequenceValueFromString(empty)));
// Empty name is not in the subtree defined by non-empty name.
EXPECT_FALSE(VerifyNameInSubtree(SequenceValueFromString(empty),
SequenceValueFromString(non_empty)));
}
// Verify that the normalized output matches the pre-generated expected value
// for a single larger input that exercises all of the string types, unicode
// (basic and supplemental planes), whitespace collapsing, case folding, as
// well as SET sorting.
TEST(NameNormalizationTest, TestEverything) {
std::string expected_normalized_der;
ASSERT_TRUE(
LoadTestData("unicode", "mixed", "normalized", &expected_normalized_der));
std::string raw_der;
ASSERT_TRUE(LoadTestData("unicode", "mixed", "unnormalized", &raw_der));
std::string normalized_der;
CertErrors errors;
ASSERT_TRUE(NormalizeName(SequenceValueFromString(raw_der), &normalized_der,
&errors));
EXPECT_EQ(SequenceValueFromString(expected_normalized_der),
der::Input(normalized_der));
// Re-normalizing an already normalized Name should not change it.
std::string renormalized_der;
ASSERT_TRUE(
NormalizeName(der::Input(normalized_der), &renormalized_der, &errors));
EXPECT_EQ(normalized_der, renormalized_der);
}
// Unknown AttributeValue types normalize as-is, even non-primitive tags.
TEST(NameNormalizationTest, NormalizeCustom) {
std::string raw_der;
ASSERT_TRUE(LoadTestData("custom", "custom", "normalized", &raw_der));
std::string normalized_der;
CertErrors errors;
ASSERT_TRUE(NormalizeName(SequenceValueFromString(raw_der), &normalized_der,
&errors));
EXPECT_EQ(SequenceValueFromString(raw_der), der::Input(normalized_der));
}
} // namespace bssl