| /* ==================================================================== |
| * Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/digest.h> |
| #include <openssl/nid.h> |
| #include <openssl/sha.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| #include "../fipsmodule/cipher/internal.h" |
| |
| |
| int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, |
| const uint8_t *in, size_t in_len, |
| size_t block_size, size_t mac_size) { |
| const size_t overhead = 1 /* padding length byte */ + mac_size; |
| |
| // These lengths are all public so we can test them in non-constant time. |
| if (overhead > in_len) { |
| return 0; |
| } |
| |
| size_t padding_length = in[in_len - 1]; |
| |
| crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length); |
| // The padding consists of a length byte at the end of the record and |
| // then that many bytes of padding, all with the same value as the |
| // length byte. Thus, with the length byte included, there are i+1 |
| // bytes of padding. |
| // |
| // We can't check just |padding_length+1| bytes because that leaks |
| // decrypted information. Therefore we always have to check the maximum |
| // amount of padding possible. (Again, the length of the record is |
| // public information so we can use it.) |
| size_t to_check = 256; // maximum amount of padding, inc length byte. |
| if (to_check > in_len) { |
| to_check = in_len; |
| } |
| |
| for (size_t i = 0; i < to_check; i++) { |
| uint8_t mask = constant_time_ge_8(padding_length, i); |
| uint8_t b = in[in_len - 1 - i]; |
| // The final |padding_length+1| bytes should all have the value |
| // |padding_length|. Therefore the XOR should be zero. |
| good &= ~(mask & (padding_length ^ b)); |
| } |
| |
| // If any of the final |padding_length+1| bytes had the wrong value, |
| // one or more of the lower eight bits of |good| will be cleared. |
| good = constant_time_eq_w(0xff, good & 0xff); |
| |
| // Always treat |padding_length| as zero on error. If, assuming block size of |
| // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16 |
| // and returned -1, distinguishing good MAC and bad padding from bad MAC and |
| // bad padding would give POODLE's padding oracle. |
| padding_length = good & (padding_length + 1); |
| *out_len = in_len - padding_length; |
| *out_padding_ok = good; |
| return 1; |
| } |
| |
| void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, |
| size_t in_len, size_t orig_len) { |
| uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE]; |
| uint8_t *rotated_mac = rotated_mac1; |
| uint8_t *rotated_mac_tmp = rotated_mac2; |
| |
| // mac_end is the index of |in| just after the end of the MAC. |
| size_t mac_end = in_len; |
| size_t mac_start = mac_end - md_size; |
| |
| declassify_assert(orig_len >= in_len); |
| declassify_assert(in_len >= md_size); |
| assert(md_size <= EVP_MAX_MD_SIZE); |
| assert(md_size > 0); |
| |
| // scan_start contains the number of bytes that we can ignore because |
| // the MAC's position can only vary by 255 bytes. |
| size_t scan_start = 0; |
| // This information is public so it's safe to branch based on it. |
| if (orig_len > md_size + 255 + 1) { |
| scan_start = orig_len - (md_size + 255 + 1); |
| } |
| |
| size_t rotate_offset = 0; |
| uint8_t mac_started = 0; |
| OPENSSL_memset(rotated_mac, 0, md_size); |
| for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) { |
| if (j >= md_size) { |
| j -= md_size; |
| } |
| crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start); |
| mac_started |= is_mac_start; |
| uint8_t mac_ended = constant_time_ge_8(i, mac_end); |
| rotated_mac[j] |= in[i] & mac_started & ~mac_ended; |
| // Save the offset that |mac_start| is mapped to. |
| rotate_offset |= j & is_mac_start; |
| } |
| |
| // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit |
| // position. |
| for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) { |
| // Rotate by |offset| iff the corresponding bit is set in |
| // |rotate_offset|, placing the result in |rotated_mac_tmp|. |
| const uint8_t skip_rotate = (rotate_offset & 1) - 1; |
| for (size_t i = 0, j = offset; i < md_size; i++, j++) { |
| if (j >= md_size) { |
| j -= md_size; |
| } |
| rotated_mac_tmp[i] = |
| constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]); |
| } |
| |
| // Swap pointers so |rotated_mac| contains the (possibly) rotated value. |
| // Note the number of iterations and thus the identity of these pointers is |
| // public information. |
| uint8_t *tmp = rotated_mac; |
| rotated_mac = rotated_mac_tmp; |
| rotated_mac_tmp = tmp; |
| } |
| |
| OPENSSL_memcpy(out, rotated_mac, md_size); |
| } |
| |
| int EVP_sha1_final_with_secret_suffix(SHA_CTX *ctx, |
| uint8_t out[SHA_DIGEST_LENGTH], |
| const uint8_t *in, size_t len, |
| size_t max_len) { |
| // Bound the input length so |total_bits| below fits in four bytes. This is |
| // redundant with TLS record size limits. This also ensures |input_idx| below |
| // does not overflow. |
| size_t max_len_bits = max_len << 3; |
| if (ctx->Nh != 0 || |
| (max_len_bits >> 3) != max_len || // Overflow |
| ctx->Nl + max_len_bits < max_len_bits || |
| ctx->Nl + max_len_bits > UINT32_MAX) { |
| return 0; |
| } |
| |
| // We need to hash the following into |ctx|: |
| // |
| // - ctx->data[:ctx->num] |
| // - in[:len] |
| // - A 0x80 byte |
| // - However many zero bytes are needed to pad up to a block. |
| // - Eight bytes of length. |
| size_t num_blocks = (ctx->num + len + 1 + 8 + SHA_CBLOCK - 1) >> 6; |
| size_t last_block = num_blocks - 1; |
| size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA_CBLOCK - 1) >> 6; |
| |
| // The bounds above imply |total_bits| fits in four bytes. |
| size_t total_bits = ctx->Nl + (len << 3); |
| uint8_t length_bytes[4]; |
| length_bytes[0] = (uint8_t)(total_bits >> 24); |
| length_bytes[1] = (uint8_t)(total_bits >> 16); |
| length_bytes[2] = (uint8_t)(total_bits >> 8); |
| length_bytes[3] = (uint8_t)total_bits; |
| |
| // We now construct and process each expected block in constant-time. |
| uint8_t block[SHA_CBLOCK] = {0}; |
| uint32_t result[5] = {0}; |
| // input_idx is the index into |in| corresponding to the current block. |
| // However, we allow this index to overflow beyond |max_len|, to simplify the |
| // 0x80 byte. |
| size_t input_idx = 0; |
| for (size_t i = 0; i < max_blocks; i++) { |
| // Fill |block| with data from the partial block in |ctx| and |in|. We copy |
| // as if we were hashing up to |max_len| and then zero the excess later. |
| size_t block_start = 0; |
| if (i == 0) { |
| OPENSSL_memcpy(block, ctx->data, ctx->num); |
| block_start = ctx->num; |
| } |
| if (input_idx < max_len) { |
| size_t to_copy = SHA_CBLOCK - block_start; |
| if (to_copy > max_len - input_idx) { |
| to_copy = max_len - input_idx; |
| } |
| OPENSSL_memcpy(block + block_start, in + input_idx, to_copy); |
| } |
| |
| // Zero any bytes beyond |len| and add the 0x80 byte. |
| for (size_t j = block_start; j < SHA_CBLOCK; j++) { |
| // input[idx] corresponds to block[j]. |
| size_t idx = input_idx + j - block_start; |
| // The barriers on |len| are not strictly necessary. However, without |
| // them, GCC compiles this code by incorporating |len| into the loop |
| // counter and subtracting it out later. This is still constant-time, but |
| // it frustrates attempts to validate this. |
| uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len)); |
| uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len)); |
| block[j] &= is_in_bounds; |
| block[j] |= 0x80 & is_padding_byte; |
| } |
| |
| input_idx += SHA_CBLOCK - block_start; |
| |
| // Fill in the length if this is the last block. |
| crypto_word_t is_last_block = constant_time_eq_w(i, last_block); |
| for (size_t j = 0; j < 4; j++) { |
| block[SHA_CBLOCK - 4 + j] |= is_last_block & length_bytes[j]; |
| } |
| |
| // Process the block and save the hash state if it is the final value. |
| SHA1_Transform(ctx, block); |
| for (size_t j = 0; j < 5; j++) { |
| result[j] |= is_last_block & ctx->h[j]; |
| } |
| } |
| |
| // Write the output. |
| for (size_t i = 0; i < 5; i++) { |
| CRYPTO_store_u32_be(out + 4 * i, result[i]); |
| } |
| return 1; |
| } |
| |
| int EVP_sha256_final_with_secret_suffix(SHA256_CTX *ctx, |
| uint8_t out[SHA256_DIGEST_LENGTH], |
| const uint8_t *in, size_t len, |
| size_t max_len) { |
| // Bound the input length so |total_bits| below fits in four bytes. This is |
| // redundant with TLS record size limits. This also ensures |input_idx| below |
| // does not overflow. |
| size_t max_len_bits = max_len << 3; |
| if (ctx->Nh != 0 || |
| (max_len_bits >> 3) != max_len || // Overflow |
| ctx->Nl + max_len_bits < max_len_bits || |
| ctx->Nl + max_len_bits > UINT32_MAX) { |
| return 0; |
| } |
| |
| // We need to hash the following into |ctx|: |
| // |
| // - ctx->data[:ctx->num] |
| // - in[:len] |
| // - A 0x80 byte |
| // - However many zero bytes are needed to pad up to a block. |
| // - Eight bytes of length. |
| size_t num_blocks = (ctx->num + len + 1 + 8 + SHA256_CBLOCK - 1) >> 6; |
| size_t last_block = num_blocks - 1; |
| size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA256_CBLOCK - 1) >> 6; |
| |
| // The bounds above imply |total_bits| fits in four bytes. |
| size_t total_bits = ctx->Nl + (len << 3); |
| uint8_t length_bytes[4]; |
| length_bytes[0] = (uint8_t)(total_bits >> 24); |
| length_bytes[1] = (uint8_t)(total_bits >> 16); |
| length_bytes[2] = (uint8_t)(total_bits >> 8); |
| length_bytes[3] = (uint8_t)total_bits; |
| |
| // We now construct and process each expected block in constant-time. |
| uint8_t block[SHA256_CBLOCK] = {0}; |
| uint32_t result[8] = {0}; |
| // input_idx is the index into |in| corresponding to the current block. |
| // However, we allow this index to overflow beyond |max_len|, to simplify the |
| // 0x80 byte. |
| size_t input_idx = 0; |
| for (size_t i = 0; i < max_blocks; i++) { |
| // Fill |block| with data from the partial block in |ctx| and |in|. We copy |
| // as if we were hashing up to |max_len| and then zero the excess later. |
| size_t block_start = 0; |
| if (i == 0) { |
| OPENSSL_memcpy(block, ctx->data, ctx->num); |
| block_start = ctx->num; |
| } |
| if (input_idx < max_len) { |
| size_t to_copy = SHA256_CBLOCK - block_start; |
| if (to_copy > max_len - input_idx) { |
| to_copy = max_len - input_idx; |
| } |
| OPENSSL_memcpy(block + block_start, in + input_idx, to_copy); |
| } |
| |
| // Zero any bytes beyond |len| and add the 0x80 byte. |
| for (size_t j = block_start; j < SHA256_CBLOCK; j++) { |
| // input[idx] corresponds to block[j]. |
| size_t idx = input_idx + j - block_start; |
| // The barriers on |len| are not strictly necessary. However, without |
| // them, GCC compiles this code by incorporating |len| into the loop |
| // counter and subtracting it out later. This is still constant-time, but |
| // it frustrates attempts to validate this. |
| uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len)); |
| uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len)); |
| block[j] &= is_in_bounds; |
| block[j] |= 0x80 & is_padding_byte; |
| } |
| |
| input_idx += SHA256_CBLOCK - block_start; |
| |
| // Fill in the length if this is the last block. |
| crypto_word_t is_last_block = constant_time_eq_w(i, last_block); |
| for (size_t j = 0; j < 4; j++) { |
| block[SHA256_CBLOCK - 4 + j] |= is_last_block & length_bytes[j]; |
| } |
| |
| // Process the block and save the hash state if it is the final value. |
| SHA256_Transform(ctx, block); |
| for (size_t j = 0; j < 8; j++) { |
| result[j] |= is_last_block & ctx->h[j]; |
| } |
| } |
| |
| // Write the output. |
| for (size_t i = 0; i < 8; i++) { |
| CRYPTO_store_u32_be(out + 4 * i, result[i]); |
| } |
| return 1; |
| } |
| |
| int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) { |
| switch (EVP_MD_type(md)) { |
| case NID_sha1: |
| case NID_sha256: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int tls_cbc_digest_record_sha1(uint8_t *md_out, size_t *md_out_size, |
| const uint8_t header[13], |
| const uint8_t *data, size_t data_size, |
| size_t data_plus_mac_plus_padding_size, |
| const uint8_t *mac_secret, |
| unsigned mac_secret_length) { |
| if (mac_secret_length > SHA_CBLOCK) { |
| // HMAC pads small keys with zeros and hashes large keys down. This function |
| // should never reach the large key case. |
| assert(0); |
| return 0; |
| } |
| |
| // Compute the initial HMAC block. |
| uint8_t hmac_pad[SHA_CBLOCK]; |
| OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad)); |
| OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); |
| for (size_t i = 0; i < SHA_CBLOCK; i++) { |
| hmac_pad[i] ^= 0x36; |
| } |
| |
| SHA_CTX ctx; |
| SHA1_Init(&ctx); |
| SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); |
| SHA1_Update(&ctx, header, 13); |
| |
| // There are at most 256 bytes of padding, so we can compute the public |
| // minimum length for |data_size|. |
| size_t min_data_size = 0; |
| if (data_plus_mac_plus_padding_size > SHA_DIGEST_LENGTH + 256) { |
| min_data_size = data_plus_mac_plus_padding_size - SHA_DIGEST_LENGTH - 256; |
| } |
| |
| // Hash the public minimum length directly. This reduces the number of blocks |
| // that must be computed in constant-time. |
| SHA1_Update(&ctx, data, min_data_size); |
| |
| // Hash the remaining data without leaking |data_size|. |
| uint8_t mac_out[SHA_DIGEST_LENGTH]; |
| if (!EVP_sha1_final_with_secret_suffix( |
| &ctx, mac_out, data + min_data_size, data_size - min_data_size, |
| data_plus_mac_plus_padding_size - min_data_size)) { |
| return 0; |
| } |
| |
| // Complete the HMAC in the standard manner. |
| SHA1_Init(&ctx); |
| for (size_t i = 0; i < SHA_CBLOCK; i++) { |
| hmac_pad[i] ^= 0x6a; |
| } |
| |
| SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); |
| SHA1_Update(&ctx, mac_out, SHA_DIGEST_LENGTH); |
| SHA1_Final(md_out, &ctx); |
| *md_out_size = SHA_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int tls_cbc_digest_record_sha256(uint8_t *md_out, size_t *md_out_size, |
| const uint8_t header[13], |
| const uint8_t *data, size_t data_size, |
| size_t data_plus_mac_plus_padding_size, |
| const uint8_t *mac_secret, |
| unsigned mac_secret_length) { |
| if (mac_secret_length > SHA256_CBLOCK) { |
| // HMAC pads small keys with zeros and hashes large keys down. This function |
| // should never reach the large key case. |
| assert(0); |
| return 0; |
| } |
| |
| // Compute the initial HMAC block. |
| uint8_t hmac_pad[SHA256_CBLOCK]; |
| OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad)); |
| OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); |
| for (size_t i = 0; i < SHA256_CBLOCK; i++) { |
| hmac_pad[i] ^= 0x36; |
| } |
| |
| SHA256_CTX ctx; |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK); |
| SHA256_Update(&ctx, header, 13); |
| |
| // There are at most 256 bytes of padding, so we can compute the public |
| // minimum length for |data_size|. |
| size_t min_data_size = 0; |
| if (data_plus_mac_plus_padding_size > SHA256_DIGEST_LENGTH + 256) { |
| min_data_size = |
| data_plus_mac_plus_padding_size - SHA256_DIGEST_LENGTH - 256; |
| } |
| |
| // Hash the public minimum length directly. This reduces the number of blocks |
| // that must be computed in constant-time. |
| SHA256_Update(&ctx, data, min_data_size); |
| |
| // Hash the remaining data without leaking |data_size|. |
| uint8_t mac_out[SHA256_DIGEST_LENGTH]; |
| if (!EVP_sha256_final_with_secret_suffix( |
| &ctx, mac_out, data + min_data_size, data_size - min_data_size, |
| data_plus_mac_plus_padding_size - min_data_size)) { |
| return 0; |
| } |
| |
| // Complete the HMAC in the standard manner. |
| SHA256_Init(&ctx); |
| for (size_t i = 0; i < SHA256_CBLOCK; i++) { |
| hmac_pad[i] ^= 0x6a; |
| } |
| |
| SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK); |
| SHA256_Update(&ctx, mac_out, SHA256_DIGEST_LENGTH); |
| SHA256_Final(md_out, &ctx); |
| *md_out_size = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, |
| size_t *md_out_size, const uint8_t header[13], |
| const uint8_t *data, size_t data_size, |
| size_t data_plus_mac_plus_padding_size, |
| const uint8_t *mac_secret, |
| unsigned mac_secret_length) { |
| switch (EVP_MD_type(md)) { |
| case NID_sha1: |
| return tls_cbc_digest_record_sha1( |
| md_out, md_out_size, header, data, data_size, |
| data_plus_mac_plus_padding_size, mac_secret, mac_secret_length); |
| |
| case NID_sha256: |
| return tls_cbc_digest_record_sha256( |
| md_out, md_out_size, header, data, data_size, |
| data_plus_mac_plus_padding_size, mac_secret, mac_secret_length); |
| |
| default: |
| // EVP_tls_cbc_record_digest_supported should have been called first to |
| // check that the hash function is supported. |
| assert(0); |
| *md_out_size = 0; |
| return 0; |
| } |
| } |