| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Test - The Google C++ Testing Framework |
| // |
| // This file tests the universal value printer. |
| |
| #include "gtest/gtest-printers.h" |
| |
| #include <ctype.h> |
| #include <limits.h> |
| #include <string.h> |
| #include <algorithm> |
| #include <deque> |
| #include <list> |
| #include <map> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| |
| // hash_map and hash_set are available under Visual C++, or on Linux. |
| #if GTEST_HAS_HASH_MAP_ |
| # include <hash_map> // NOLINT |
| #endif // GTEST_HAS_HASH_MAP_ |
| #if GTEST_HAS_HASH_SET_ |
| # include <hash_set> // NOLINT |
| #endif // GTEST_HAS_HASH_SET_ |
| |
| #if GTEST_HAS_STD_FORWARD_LIST_ |
| # include <forward_list> // NOLINT |
| #endif // GTEST_HAS_STD_FORWARD_LIST_ |
| |
| // Some user-defined types for testing the universal value printer. |
| |
| // An anonymous enum type. |
| enum AnonymousEnum { |
| kAE1 = -1, |
| kAE2 = 1 |
| }; |
| |
| // An enum without a user-defined printer. |
| enum EnumWithoutPrinter { |
| kEWP1 = -2, |
| kEWP2 = 42 |
| }; |
| |
| // An enum with a << operator. |
| enum EnumWithStreaming { |
| kEWS1 = 10 |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) { |
| return os << (e == kEWS1 ? "kEWS1" : "invalid"); |
| } |
| |
| // An enum with a PrintTo() function. |
| enum EnumWithPrintTo { |
| kEWPT1 = 1 |
| }; |
| |
| void PrintTo(EnumWithPrintTo e, std::ostream* os) { |
| *os << (e == kEWPT1 ? "kEWPT1" : "invalid"); |
| } |
| |
| // A class implicitly convertible to BiggestInt. |
| class BiggestIntConvertible { |
| public: |
| operator ::testing::internal::BiggestInt() const { return 42; } |
| }; |
| |
| // A user-defined unprintable class template in the global namespace. |
| template <typename T> |
| class UnprintableTemplateInGlobal { |
| public: |
| UnprintableTemplateInGlobal() : value_() {} |
| private: |
| T value_; |
| }; |
| |
| // A user-defined streamable type in the global namespace. |
| class StreamableInGlobal { |
| public: |
| virtual ~StreamableInGlobal() {} |
| }; |
| |
| inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) { |
| os << "StreamableInGlobal"; |
| } |
| |
| void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) { |
| os << "StreamableInGlobal*"; |
| } |
| |
| namespace foo { |
| |
| // A user-defined unprintable type in a user namespace. |
| class UnprintableInFoo { |
| public: |
| UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); } |
| double z() const { return z_; } |
| private: |
| char xy_[8]; |
| double z_; |
| }; |
| |
| // A user-defined printable type in a user-chosen namespace. |
| struct PrintableViaPrintTo { |
| PrintableViaPrintTo() : value() {} |
| int value; |
| }; |
| |
| void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) { |
| *os << "PrintableViaPrintTo: " << x.value; |
| } |
| |
| // A type with a user-defined << for printing its pointer. |
| struct PointerPrintable { |
| }; |
| |
| ::std::ostream& operator<<(::std::ostream& os, |
| const PointerPrintable* /* x */) { |
| return os << "PointerPrintable*"; |
| } |
| |
| // A user-defined printable class template in a user-chosen namespace. |
| template <typename T> |
| class PrintableViaPrintToTemplate { |
| public: |
| explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {} |
| |
| const T& value() const { return value_; } |
| private: |
| T value_; |
| }; |
| |
| template <typename T> |
| void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) { |
| *os << "PrintableViaPrintToTemplate: " << x.value(); |
| } |
| |
| // A user-defined streamable class template in a user namespace. |
| template <typename T> |
| class StreamableTemplateInFoo { |
| public: |
| StreamableTemplateInFoo() : value_() {} |
| |
| const T& value() const { return value_; } |
| private: |
| T value_; |
| }; |
| |
| template <typename T> |
| inline ::std::ostream& operator<<(::std::ostream& os, |
| const StreamableTemplateInFoo<T>& x) { |
| return os << "StreamableTemplateInFoo: " << x.value(); |
| } |
| |
| } // namespace foo |
| |
| namespace testing { |
| namespace gtest_printers_test { |
| |
| using ::std::deque; |
| using ::std::list; |
| using ::std::make_pair; |
| using ::std::map; |
| using ::std::multimap; |
| using ::std::multiset; |
| using ::std::pair; |
| using ::std::set; |
| using ::std::vector; |
| using ::testing::PrintToString; |
| using ::testing::internal::FormatForComparisonFailureMessage; |
| using ::testing::internal::ImplicitCast_; |
| using ::testing::internal::NativeArray; |
| using ::testing::internal::RE; |
| using ::testing::internal::RelationToSourceReference; |
| using ::testing::internal::Strings; |
| using ::testing::internal::UniversalPrint; |
| using ::testing::internal::UniversalPrinter; |
| using ::testing::internal::UniversalTersePrint; |
| #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
| using ::testing::internal::UniversalTersePrintTupleFieldsToStrings; |
| #endif |
| using ::testing::internal::string; |
| |
| // The hash_* classes are not part of the C++ standard. STLport |
| // defines them in namespace std. MSVC defines them in ::stdext. GCC |
| // defines them in ::. |
| #ifdef _STLP_HASH_MAP // We got <hash_map> from STLport. |
| using ::std::hash_map; |
| using ::std::hash_set; |
| using ::std::hash_multimap; |
| using ::std::hash_multiset; |
| #elif _MSC_VER |
| using ::stdext::hash_map; |
| using ::stdext::hash_set; |
| using ::stdext::hash_multimap; |
| using ::stdext::hash_multiset; |
| #endif |
| |
| // Prints a value to a string using the universal value printer. This |
| // is a helper for testing UniversalPrinter<T>::Print() for various types. |
| template <typename T> |
| string Print(const T& value) { |
| ::std::stringstream ss; |
| UniversalPrinter<T>::Print(value, &ss); |
| return ss.str(); |
| } |
| |
| // Prints a value passed by reference to a string, using the universal |
| // value printer. This is a helper for testing |
| // UniversalPrinter<T&>::Print() for various types. |
| template <typename T> |
| string PrintByRef(const T& value) { |
| ::std::stringstream ss; |
| UniversalPrinter<T&>::Print(value, &ss); |
| return ss.str(); |
| } |
| |
| // Tests printing various enum types. |
| |
| TEST(PrintEnumTest, AnonymousEnum) { |
| EXPECT_EQ("-1", Print(kAE1)); |
| EXPECT_EQ("1", Print(kAE2)); |
| } |
| |
| TEST(PrintEnumTest, EnumWithoutPrinter) { |
| EXPECT_EQ("-2", Print(kEWP1)); |
| EXPECT_EQ("42", Print(kEWP2)); |
| } |
| |
| TEST(PrintEnumTest, EnumWithStreaming) { |
| EXPECT_EQ("kEWS1", Print(kEWS1)); |
| EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0))); |
| } |
| |
| TEST(PrintEnumTest, EnumWithPrintTo) { |
| EXPECT_EQ("kEWPT1", Print(kEWPT1)); |
| EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0))); |
| } |
| |
| // Tests printing a class implicitly convertible to BiggestInt. |
| |
| TEST(PrintClassTest, BiggestIntConvertible) { |
| EXPECT_EQ("42", Print(BiggestIntConvertible())); |
| } |
| |
| // Tests printing various char types. |
| |
| // char. |
| TEST(PrintCharTest, PlainChar) { |
| EXPECT_EQ("'\\0'", Print('\0')); |
| EXPECT_EQ("'\\'' (39, 0x27)", Print('\'')); |
| EXPECT_EQ("'\"' (34, 0x22)", Print('"')); |
| EXPECT_EQ("'?' (63, 0x3F)", Print('?')); |
| EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\')); |
| EXPECT_EQ("'\\a' (7)", Print('\a')); |
| EXPECT_EQ("'\\b' (8)", Print('\b')); |
| EXPECT_EQ("'\\f' (12, 0xC)", Print('\f')); |
| EXPECT_EQ("'\\n' (10, 0xA)", Print('\n')); |
| EXPECT_EQ("'\\r' (13, 0xD)", Print('\r')); |
| EXPECT_EQ("'\\t' (9)", Print('\t')); |
| EXPECT_EQ("'\\v' (11, 0xB)", Print('\v')); |
| EXPECT_EQ("'\\x7F' (127)", Print('\x7F')); |
| EXPECT_EQ("'\\xFF' (255)", Print('\xFF')); |
| EXPECT_EQ("' ' (32, 0x20)", Print(' ')); |
| EXPECT_EQ("'a' (97, 0x61)", Print('a')); |
| } |
| |
| // signed char. |
| TEST(PrintCharTest, SignedChar) { |
| EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0'))); |
| EXPECT_EQ("'\\xCE' (-50)", |
| Print(static_cast<signed char>(-50))); |
| } |
| |
| // unsigned char. |
| TEST(PrintCharTest, UnsignedChar) { |
| EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0'))); |
| EXPECT_EQ("'b' (98, 0x62)", |
| Print(static_cast<unsigned char>('b'))); |
| } |
| |
| // Tests printing other simple, built-in types. |
| |
| // bool. |
| TEST(PrintBuiltInTypeTest, Bool) { |
| EXPECT_EQ("false", Print(false)); |
| EXPECT_EQ("true", Print(true)); |
| } |
| |
| // wchar_t. |
| TEST(PrintBuiltInTypeTest, Wchar_t) { |
| EXPECT_EQ("L'\\0'", Print(L'\0')); |
| EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\'')); |
| EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"')); |
| EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?')); |
| EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\')); |
| EXPECT_EQ("L'\\a' (7)", Print(L'\a')); |
| EXPECT_EQ("L'\\b' (8)", Print(L'\b')); |
| EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f')); |
| EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n')); |
| EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r')); |
| EXPECT_EQ("L'\\t' (9)", Print(L'\t')); |
| EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v')); |
| EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F')); |
| EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF')); |
| EXPECT_EQ("L' ' (32, 0x20)", Print(L' ')); |
| EXPECT_EQ("L'a' (97, 0x61)", Print(L'a')); |
| EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576))); |
| EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D))); |
| } |
| |
| // Test that Int64 provides more storage than wchar_t. |
| TEST(PrintTypeSizeTest, Wchar_t) { |
| EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64)); |
| } |
| |
| // Various integer types. |
| TEST(PrintBuiltInTypeTest, Integer) { |
| EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8 |
| EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8 |
| EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16 |
| EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16 |
| EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32 |
| EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32 |
| EXPECT_EQ("18446744073709551615", |
| Print(static_cast<testing::internal::UInt64>(-1))); // uint64 |
| EXPECT_EQ("-9223372036854775808", |
| Print(static_cast<testing::internal::Int64>(1) << 63)); // int64 |
| } |
| |
| // Size types. |
| TEST(PrintBuiltInTypeTest, Size_t) { |
| EXPECT_EQ("1", Print(sizeof('a'))); // size_t. |
| #if !GTEST_OS_WINDOWS |
| // Windows has no ssize_t type. |
| EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t. |
| #endif // !GTEST_OS_WINDOWS |
| } |
| |
| // Floating-points. |
| TEST(PrintBuiltInTypeTest, FloatingPoints) { |
| EXPECT_EQ("1.5", Print(1.5f)); // float |
| EXPECT_EQ("-2.5", Print(-2.5)); // double |
| } |
| |
| // Since ::std::stringstream::operator<<(const void *) formats the pointer |
| // output differently with different compilers, we have to create the expected |
| // output first and use it as our expectation. |
| static string PrintPointer(const void *p) { |
| ::std::stringstream expected_result_stream; |
| expected_result_stream << p; |
| return expected_result_stream.str(); |
| } |
| |
| // Tests printing C strings. |
| |
| // const char*. |
| TEST(PrintCStringTest, Const) { |
| const char* p = "World"; |
| EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p)); |
| } |
| |
| // char*. |
| TEST(PrintCStringTest, NonConst) { |
| char p[] = "Hi"; |
| EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"", |
| Print(static_cast<char*>(p))); |
| } |
| |
| // NULL C string. |
| TEST(PrintCStringTest, Null) { |
| const char* p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // Tests that C strings are escaped properly. |
| TEST(PrintCStringTest, EscapesProperly) { |
| const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a"; |
| EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f" |
| "\\n\\r\\t\\v\\x7F\\xFF a\"", |
| Print(p)); |
| } |
| |
| // MSVC compiler can be configured to define whar_t as a typedef |
| // of unsigned short. Defining an overload for const wchar_t* in that case |
| // would cause pointers to unsigned shorts be printed as wide strings, |
| // possibly accessing more memory than intended and causing invalid |
| // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when |
| // wchar_t is implemented as a native type. |
| #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
| |
| // const wchar_t*. |
| TEST(PrintWideCStringTest, Const) { |
| const wchar_t* p = L"World"; |
| EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p)); |
| } |
| |
| // wchar_t*. |
| TEST(PrintWideCStringTest, NonConst) { |
| wchar_t p[] = L"Hi"; |
| EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"", |
| Print(static_cast<wchar_t*>(p))); |
| } |
| |
| // NULL wide C string. |
| TEST(PrintWideCStringTest, Null) { |
| const wchar_t* p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // Tests that wide C strings are escaped properly. |
| TEST(PrintWideCStringTest, EscapesProperly) { |
| const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r', |
| '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'}; |
| EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f" |
| "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"", |
| Print(static_cast<const wchar_t*>(s))); |
| } |
| #endif // native wchar_t |
| |
| // Tests printing pointers to other char types. |
| |
| // signed char*. |
| TEST(PrintCharPointerTest, SignedChar) { |
| signed char* p = reinterpret_cast<signed char*>(0x1234); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // const signed char*. |
| TEST(PrintCharPointerTest, ConstSignedChar) { |
| signed char* p = reinterpret_cast<signed char*>(0x1234); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // unsigned char*. |
| TEST(PrintCharPointerTest, UnsignedChar) { |
| unsigned char* p = reinterpret_cast<unsigned char*>(0x1234); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // const unsigned char*. |
| TEST(PrintCharPointerTest, ConstUnsignedChar) { |
| const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // Tests printing pointers to simple, built-in types. |
| |
| // bool*. |
| TEST(PrintPointerToBuiltInTypeTest, Bool) { |
| bool* p = reinterpret_cast<bool*>(0xABCD); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // void*. |
| TEST(PrintPointerToBuiltInTypeTest, Void) { |
| void* p = reinterpret_cast<void*>(0xABCD); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // const void*. |
| TEST(PrintPointerToBuiltInTypeTest, ConstVoid) { |
| const void* p = reinterpret_cast<const void*>(0xABCD); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // Tests printing pointers to pointers. |
| TEST(PrintPointerToPointerTest, IntPointerPointer) { |
| int** p = reinterpret_cast<int**>(0xABCD); |
| EXPECT_EQ(PrintPointer(p), Print(p)); |
| p = NULL; |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // Tests printing (non-member) function pointers. |
| |
| void MyFunction(int /* n */) {} |
| |
| TEST(PrintPointerTest, NonMemberFunctionPointer) { |
| // We cannot directly cast &MyFunction to const void* because the |
| // standard disallows casting between pointers to functions and |
| // pointers to objects, and some compilers (e.g. GCC 3.4) enforce |
| // this limitation. |
| EXPECT_EQ( |
| PrintPointer(reinterpret_cast<const void*>( |
| reinterpret_cast<internal::BiggestInt>(&MyFunction))), |
| Print(&MyFunction)); |
| int (*p)(bool) = NULL; // NOLINT |
| EXPECT_EQ("NULL", Print(p)); |
| } |
| |
| // An assertion predicate determining whether a one string is a prefix for |
| // another. |
| template <typename StringType> |
| AssertionResult HasPrefix(const StringType& str, const StringType& prefix) { |
| if (str.find(prefix, 0) == 0) |
| return AssertionSuccess(); |
| |
| const bool is_wide_string = sizeof(prefix[0]) > 1; |
| const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; |
| return AssertionFailure() |
| << begin_string_quote << prefix << "\" is not a prefix of " |
| << begin_string_quote << str << "\"\n"; |
| } |
| |
| // Tests printing member variable pointers. Although they are called |
| // pointers, they don't point to a location in the address space. |
| // Their representation is implementation-defined. Thus they will be |
| // printed as raw bytes. |
| |
| struct Foo { |
| public: |
| virtual ~Foo() {} |
| int MyMethod(char x) { return x + 1; } |
| virtual char MyVirtualMethod(int /* n */) { return 'a'; } |
| |
| int value; |
| }; |
| |
| TEST(PrintPointerTest, MemberVariablePointer) { |
| EXPECT_TRUE(HasPrefix(Print(&Foo::value), |
| Print(sizeof(&Foo::value)) + "-byte object ")); |
| int (Foo::*p) = NULL; // NOLINT |
| EXPECT_TRUE(HasPrefix(Print(p), |
| Print(sizeof(p)) + "-byte object ")); |
| } |
| |
| // Tests printing member function pointers. Although they are called |
| // pointers, they don't point to a location in the address space. |
| // Their representation is implementation-defined. Thus they will be |
| // printed as raw bytes. |
| TEST(PrintPointerTest, MemberFunctionPointer) { |
| EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod), |
| Print(sizeof(&Foo::MyMethod)) + "-byte object ")); |
| EXPECT_TRUE( |
| HasPrefix(Print(&Foo::MyVirtualMethod), |
| Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object ")); |
| int (Foo::*p)(char) = NULL; // NOLINT |
| EXPECT_TRUE(HasPrefix(Print(p), |
| Print(sizeof(p)) + "-byte object ")); |
| } |
| |
| // Tests printing C arrays. |
| |
| // The difference between this and Print() is that it ensures that the |
| // argument is a reference to an array. |
| template <typename T, size_t N> |
| string PrintArrayHelper(T (&a)[N]) { |
| return Print(a); |
| } |
| |
| // One-dimensional array. |
| TEST(PrintArrayTest, OneDimensionalArray) { |
| int a[5] = { 1, 2, 3, 4, 5 }; |
| EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a)); |
| } |
| |
| // Two-dimensional array. |
| TEST(PrintArrayTest, TwoDimensionalArray) { |
| int a[2][5] = { |
| { 1, 2, 3, 4, 5 }, |
| { 6, 7, 8, 9, 0 } |
| }; |
| EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a)); |
| } |
| |
| // Array of const elements. |
| TEST(PrintArrayTest, ConstArray) { |
| const bool a[1] = { false }; |
| EXPECT_EQ("{ false }", PrintArrayHelper(a)); |
| } |
| |
| // char array without terminating NUL. |
| TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) { |
| // Array a contains '\0' in the middle and doesn't end with '\0'. |
| char a[] = { 'H', '\0', 'i' }; |
| EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); |
| } |
| |
| // const char array with terminating NUL. |
| TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) { |
| const char a[] = "\0Hi"; |
| EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a)); |
| } |
| |
| // const wchar_t array without terminating NUL. |
| TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) { |
| // Array a contains '\0' in the middle and doesn't end with '\0'. |
| const wchar_t a[] = { L'H', L'\0', L'i' }; |
| EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); |
| } |
| |
| // wchar_t array with terminating NUL. |
| TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) { |
| const wchar_t a[] = L"\0Hi"; |
| EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a)); |
| } |
| |
| // Array of objects. |
| TEST(PrintArrayTest, ObjectArray) { |
| string a[3] = { "Hi", "Hello", "Ni hao" }; |
| EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a)); |
| } |
| |
| // Array with many elements. |
| TEST(PrintArrayTest, BigArray) { |
| int a[100] = { 1, 2, 3 }; |
| EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }", |
| PrintArrayHelper(a)); |
| } |
| |
| // Tests printing ::string and ::std::string. |
| |
| #if GTEST_HAS_GLOBAL_STRING |
| // ::string. |
| TEST(PrintStringTest, StringInGlobalNamespace) { |
| const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; |
| const ::string str(s, sizeof(s)); |
| EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", |
| Print(str)); |
| } |
| #endif // GTEST_HAS_GLOBAL_STRING |
| |
| // ::std::string. |
| TEST(PrintStringTest, StringInStdNamespace) { |
| const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; |
| const ::std::string str(s, sizeof(s)); |
| EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", |
| Print(str)); |
| } |
| |
| TEST(PrintStringTest, StringAmbiguousHex) { |
| // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of: |
| // '\x6', '\x6B', or '\x6BA'. |
| |
| // a hex escaping sequence following by a decimal digit |
| EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3"))); |
| // a hex escaping sequence following by a hex digit (lower-case) |
| EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas"))); |
| // a hex escaping sequence following by a hex digit (upper-case) |
| EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA"))); |
| // a hex escaping sequence following by a non-xdigit |
| EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!"))); |
| } |
| |
| // Tests printing ::wstring and ::std::wstring. |
| |
| #if GTEST_HAS_GLOBAL_WSTRING |
| // ::wstring. |
| TEST(PrintWideStringTest, StringInGlobalNamespace) { |
| const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; |
| const ::wstring str(s, sizeof(s)/sizeof(wchar_t)); |
| EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" |
| "\\xD3\\x576\\x8D3\\xC74D a\\0\"", |
| Print(str)); |
| } |
| #endif // GTEST_HAS_GLOBAL_WSTRING |
| |
| #if GTEST_HAS_STD_WSTRING |
| // ::std::wstring. |
| TEST(PrintWideStringTest, StringInStdNamespace) { |
| const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; |
| const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t)); |
| EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" |
| "\\xD3\\x576\\x8D3\\xC74D a\\0\"", |
| Print(str)); |
| } |
| |
| TEST(PrintWideStringTest, StringAmbiguousHex) { |
| // same for wide strings. |
| EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3"))); |
| EXPECT_EQ("L\"mm\\x6\" L\"bananas\"", |
| Print(::std::wstring(L"mm\x6" L"bananas"))); |
| EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"", |
| Print(::std::wstring(L"NOM\x6" L"BANANA"))); |
| EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!"))); |
| } |
| #endif // GTEST_HAS_STD_WSTRING |
| |
| // Tests printing types that support generic streaming (i.e. streaming |
| // to std::basic_ostream<Char, CharTraits> for any valid Char and |
| // CharTraits types). |
| |
| // Tests printing a non-template type that supports generic streaming. |
| |
| class AllowsGenericStreaming {}; |
| |
| template <typename Char, typename CharTraits> |
| std::basic_ostream<Char, CharTraits>& operator<<( |
| std::basic_ostream<Char, CharTraits>& os, |
| const AllowsGenericStreaming& /* a */) { |
| return os << "AllowsGenericStreaming"; |
| } |
| |
| TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) { |
| AllowsGenericStreaming a; |
| EXPECT_EQ("AllowsGenericStreaming", Print(a)); |
| } |
| |
| // Tests printing a template type that supports generic streaming. |
| |
| template <typename T> |
| class AllowsGenericStreamingTemplate {}; |
| |
| template <typename Char, typename CharTraits, typename T> |
| std::basic_ostream<Char, CharTraits>& operator<<( |
| std::basic_ostream<Char, CharTraits>& os, |
| const AllowsGenericStreamingTemplate<T>& /* a */) { |
| return os << "AllowsGenericStreamingTemplate"; |
| } |
| |
| TEST(PrintTypeWithGenericStreamingTest, TemplateType) { |
| AllowsGenericStreamingTemplate<int> a; |
| EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a)); |
| } |
| |
| // Tests printing a type that supports generic streaming and can be |
| // implicitly converted to another printable type. |
| |
| template <typename T> |
| class AllowsGenericStreamingAndImplicitConversionTemplate { |
| public: |
| operator bool() const { return false; } |
| }; |
| |
| template <typename Char, typename CharTraits, typename T> |
| std::basic_ostream<Char, CharTraits>& operator<<( |
| std::basic_ostream<Char, CharTraits>& os, |
| const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) { |
| return os << "AllowsGenericStreamingAndImplicitConversionTemplate"; |
| } |
| |
| TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) { |
| AllowsGenericStreamingAndImplicitConversionTemplate<int> a; |
| EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a)); |
| } |
| |
| #if GTEST_HAS_STRING_PIECE_ |
| |
| // Tests printing StringPiece. |
| |
| TEST(PrintStringPieceTest, SimpleStringPiece) { |
| const StringPiece sp = "Hello"; |
| EXPECT_EQ("\"Hello\"", Print(sp)); |
| } |
| |
| TEST(PrintStringPieceTest, UnprintableCharacters) { |
| const char str[] = "NUL (\0) and \r\t"; |
| const StringPiece sp(str, sizeof(str) - 1); |
| EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp)); |
| } |
| |
| #endif // GTEST_HAS_STRING_PIECE_ |
| |
| // Tests printing STL containers. |
| |
| TEST(PrintStlContainerTest, EmptyDeque) { |
| deque<char> empty; |
| EXPECT_EQ("{}", Print(empty)); |
| } |
| |
| TEST(PrintStlContainerTest, NonEmptyDeque) { |
| deque<int> non_empty; |
| non_empty.push_back(1); |
| non_empty.push_back(3); |
| EXPECT_EQ("{ 1, 3 }", Print(non_empty)); |
| } |
| |
| #if GTEST_HAS_HASH_MAP_ |
| |
| TEST(PrintStlContainerTest, OneElementHashMap) { |
| hash_map<int, char> map1; |
| map1[1] = 'a'; |
| EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1)); |
| } |
| |
| TEST(PrintStlContainerTest, HashMultiMap) { |
| hash_multimap<int, bool> map1; |
| map1.insert(make_pair(5, true)); |
| map1.insert(make_pair(5, false)); |
| |
| // Elements of hash_multimap can be printed in any order. |
| const string result = Print(map1); |
| EXPECT_TRUE(result == "{ (5, true), (5, false) }" || |
| result == "{ (5, false), (5, true) }") |
| << " where Print(map1) returns \"" << result << "\"."; |
| } |
| |
| #endif // GTEST_HAS_HASH_MAP_ |
| |
| #if GTEST_HAS_HASH_SET_ |
| |
| TEST(PrintStlContainerTest, HashSet) { |
| hash_set<string> set1; |
| set1.insert("hello"); |
| EXPECT_EQ("{ \"hello\" }", Print(set1)); |
| } |
| |
| TEST(PrintStlContainerTest, HashMultiSet) { |
| const int kSize = 5; |
| int a[kSize] = { 1, 1, 2, 5, 1 }; |
| hash_multiset<int> set1(a, a + kSize); |
| |
| // Elements of hash_multiset can be printed in any order. |
| const string result = Print(set1); |
| const string expected_pattern = "{ d, d, d, d, d }"; // d means a digit. |
| |
| // Verifies the result matches the expected pattern; also extracts |
| // the numbers in the result. |
| ASSERT_EQ(expected_pattern.length(), result.length()); |
| std::vector<int> numbers; |
| for (size_t i = 0; i != result.length(); i++) { |
| if (expected_pattern[i] == 'd') { |
| ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0); |
| numbers.push_back(result[i] - '0'); |
| } else { |
| EXPECT_EQ(expected_pattern[i], result[i]) << " where result is " |
| << result; |
| } |
| } |
| |
| // Makes sure the result contains the right numbers. |
| std::sort(numbers.begin(), numbers.end()); |
| std::sort(a, a + kSize); |
| EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin())); |
| } |
| |
| #endif // GTEST_HAS_HASH_SET_ |
| |
| TEST(PrintStlContainerTest, List) { |
| const string a[] = { |
| "hello", |
| "world" |
| }; |
| const list<string> strings(a, a + 2); |
| EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings)); |
| } |
| |
| TEST(PrintStlContainerTest, Map) { |
| map<int, bool> map1; |
| map1[1] = true; |
| map1[5] = false; |
| map1[3] = true; |
| EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1)); |
| } |
| |
| TEST(PrintStlContainerTest, MultiMap) { |
| multimap<bool, int> map1; |
| // The make_pair template function would deduce the type as |
| // pair<bool, int> here, and since the key part in a multimap has to |
| // be constant, without a templated ctor in the pair class (as in |
| // libCstd on Solaris), make_pair call would fail to compile as no |
| // implicit conversion is found. Thus explicit typename is used |
| // here instead. |
| map1.insert(pair<const bool, int>(true, 0)); |
| map1.insert(pair<const bool, int>(true, 1)); |
| map1.insert(pair<const bool, int>(false, 2)); |
| EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1)); |
| } |
| |
| TEST(PrintStlContainerTest, Set) { |
| const unsigned int a[] = { 3, 0, 5 }; |
| set<unsigned int> set1(a, a + 3); |
| EXPECT_EQ("{ 0, 3, 5 }", Print(set1)); |
| } |
| |
| TEST(PrintStlContainerTest, MultiSet) { |
| const int a[] = { 1, 1, 2, 5, 1 }; |
| multiset<int> set1(a, a + 5); |
| EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1)); |
| } |
| |
| #if GTEST_HAS_STD_FORWARD_LIST_ |
| // <slist> is available on Linux in the google3 mode, but not on |
| // Windows or Mac OS X. |
| |
| TEST(PrintStlContainerTest, SinglyLinkedList) { |
| int a[] = { 9, 2, 8 }; |
| const std::forward_list<int> ints(a, a + 3); |
| EXPECT_EQ("{ 9, 2, 8 }", Print(ints)); |
| } |
| #endif // GTEST_HAS_STD_FORWARD_LIST_ |
| |
| TEST(PrintStlContainerTest, Pair) { |
| pair<const bool, int> p(true, 5); |
| EXPECT_EQ("(true, 5)", Print(p)); |
| } |
| |
| TEST(PrintStlContainerTest, Vector) { |
| vector<int> v; |
| v.push_back(1); |
| v.push_back(2); |
| EXPECT_EQ("{ 1, 2 }", Print(v)); |
| } |
| |
| TEST(PrintStlContainerTest, LongSequence) { |
| const int a[100] = { 1, 2, 3 }; |
| const vector<int> v(a, a + 100); |
| EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, " |
| "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v)); |
| } |
| |
| TEST(PrintStlContainerTest, NestedContainer) { |
| const int a1[] = { 1, 2 }; |
| const int a2[] = { 3, 4, 5 }; |
| const list<int> l1(a1, a1 + 2); |
| const list<int> l2(a2, a2 + 3); |
| |
| vector<list<int> > v; |
| v.push_back(l1); |
| v.push_back(l2); |
| EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v)); |
| } |
| |
| TEST(PrintStlContainerTest, OneDimensionalNativeArray) { |
| const int a[3] = { 1, 2, 3 }; |
| NativeArray<int> b(a, 3, RelationToSourceReference()); |
| EXPECT_EQ("{ 1, 2, 3 }", Print(b)); |
| } |
| |
| TEST(PrintStlContainerTest, TwoDimensionalNativeArray) { |
| const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; |
| NativeArray<int[3]> b(a, 2, RelationToSourceReference()); |
| EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b)); |
| } |
| |
| // Tests that a class named iterator isn't treated as a container. |
| |
| struct iterator { |
| char x; |
| }; |
| |
| TEST(PrintStlContainerTest, Iterator) { |
| iterator it = {}; |
| EXPECT_EQ("1-byte object <00>", Print(it)); |
| } |
| |
| // Tests that a class named const_iterator isn't treated as a container. |
| |
| struct const_iterator { |
| char x; |
| }; |
| |
| TEST(PrintStlContainerTest, ConstIterator) { |
| const_iterator it = {}; |
| EXPECT_EQ("1-byte object <00>", Print(it)); |
| } |
| |
| #if GTEST_HAS_TR1_TUPLE |
| // Tests printing ::std::tr1::tuples. |
| |
| // Tuples of various arities. |
| TEST(PrintTr1TupleTest, VariousSizes) { |
| ::std::tr1::tuple<> t0; |
| EXPECT_EQ("()", Print(t0)); |
| |
| ::std::tr1::tuple<int> t1(5); |
| EXPECT_EQ("(5)", Print(t1)); |
| |
| ::std::tr1::tuple<char, bool> t2('a', true); |
| EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); |
| |
| ::std::tr1::tuple<bool, int, int> t3(false, 2, 3); |
| EXPECT_EQ("(false, 2, 3)", Print(t3)); |
| |
| ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4); |
| EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); |
| |
| ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true); |
| EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5)); |
| |
| ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6)); |
| |
| ::std::tr1::tuple<bool, int, int, int, bool, int, int> t7( |
| false, 2, 3, 4, true, 6, 7); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7)); |
| |
| ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8( |
| false, 2, 3, 4, true, 6, 7, true); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8)); |
| |
| ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9( |
| false, 2, 3, 4, true, 6, 7, true, 9); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9)); |
| |
| const char* const str = "8"; |
| // VC++ 2010's implementation of tuple of C++0x is deficient, requiring |
| // an explicit type cast of NULL to be used. |
| ::std::tr1::tuple<bool, char, short, testing::internal::Int32, // NOLINT |
| testing::internal::Int64, float, double, const char*, void*, string> |
| t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str, |
| ImplicitCast_<void*>(NULL), "10"); |
| EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + |
| " pointing to \"8\", NULL, \"10\")", |
| Print(t10)); |
| } |
| |
| // Nested tuples. |
| TEST(PrintTr1TupleTest, NestedTuple) { |
| ::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested( |
| ::std::tr1::make_tuple(5, true), 'a'); |
| EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); |
| } |
| |
| #endif // GTEST_HAS_TR1_TUPLE |
| |
| #if GTEST_HAS_STD_TUPLE_ |
| // Tests printing ::std::tuples. |
| |
| // Tuples of various arities. |
| TEST(PrintStdTupleTest, VariousSizes) { |
| ::std::tuple<> t0; |
| EXPECT_EQ("()", Print(t0)); |
| |
| ::std::tuple<int> t1(5); |
| EXPECT_EQ("(5)", Print(t1)); |
| |
| ::std::tuple<char, bool> t2('a', true); |
| EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); |
| |
| ::std::tuple<bool, int, int> t3(false, 2, 3); |
| EXPECT_EQ("(false, 2, 3)", Print(t3)); |
| |
| ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4); |
| EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); |
| |
| ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true); |
| EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5)); |
| |
| ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6)); |
| |
| ::std::tuple<bool, int, int, int, bool, int, int> t7( |
| false, 2, 3, 4, true, 6, 7); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7)); |
| |
| ::std::tuple<bool, int, int, int, bool, int, int, bool> t8( |
| false, 2, 3, 4, true, 6, 7, true); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8)); |
| |
| ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9( |
| false, 2, 3, 4, true, 6, 7, true, 9); |
| EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9)); |
| |
| const char* const str = "8"; |
| // VC++ 2010's implementation of tuple of C++0x is deficient, requiring |
| // an explicit type cast of NULL to be used. |
| ::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT |
| testing::internal::Int64, float, double, const char*, void*, string> |
| t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str, |
| ImplicitCast_<void*>(NULL), "10"); |
| EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + |
| " pointing to \"8\", NULL, \"10\")", |
| Print(t10)); |
| } |
| |
| // Nested tuples. |
| TEST(PrintStdTupleTest, NestedTuple) { |
| ::std::tuple< ::std::tuple<int, bool>, char> nested( |
| ::std::make_tuple(5, true), 'a'); |
| EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); |
| } |
| |
| #endif // GTEST_LANG_CXX11 |
| |
| // Tests printing user-defined unprintable types. |
| |
| // Unprintable types in the global namespace. |
| TEST(PrintUnprintableTypeTest, InGlobalNamespace) { |
| EXPECT_EQ("1-byte object <00>", |
| Print(UnprintableTemplateInGlobal<char>())); |
| } |
| |
| // Unprintable types in a user namespace. |
| TEST(PrintUnprintableTypeTest, InUserNamespace) { |
| EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", |
| Print(::foo::UnprintableInFoo())); |
| } |
| |
| // Unprintable types are that too big to be printed completely. |
| |
| struct Big { |
| Big() { memset(array, 0, sizeof(array)); } |
| char array[257]; |
| }; |
| |
| TEST(PrintUnpritableTypeTest, BigObject) { |
| EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " |
| "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>", |
| Print(Big())); |
| } |
| |
| // Tests printing user-defined streamable types. |
| |
| // Streamable types in the global namespace. |
| TEST(PrintStreamableTypeTest, InGlobalNamespace) { |
| StreamableInGlobal x; |
| EXPECT_EQ("StreamableInGlobal", Print(x)); |
| EXPECT_EQ("StreamableInGlobal*", Print(&x)); |
| } |
| |
| // Printable template types in a user namespace. |
| TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) { |
| EXPECT_EQ("StreamableTemplateInFoo: 0", |
| Print(::foo::StreamableTemplateInFoo<int>())); |
| } |
| |
| // Tests printing user-defined types that have a PrintTo() function. |
| TEST(PrintPrintableTypeTest, InUserNamespace) { |
| EXPECT_EQ("PrintableViaPrintTo: 0", |
| Print(::foo::PrintableViaPrintTo())); |
| } |
| |
| // Tests printing a pointer to a user-defined type that has a << |
| // operator for its pointer. |
| TEST(PrintPrintableTypeTest, PointerInUserNamespace) { |
| ::foo::PointerPrintable x; |
| EXPECT_EQ("PointerPrintable*", Print(&x)); |
| } |
| |
| // Tests printing user-defined class template that have a PrintTo() function. |
| TEST(PrintPrintableTypeTest, TemplateInUserNamespace) { |
| EXPECT_EQ("PrintableViaPrintToTemplate: 5", |
| Print(::foo::PrintableViaPrintToTemplate<int>(5))); |
| } |
| |
| // Tests that the universal printer prints both the address and the |
| // value of a reference. |
| TEST(PrintReferenceTest, PrintsAddressAndValue) { |
| int n = 5; |
| EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n)); |
| |
| int a[2][3] = { |
| { 0, 1, 2 }, |
| { 3, 4, 5 } |
| }; |
| EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }", |
| PrintByRef(a)); |
| |
| const ::foo::UnprintableInFoo x; |
| EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object " |
| "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", |
| PrintByRef(x)); |
| } |
| |
| // Tests that the universal printer prints a function pointer passed by |
| // reference. |
| TEST(PrintReferenceTest, HandlesFunctionPointer) { |
| void (*fp)(int n) = &MyFunction; |
| const string fp_pointer_string = |
| PrintPointer(reinterpret_cast<const void*>(&fp)); |
| // We cannot directly cast &MyFunction to const void* because the |
| // standard disallows casting between pointers to functions and |
| // pointers to objects, and some compilers (e.g. GCC 3.4) enforce |
| // this limitation. |
| const string fp_string = PrintPointer(reinterpret_cast<const void*>( |
| reinterpret_cast<internal::BiggestInt>(fp))); |
| EXPECT_EQ("@" + fp_pointer_string + " " + fp_string, |
| PrintByRef(fp)); |
| } |
| |
| // Tests that the universal printer prints a member function pointer |
| // passed by reference. |
| TEST(PrintReferenceTest, HandlesMemberFunctionPointer) { |
| int (Foo::*p)(char ch) = &Foo::MyMethod; |
| EXPECT_TRUE(HasPrefix( |
| PrintByRef(p), |
| "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " + |
| Print(sizeof(p)) + "-byte object ")); |
| |
| char (Foo::*p2)(int n) = &Foo::MyVirtualMethod; |
| EXPECT_TRUE(HasPrefix( |
| PrintByRef(p2), |
| "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " + |
| Print(sizeof(p2)) + "-byte object ")); |
| } |
| |
| // Tests that the universal printer prints a member variable pointer |
| // passed by reference. |
| TEST(PrintReferenceTest, HandlesMemberVariablePointer) { |
| int (Foo::*p) = &Foo::value; // NOLINT |
| EXPECT_TRUE(HasPrefix( |
| PrintByRef(p), |
| "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object ")); |
| } |
| |
| // Tests that FormatForComparisonFailureMessage(), which is used to print |
| // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion |
| // fails, formats the operand in the desired way. |
| |
| // scalar |
| TEST(FormatForComparisonFailureMessageTest, WorksForScalar) { |
| EXPECT_STREQ("123", |
| FormatForComparisonFailureMessage(123, 124).c_str()); |
| } |
| |
| // non-char pointer |
| TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) { |
| int n = 0; |
| EXPECT_EQ(PrintPointer(&n), |
| FormatForComparisonFailureMessage(&n, &n).c_str()); |
| } |
| |
| // non-char array |
| TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) { |
| // In expression 'array == x', 'array' is compared by pointer. |
| // Therefore we want to print an array operand as a pointer. |
| int n[] = { 1, 2, 3 }; |
| EXPECT_EQ(PrintPointer(n), |
| FormatForComparisonFailureMessage(n, n).c_str()); |
| } |
| |
| // Tests formatting a char pointer when it's compared with another pointer. |
| // In this case we want to print it as a raw pointer, as the comparision is by |
| // pointer. |
| |
| // char pointer vs pointer |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) { |
| // In expression 'p == x', where 'p' and 'x' are (const or not) char |
| // pointers, the operands are compared by pointer. Therefore we |
| // want to print 'p' as a pointer instead of a C string (we don't |
| // even know if it's supposed to point to a valid C string). |
| |
| // const char* |
| const char* s = "hello"; |
| EXPECT_EQ(PrintPointer(s), |
| FormatForComparisonFailureMessage(s, s).c_str()); |
| |
| // char* |
| char ch = 'a'; |
| EXPECT_EQ(PrintPointer(&ch), |
| FormatForComparisonFailureMessage(&ch, &ch).c_str()); |
| } |
| |
| // wchar_t pointer vs pointer |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) { |
| // In expression 'p == x', where 'p' and 'x' are (const or not) char |
| // pointers, the operands are compared by pointer. Therefore we |
| // want to print 'p' as a pointer instead of a wide C string (we don't |
| // even know if it's supposed to point to a valid wide C string). |
| |
| // const wchar_t* |
| const wchar_t* s = L"hello"; |
| EXPECT_EQ(PrintPointer(s), |
| FormatForComparisonFailureMessage(s, s).c_str()); |
| |
| // wchar_t* |
| wchar_t ch = L'a'; |
| EXPECT_EQ(PrintPointer(&ch), |
| FormatForComparisonFailureMessage(&ch, &ch).c_str()); |
| } |
| |
| // Tests formatting a char pointer when it's compared to a string object. |
| // In this case we want to print the char pointer as a C string. |
| |
| #if GTEST_HAS_GLOBAL_STRING |
| // char pointer vs ::string |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) { |
| const char* s = "hello \"world"; |
| EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(s, ::string()).c_str()); |
| |
| // char* |
| char str[] = "hi\1"; |
| char* p = str; |
| EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(p, ::string()).c_str()); |
| } |
| #endif |
| |
| // char pointer vs std::string |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) { |
| const char* s = "hello \"world"; |
| EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(s, ::std::string()).c_str()); |
| |
| // char* |
| char str[] = "hi\1"; |
| char* p = str; |
| EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(p, ::std::string()).c_str()); |
| } |
| |
| #if GTEST_HAS_GLOBAL_WSTRING |
| // wchar_t pointer vs ::wstring |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) { |
| const wchar_t* s = L"hi \"world"; |
| EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(s, ::wstring()).c_str()); |
| |
| // wchar_t* |
| wchar_t str[] = L"hi\1"; |
| wchar_t* p = str; |
| EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(p, ::wstring()).c_str()); |
| } |
| #endif |
| |
| #if GTEST_HAS_STD_WSTRING |
| // wchar_t pointer vs std::wstring |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) { |
| const wchar_t* s = L"hi \"world"; |
| EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(s, ::std::wstring()).c_str()); |
| |
| // wchar_t* |
| wchar_t str[] = L"hi\1"; |
| wchar_t* p = str; |
| EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. |
| FormatForComparisonFailureMessage(p, ::std::wstring()).c_str()); |
| } |
| #endif |
| |
| // Tests formatting a char array when it's compared with a pointer or array. |
| // In this case we want to print the array as a row pointer, as the comparison |
| // is by pointer. |
| |
| // char array vs pointer |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) { |
| char str[] = "hi \"world\""; |
| char* p = NULL; |
| EXPECT_EQ(PrintPointer(str), |
| FormatForComparisonFailureMessage(str, p).c_str()); |
| } |
| |
| // char array vs char array |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) { |
| const char str[] = "hi \"world\""; |
| EXPECT_EQ(PrintPointer(str), |
| FormatForComparisonFailureMessage(str, str).c_str()); |
| } |
| |
| // wchar_t array vs pointer |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) { |
| wchar_t str[] = L"hi \"world\""; |
| wchar_t* p = NULL; |
| EXPECT_EQ(PrintPointer(str), |
| FormatForComparisonFailureMessage(str, p).c_str()); |
| } |
| |
| // wchar_t array vs wchar_t array |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) { |
| const wchar_t str[] = L"hi \"world\""; |
| EXPECT_EQ(PrintPointer(str), |
| FormatForComparisonFailureMessage(str, str).c_str()); |
| } |
| |
| // Tests formatting a char array when it's compared with a string object. |
| // In this case we want to print the array as a C string. |
| |
| #if GTEST_HAS_GLOBAL_STRING |
| // char array vs string |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) { |
| const char str[] = "hi \"w\0rld\""; |
| EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped. |
| // Embedded NUL terminates the string. |
| FormatForComparisonFailureMessage(str, ::string()).c_str()); |
| } |
| #endif |
| |
| // char array vs std::string |
| TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) { |
| const char str[] = "hi \"world\""; |
| EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped. |
| FormatForComparisonFailureMessage(str, ::std::string()).c_str()); |
| } |
| |
| #if GTEST_HAS_GLOBAL_WSTRING |
| // wchar_t array vs wstring |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) { |
| const wchar_t str[] = L"hi \"world\""; |
| EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped. |
| FormatForComparisonFailureMessage(str, ::wstring()).c_str()); |
| } |
| #endif |
| |
| #if GTEST_HAS_STD_WSTRING |
| // wchar_t array vs std::wstring |
| TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) { |
| const wchar_t str[] = L"hi \"w\0rld\""; |
| EXPECT_STREQ( |
| "L\"hi \\\"w\"", // The content should be escaped. |
| // Embedded NUL terminates the string. |
| FormatForComparisonFailureMessage(str, ::std::wstring()).c_str()); |
| } |
| #endif |
| |
| // Useful for testing PrintToString(). We cannot use EXPECT_EQ() |
| // there as its implementation uses PrintToString(). The caller must |
| // ensure that 'value' has no side effect. |
| #define EXPECT_PRINT_TO_STRING_(value, expected_string) \ |
| EXPECT_TRUE(PrintToString(value) == (expected_string)) \ |
| << " where " #value " prints as " << (PrintToString(value)) |
| |
| TEST(PrintToStringTest, WorksForScalar) { |
| EXPECT_PRINT_TO_STRING_(123, "123"); |
| } |
| |
| TEST(PrintToStringTest, WorksForPointerToConstChar) { |
| const char* p = "hello"; |
| EXPECT_PRINT_TO_STRING_(p, "\"hello\""); |
| } |
| |
| TEST(PrintToStringTest, WorksForPointerToNonConstChar) { |
| char s[] = "hello"; |
| char* p = s; |
| EXPECT_PRINT_TO_STRING_(p, "\"hello\""); |
| } |
| |
| TEST(PrintToStringTest, EscapesForPointerToConstChar) { |
| const char* p = "hello\n"; |
| EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\""); |
| } |
| |
| TEST(PrintToStringTest, EscapesForPointerToNonConstChar) { |
| char s[] = "hello\1"; |
| char* p = s; |
| EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\""); |
| } |
| |
| TEST(PrintToStringTest, WorksForArray) { |
| int n[3] = { 1, 2, 3 }; |
| EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }"); |
| } |
| |
| TEST(PrintToStringTest, WorksForCharArray) { |
| char s[] = "hello"; |
| EXPECT_PRINT_TO_STRING_(s, "\"hello\""); |
| } |
| |
| TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) { |
| const char str_with_nul[] = "hello\0 world"; |
| EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\""); |
| |
| char mutable_str_with_nul[] = "hello\0 world"; |
| EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\""); |
| } |
| |
| #undef EXPECT_PRINT_TO_STRING_ |
| |
| TEST(UniversalTersePrintTest, WorksForNonReference) { |
| ::std::stringstream ss; |
| UniversalTersePrint(123, &ss); |
| EXPECT_EQ("123", ss.str()); |
| } |
| |
| TEST(UniversalTersePrintTest, WorksForReference) { |
| const int& n = 123; |
| ::std::stringstream ss; |
| UniversalTersePrint(n, &ss); |
| EXPECT_EQ("123", ss.str()); |
| } |
| |
| TEST(UniversalTersePrintTest, WorksForCString) { |
| const char* s1 = "abc"; |
| ::std::stringstream ss1; |
| UniversalTersePrint(s1, &ss1); |
| EXPECT_EQ("\"abc\"", ss1.str()); |
| |
| char* s2 = const_cast<char*>(s1); |
| ::std::stringstream ss2; |
| UniversalTersePrint(s2, &ss2); |
| EXPECT_EQ("\"abc\"", ss2.str()); |
| |
| const char* s3 = NULL; |
| ::std::stringstream ss3; |
| UniversalTersePrint(s3, &ss3); |
| EXPECT_EQ("NULL", ss3.str()); |
| } |
| |
| TEST(UniversalPrintTest, WorksForNonReference) { |
| ::std::stringstream ss; |
| UniversalPrint(123, &ss); |
| EXPECT_EQ("123", ss.str()); |
| } |
| |
| TEST(UniversalPrintTest, WorksForReference) { |
| const int& n = 123; |
| ::std::stringstream ss; |
| UniversalPrint(n, &ss); |
| EXPECT_EQ("123", ss.str()); |
| } |
| |
| TEST(UniversalPrintTest, WorksForCString) { |
| const char* s1 = "abc"; |
| ::std::stringstream ss1; |
| UniversalPrint(s1, &ss1); |
| EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str())); |
| |
| char* s2 = const_cast<char*>(s1); |
| ::std::stringstream ss2; |
| UniversalPrint(s2, &ss2); |
| EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str())); |
| |
| const char* s3 = NULL; |
| ::std::stringstream ss3; |
| UniversalPrint(s3, &ss3); |
| EXPECT_EQ("NULL", ss3.str()); |
| } |
| |
| TEST(UniversalPrintTest, WorksForCharArray) { |
| const char str[] = "\"Line\0 1\"\nLine 2"; |
| ::std::stringstream ss1; |
| UniversalPrint(str, &ss1); |
| EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str()); |
| |
| const char mutable_str[] = "\"Line\0 1\"\nLine 2"; |
| ::std::stringstream ss2; |
| UniversalPrint(mutable_str, &ss2); |
| EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str()); |
| } |
| |
| #if GTEST_HAS_TR1_TUPLE |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::tr1::make_tuple()); |
| EXPECT_EQ(0u, result.size()); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::tr1::make_tuple(1)); |
| ASSERT_EQ(1u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::tr1::make_tuple(1, 'a')); |
| ASSERT_EQ(2u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| EXPECT_EQ("'a' (97, 0x61)", result[1]); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) { |
| const int n = 1; |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::tr1::tuple<const int&, const char*>(n, "a")); |
| ASSERT_EQ(2u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| EXPECT_EQ("\"a\"", result[1]); |
| } |
| |
| #endif // GTEST_HAS_TR1_TUPLE |
| |
| #if GTEST_HAS_STD_TUPLE_ |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple()); |
| EXPECT_EQ(0u, result.size()); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::make_tuple(1)); |
| ASSERT_EQ(1u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) { |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::make_tuple(1, 'a')); |
| ASSERT_EQ(2u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| EXPECT_EQ("'a' (97, 0x61)", result[1]); |
| } |
| |
| TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) { |
| const int n = 1; |
| Strings result = UniversalTersePrintTupleFieldsToStrings( |
| ::std::tuple<const int&, const char*>(n, "a")); |
| ASSERT_EQ(2u, result.size()); |
| EXPECT_EQ("1", result[0]); |
| EXPECT_EQ("\"a\"", result[1]); |
| } |
| |
| #endif // GTEST_HAS_STD_TUPLE_ |
| |
| } // namespace gtest_printers_test |
| } // namespace testing |
| |