blob: 12b5828434250ecf72e1430c0f398cc1f46bb07b [file] [log] [blame]
#! /usr/bin/env perl
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
######################################################################
## Constant-time SSSE3 AES core implementation.
## version 0.1
##
## By Mike Hamburg (Stanford University), 2009
## Public domain.
##
## For details see http://shiftleft.org/papers/vector_aes/ and
## http://crypto.stanford.edu/vpaes/.
##
######################################################################
# Adapted from the original x86_64 version and <appro@openssl.org>'s ARMv8
# version.
#
# armv7, aarch64, and x86_64 differ in several ways:
#
# * x86_64 SSSE3 instructions are two-address (destination operand is also a
# source), while NEON is three-address (destination operand is separate from
# two sources).
#
# * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16.
#
# * x86_64 instructions can take memory references, while ARM is a load/store
# architecture. This means we sometimes need a spare register.
#
# * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb),
# while armv7 only has a 64-bit byte shuffle (vtbl).
#
# This means this armv7 version must be a mix of both aarch64 and x86_64
# implementations. armv7 and aarch64 have analogous SIMD instructions, so we
# base the instructions on aarch64. However, we cannot use aarch64's register
# allocation. x86_64's register count matches, but x86_64 is two-address.
# vpaes-armv8.pl already accounts for this in the comments, which use
# three-address AVX instructions instead of the original SSSE3 ones. We base
# register usage on these comments, which are preserved in this file.
#
# This means we do not use separate input and output registers as in aarch64 and
# cannot pin as many constants in the preheat functions. However, the load/store
# architecture means we must still deviate from x86_64 in places.
#
# Next, we account for the byte shuffle instructions. vtbl takes 64-bit source
# and destination and 128-bit table. Fortunately, armv7 also allows addressing
# upper and lower halves of each 128-bit register. The lower half of q{N} is
# d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent
# instruction,
#
# vtbl.8 q0, q1, q2 @ Index each of q2's 16 bytes into q1. Store in q0.
#
# we write:
#
# vtbl.8 d0, q1, d4 @ Index each of d4's 8 bytes into q1. Store in d0.
# vtbl.8 d1, q1, d5 @ Index each of d5's 8 bytes into q1. Store in d1.
#
# For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and
# post-process before outputting. (This is adapted from ghash-armv4.pl.) Note,
# however, that destination (q0) and table (q1) registers may no longer match.
# We adjust the register usage from x86_64 to avoid this. (Unfortunately, the
# two-address pshufb always matched these operands, so this is common.)
#
# This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR
# expands to an ADD or SUB of the pc register to find an address. That immediate
# must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation.
# This means larger values must be more aligned.
#
# ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may
# use either encoding (do we actually need to support this?). In ARM mode, the
# distances get large enough to require 16-byte alignment. Moving constants
# closer to their use resolves most of this, but common constants in
# _vpaes_consts are used by the whole file. Affected ADR instructions must be
# placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this
# constraint have been commented.
#
# For details on ARM's immediate value encoding scheme, see
# https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
#
# Finally, a summary of armv7 and aarch64 SIMD syntax differences:
#
# * armv7 prefixes SIMD instructions with 'v', while aarch64 does not.
#
# * armv7 SIMD registers are named like q0 (and d0 for the half-width ones).
# aarch64 names registers like v0, and denotes half-width operations in an
# instruction suffix (see below).
#
# * aarch64 embeds size and lane information in register suffixes. v0.16b is
# 16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s.
# armv7 embeds the total size in the register name (see above) and the size of
# each element in an instruction suffix, which may look like vmov.i8,
# vshr.u8, or vtbl.8, depending on instruction.
use strict;
my $flavour = shift;
my $output;
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
$0 =~ m/(.*[\/\\])[^\/\\]+$/;
my $dir=$1;
my $xlate;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
my $code = "";
$code.=<<___;
.syntax unified
.arch armv7-a
.fpu neon
#if defined(__thumb2__)
.thumb
#else
.code 32
#endif
.text
.type _vpaes_consts,%object
.align 7 @ totally strategic alignment
_vpaes_consts:
.Lk_mc_forward: @ mc_forward
.quad 0x0407060500030201, 0x0C0F0E0D080B0A09
.quad 0x080B0A0904070605, 0x000302010C0F0E0D
.quad 0x0C0F0E0D080B0A09, 0x0407060500030201
.quad 0x000302010C0F0E0D, 0x080B0A0904070605
.Lk_mc_backward:@ mc_backward
.quad 0x0605040702010003, 0x0E0D0C0F0A09080B
.quad 0x020100030E0D0C0F, 0x0A09080B06050407
.quad 0x0E0D0C0F0A09080B, 0x0605040702010003
.quad 0x0A09080B06050407, 0x020100030E0D0C0F
.Lk_sr: @ sr
.quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
.quad 0x030E09040F0A0500, 0x0B06010C07020D08
.quad 0x0F060D040B020900, 0x070E050C030A0108
.quad 0x0B0E0104070A0D00, 0x0306090C0F020508
@
@ "Hot" constants
@
.Lk_inv: @ inv, inva
.quad 0x0E05060F0D080180, 0x040703090A0B0C02
.quad 0x01040A060F0B0780, 0x030D0E0C02050809
.Lk_ipt: @ input transform (lo, hi)
.quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
.quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
.Lk_sbo: @ sbou, sbot
.quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
.quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
.Lk_sb1: @ sb1u, sb1t
.quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
.quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
.Lk_sb2: @ sb2u, sb2t
.quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
.quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
.asciz "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)"
.size _vpaes_consts,.-_vpaes_consts
.align 6
___
{
my ($inp,$out,$key) = map("r$_", (0..2));
my ($invlo,$invhi) = map("q$_", (10..11));
my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15));
$code.=<<___;
@@
@@ _aes_preheat
@@
@@ Fills q9-q15 as specified below.
@@
.type _vpaes_preheat,%function
.align 4
_vpaes_preheat:
adr r10, .Lk_inv
vmov.i8 q9, #0x0f @ .Lk_s0F
vld1.64 {q10,q11}, [r10]! @ .Lk_inv
add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo
vld1.64 {q12,q13}, [r10]! @ .Lk_sb1
vld1.64 {q14,q15}, [r10] @ .Lk_sb2
bx lr
@@
@@ _aes_encrypt_core
@@
@@ AES-encrypt q0.
@@
@@ Inputs:
@@ q0 = input
@@ q9-q15 as in _vpaes_preheat
@@ [$key] = scheduled keys
@@
@@ Output in q0
@@ Clobbers q1-q5, r8-r11
@@ Preserves q6-q8 so you get some local vectors
@@
@@
.type _vpaes_encrypt_core,%function
.align 4
_vpaes_encrypt_core:
mov r9, $key
ldr r8, [$key,#240] @ pull rounds
adr r11, .Lk_ipt
@ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
@ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
vld1.64 {q2, q3}, [r11]
adr r11, .Lk_mc_forward+16
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q1#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm1
vtbl.8 q1#hi, {q2}, q1#hi
vtbl.8 q2#lo, {q3}, q0#lo @ vpshufb %xmm0, %xmm3, %xmm2
vtbl.8 q2#hi, {q3}, q0#hi
veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
@ .Lenc_entry ends with a bnz instruction which is normally paired with
@ subs in .Lenc_loop.
tst r8, r8
b .Lenc_entry
.align 4
.Lenc_loop:
@ middle of middle round
add r10, r11, #0x40
vtbl.8 q4#lo, {$sb1t}, q2#lo @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
vtbl.8 q4#hi, {$sb1t}, q2#hi
vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
vtbl.8 q0#lo, {$sb1u}, q3#lo @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
vtbl.8 q0#hi, {$sb1u}, q3#hi
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
vtbl.8 q5#lo, {$sb2t}, q2#lo @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
vtbl.8 q5#hi, {$sb2t}, q2#hi
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
vtbl.8 q2#lo, {$sb2u}, q3#lo @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
vtbl.8 q2#hi, {$sb2u}, q3#hi
vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
vtbl.8 q3#lo, {q0}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
vtbl.8 q3#hi, {q0}, q1#hi
veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
@ Write to q5 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q5#lo, {q0}, q4#lo @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
vtbl.8 q5#hi, {q0}, q4#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
vtbl.8 q4#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
vtbl.8 q4#hi, {q3}, q1#hi
@ Here we restore the original q0/q5 usage.
veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
and r11, r11, #~(1<<6) @ and \$0x30, %r11 # ... mod 4
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
subs r8, r8, #1 @ nr--
.Lenc_entry:
@ top of round
vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vtbl.8 q5#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
vtbl.8 q5#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vtbl.8 q2#hi, {$invlo}, q3#hi
vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
vtbl.8 q3#hi, {$invlo}, q4#hi
veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5
bne .Lenc_loop
@ middle of last round
add r10, r11, #0x80
adr r11, .Lk_sbo
@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
@ overlap table and destination registers.
vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou
vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q1}, q2#hi
vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
@ Write to q2 instead of q0 below, to avoid overlapping table and
@ destination registers.
vtbl.8 q2#lo, {q0}, q3#lo @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
vtbl.8 q2#hi, {q0}, q3#hi
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
@ Here we restore the original q0/q2 usage.
vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0
vtbl.8 q0#hi, {q2}, q1#hi
bx lr
.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
.globl vpaes_encrypt
.type vpaes_encrypt,%function
.align 4
vpaes_encrypt:
@ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
@ alignment.
stmdb sp!, {r7-r11,lr}
@ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
vstmdb sp!, {d8-d11}
vld1.64 {q0}, [$inp]
bl _vpaes_preheat
bl _vpaes_encrypt_core
vst1.64 {q0}, [$out]
vldmia sp!, {d8-d11}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_encrypt,.-vpaes_encrypt
@
@ Decryption stuff
@
.type _vpaes_decrypt_consts,%object
.align 4
_vpaes_decrypt_consts:
.Lk_dipt: @ decryption input transform
.quad 0x0F505B040B545F00, 0x154A411E114E451A
.quad 0x86E383E660056500, 0x12771772F491F194
.Lk_dsbo: @ decryption sbox final output
.quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
.quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C
.Lk_dsb9: @ decryption sbox output *9*u, *9*t
.quad 0x851C03539A86D600, 0xCAD51F504F994CC9
.quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565
.Lk_dsbd: @ decryption sbox output *D*u, *D*t
.quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
.quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
.Lk_dsbb: @ decryption sbox output *B*u, *B*t
.quad 0xD022649296B44200, 0x602646F6B0F2D404
.quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
.Lk_dsbe: @ decryption sbox output *E*u, *E*t
.quad 0x46F2929626D4D000, 0x2242600464B4F6B0
.quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32
.size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts
@@
@@ Decryption core
@@
@@ Same API as encryption core, except it clobbers q12-q15 rather than using
@@ the values from _vpaes_preheat. q9-q11 must still be set from
@@ _vpaes_preheat.
@@
.type _vpaes_decrypt_core,%function
.align 4
_vpaes_decrypt_core:
mov r9, $key
ldr r8, [$key,#240] @ pull rounds
@ This function performs shuffles with various constants. The x86_64
@ version loads them on-demand into %xmm0-%xmm5. This does not work well
@ for ARMv7 because those registers are shuffle destinations. The ARMv8
@ version preloads those constants into registers, but ARMv7 has half
@ the registers to work with. Instead, we load them on-demand into
@ q12-q15, registers normally use for preloaded constants. This is fine
@ because decryption doesn't use those constants. The values are
@ constant, so this does not interfere with potential 2x optimizations.
adr r7, .Lk_dipt
vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo
lsl r11, r8, #4 @ mov %rax, %r11; shl \$4, %r11
eor r11, r11, #0x30 @ xor \$0x30, %r11
adr r10, .Lk_sr
and r11, r11, #0x30 @ and \$0x30, %r11
add r11, r11, r10
adr r10, .Lk_mc_forward+48
vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q2#lo, {q12}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2
vtbl.8 q2#hi, {q12}, q1#hi
vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5
@ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi
vtbl.8 q0#lo, {q13}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0
vtbl.8 q0#hi, {q13}, q0#hi
veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
@ .Ldec_entry ends with a bnz instruction which is normally paired with
@ subs in .Ldec_loop.
tst r8, r8
b .Ldec_entry
.align 4
.Ldec_loop:
@
@ Inverse mix columns
@
@ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of
@ the function.
adr r10, .Lk_dsb9
vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u
@ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t
@ Load sbd* ahead of time.
vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu
@ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt
vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u
vtbl.8 q4#hi, {q12}, q2#hi
vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t
vtbl.8 q1#hi, {q13}, q3#hi
veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
@ Load sbb* ahead of time.
vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu
@ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt
vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu
vtbl.8 q4#hi, {q14}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt
vtbl.8 q1#hi, {q15}, q3#hi
@ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
@ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt
@ Load sbd* ahead of time.
vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu
@ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet
vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu
vtbl.8 q4#hi, {q12}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt
vtbl.8 q1#hi, {q13}, q3#hi
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu
vtbl.8 q4#hi, {q14}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet
vtbl.8 q1#hi, {q15}, q3#hi
vext.8 q5, q5, q5, #12 @ vpalignr \$12, %xmm5, %xmm5, %xmm5
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
subs r8, r8, #1 @ sub \$1,%rax # nr--
.Ldec_entry:
@ top of round
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vtbl.8 q2#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vtbl.8 q2#hi, {$invlo}, q3#hi
vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
vtbl.8 q3#hi, {$invlo}, q4#hi
veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0
bne .Ldec_loop
@ middle of last round
adr r10, .Lk_dsbo
@ Write to q1 rather than q4 to avoid overlapping table and destination.
vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou
vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q1}, q2#hi
@ Write to q2 rather than q1 to avoid overlapping table and destination.
vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot
vtbl.8 q1#lo, {q2}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t
vtbl.8 q1#hi, {q2}, q3#hi
vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k
@ Write to q1 rather than q0 so the table and destination registers
@ below do not overlap.
veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A
vtbl.8 q0#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm0, %xmm0
vtbl.8 q0#hi, {q1}, q2#hi
bx lr
.size _vpaes_decrypt_core,.-_vpaes_decrypt_core
.globl vpaes_decrypt
.type vpaes_decrypt,%function
.align 4
vpaes_decrypt:
@ _vpaes_decrypt_core uses r7-r11.
stmdb sp!, {r7-r11,lr}
@ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved.
vstmdb sp!, {d8-d11}
vld1.64 {q0}, [$inp]
bl _vpaes_preheat
bl _vpaes_decrypt_core
vst1.64 {q0}, [$out]
vldmia sp!, {d8-d11}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_decrypt,.-vpaes_decrypt
___
}
{
my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3");
my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12));
$code.=<<___;
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@ @@
@@ AES key schedule @@
@@ @@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ This function diverges from both x86_64 and armv7 in which constants are
@ pinned. x86_64 has a common preheat function for all operations. aarch64
@ separates them because it has enough registers to pin nearly all constants.
@ armv7 does not have enough registers, but needing explicit loads and stores
@ also complicates using x86_64's register allocation directly.
@
@ We pin some constants for convenience and leave q14 and q15 free to load
@ others on demand.
@
@ Key schedule constants
@
.type _vpaes_key_consts,%object
.align 4
_vpaes_key_consts:
.Lk_dksd: @ decryption key schedule: invskew x*D
.quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
.quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
.Lk_dksb: @ decryption key schedule: invskew x*B
.quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
.quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
.Lk_dkse: @ decryption key schedule: invskew x*E + 0x63
.quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
.quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
.Lk_dks9: @ decryption key schedule: invskew x*9
.quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
.quad 0x4576516227143300, 0x8BB89FACE9DAFDCE
.Lk_rcon: @ rcon
.quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
.Lk_opt: @ output transform
.quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
.quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
.Lk_deskew: @ deskew tables: inverts the sbox's "skew"
.quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
.quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
.size _vpaes_key_consts,.-_vpaes_key_consts
.type _vpaes_key_preheat,%function
.align 4
_vpaes_key_preheat:
adr r11, .Lk_rcon
vmov.i8 $s63, #0x5b @ .Lk_s63
adr r10, .Lk_inv @ Must be aligned to 8 mod 16.
vmov.i8 $s0F, #0x0f @ .Lk_s0F
vld1.64 {$invlo,$invhi}, [r10] @ .Lk_inv
vld1.64 {$rcon}, [r11] @ .Lk_rcon
bx lr
.size _vpaes_key_preheat,.-_vpaes_key_preheat
.type _vpaes_schedule_core,%function
.align 4
_vpaes_schedule_core:
@ We only need to save lr, but ARM requires an 8-byte stack alignment,
@ so save an extra register.
stmdb sp!, {r3,lr}
bl _vpaes_key_preheat @ load the tables
adr r11, .Lk_ipt @ Must be aligned to 8 mod 16.
vld1.64 {q0}, [$inp]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned)
@ input transform
@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
@ overlap table and destination.
vmov q4, q0 @ vmovdqa %xmm0, %xmm3
bl _vpaes_schedule_transform
adr r10, .Lk_sr @ Must be aligned to 8 mod 16.
vmov q7, q0 @ vmovdqa %xmm0, %xmm7
add r8, r8, r10
tst $dir, $dir
bne .Lschedule_am_decrypting
@ encrypting, output zeroth round key after transform
vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx)
b .Lschedule_go
.Lschedule_am_decrypting:
@ decrypting, output zeroth round key after shiftrows
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
vtbl.8 q3#lo, {q4}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q4}, q1#hi
vst1.64 {q3}, [$out] @ vmovdqu %xmm3, (%rdx)
eor r8, r8, #0x30 @ xor \$0x30, %r8
.Lschedule_go:
cmp $bits, #192 @ cmp \$192, %esi
bhi .Lschedule_256
beq .Lschedule_192
@ 128: fall though
@@
@@ .schedule_128
@@
@@ 128-bit specific part of key schedule.
@@
@@ This schedule is really simple, because all its parts
@@ are accomplished by the subroutines.
@@
.Lschedule_128:
mov $inp, #10 @ mov \$10, %esi
.Loop_schedule_128:
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle @ write output
b .Loop_schedule_128
@@
@@ .aes_schedule_192
@@
@@ 192-bit specific part of key schedule.
@@
@@ The main body of this schedule is the same as the 128-bit
@@ schedule, but with more smearing. The long, high side is
@@ stored in q7 as before, and the short, low side is in
@@ the high bits of q6.
@@
@@ This schedule is somewhat nastier, however, because each
@@ round produces 192 bits of key material, or 1.5 round keys.
@@ Therefore, on each cycle we do 2 rounds and produce 3 round
@@ keys.
@@
.align 4
.Lschedule_192:
sub $inp, $inp, #8
vld1.64 {q0}, [$inp] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
bl _vpaes_schedule_transform @ input transform
vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part
vmov.i8 q6#lo, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4
@ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros
mov $inp, #4 @ mov \$4, %esi
.Loop_schedule_192:
bl _vpaes_schedule_round
vext.8 q0, q6, q0, #8 @ vpalignr \$8,%xmm6,%xmm0,%xmm0
bl _vpaes_schedule_mangle @ save key n
bl _vpaes_schedule_192_smear
bl _vpaes_schedule_mangle @ save key n+1
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle @ save key n+2
bl _vpaes_schedule_192_smear
b .Loop_schedule_192
@@
@@ .aes_schedule_256
@@
@@ 256-bit specific part of key schedule.
@@
@@ The structure here is very similar to the 128-bit
@@ schedule, but with an additional "low side" in
@@ q6. The low side's rounds are the same as the
@@ high side's, except no rcon and no rotation.
@@
.align 4
.Lschedule_256:
vld1.64 {q0}, [$inp] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
bl _vpaes_schedule_transform @ input transform
mov $inp, #7 @ mov \$7, %esi
.Loop_schedule_256:
bl _vpaes_schedule_mangle @ output low result
vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
@ high round
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle
@ low round. swap xmm7 and xmm6
vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
vmov.i8 q4, #0
vmov q5, q7 @ vmovdqa %xmm7, %xmm5
vmov q7, q6 @ vmovdqa %xmm6, %xmm7
bl _vpaes_schedule_low_round
vmov q7, q5 @ vmovdqa %xmm5, %xmm7
b .Loop_schedule_256
@@
@@ .aes_schedule_mangle_last
@@
@@ Mangler for last round of key schedule
@@ Mangles q0
@@ when encrypting, outputs out(q0) ^ 63
@@ when decrypting, outputs unskew(q0)
@@
@@ Always called right before return... jumps to cleanup and exits
@@
.align 4
.Lschedule_mangle_last:
@ schedule last round key from xmm0
adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew
tst $dir, $dir
bne .Lschedule_mangle_last_dec
@ encrypting
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1
adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform
add $out, $out, #32 @ add \$32, %rdx
vmov q2, q0
vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 # output permute
vtbl.8 q0#hi, {q2}, q1#hi
.Lschedule_mangle_last_dec:
sub $out, $out, #16 @ add \$-16, %rdx
veor q0, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0
bl _vpaes_schedule_transform @ output transform
vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) # save last key
@ cleanup
veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0
veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2
veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3
veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4
veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5
veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6
veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7
ldmia sp!, {r3,pc} @ return
.size _vpaes_schedule_core,.-_vpaes_schedule_core
@@
@@ .aes_schedule_192_smear
@@
@@ Smear the short, low side in the 192-bit key schedule.
@@
@@ Inputs:
@@ q7: high side, b a x y
@@ q6: low side, d c 0 0
@@
@@ Outputs:
@@ q6: b+c+d b+c 0 0
@@ q0: b+c+d b+c b a
@@
.type _vpaes_schedule_192_smear,%function
.align 4
_vpaes_schedule_192_smear:
vmov.i8 q1, #0
vdup.32 q0, q7#hi[1]
vshl.i64 q1, q6, #32 @ vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
vmov q0#lo, q7#hi @ vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0
veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a
vmov q0, q6 @ vmovdqa %xmm6, %xmm0
vmov q6#lo, q1#lo @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros
bx lr
.size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
@@
@@ .aes_schedule_round
@@
@@ Runs one main round of the key schedule on q0, q7
@@
@@ Specifically, runs subbytes on the high dword of q0
@@ then rotates it by one byte and xors into the low dword of
@@ q7.
@@
@@ Adds rcon from low byte of q8, then rotates q8 for
@@ next rcon.
@@
@@ Smears the dwords of q7 by xoring the low into the
@@ second low, result into third, result into highest.
@@
@@ Returns results in q7 = q0.
@@ Clobbers q1-q4, r11.
@@
.type _vpaes_schedule_round,%function
.align 4
_vpaes_schedule_round:
@ extract rcon from xmm8
vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4
vext.8 q1, $rcon, q4, #15 @ vpalignr \$15, %xmm8, %xmm4, %xmm1
vext.8 $rcon, $rcon, $rcon, #15 @ vpalignr \$15, %xmm8, %xmm8, %xmm8
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
@ rotate
vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
vext.8 q0, q0, q0, #1 @ vpalignr \$1, %xmm0, %xmm0, %xmm0
@ fall through...
@ low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
@ We pin other values in _vpaes_key_preheat, so load them now.
adr r11, .Lk_sb1
vld1.64 {q14,q15}, [r11]
@ smear xmm7
vext.8 q1, q4, q7, #12 @ vpslldq \$4, %xmm7, %xmm1
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
vext.8 q4, q4, q7, #8 @ vpslldq \$8, %xmm7, %xmm4
@ subbytes
vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7
vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vtbl.8 q2#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q7, q7, $s63 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7
vtbl.8 q3#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
vtbl.8 q3#hi, {$invlo}, q3#hi
veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
vtbl.8 q2#hi, {$invlo}, q4#hi
veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io
veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
vtbl.8 q4#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q15}, q3#hi
vtbl.8 q1#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
vtbl.8 q1#hi, {q14}, q2#hi
veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
@ add in smeared stuff
veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0
veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7
bx lr
.size _vpaes_schedule_round,.-_vpaes_schedule_round
@@
@@ .aes_schedule_transform
@@
@@ Linear-transform q0 according to tables at [r11]
@@
@@ Requires that q9 = 0x0F0F... as in preheat
@@ Output in q0
@@ Clobbers q1, q2, q14, q15
@@
.type _vpaes_schedule_transform,%function
.align 4
_vpaes_schedule_transform:
vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo
@ vmovdqa 16(%r11), %xmm1 # hi
vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q2#lo, {q14}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q1#hi
vtbl.8 q0#lo, {q15}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0
vtbl.8 q0#hi, {q15}, q0#hi
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
bx lr
.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
@@
@@ .aes_schedule_mangle
@@
@@ Mangles q0 from (basis-transformed) standard version
@@ to our version.
@@
@@ On encrypt,
@@ xor with 0x63
@@ multiply by circulant 0,1,1,1
@@ apply shiftrows transform
@@
@@ On decrypt,
@@ xor with 0x63
@@ multiply by "inverse mixcolumns" circulant E,B,D,9
@@ deskew
@@ apply shiftrows transform
@@
@@
@@ Writes out to [r2], and increments or decrements it
@@ Keeps track of round number mod 4 in r8
@@ Preserves q0
@@ Clobbers q1-q5
@@
.type _vpaes_schedule_mangle,%function
.align 4
_vpaes_schedule_mangle:
tst $dir, $dir
vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later
adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16.
vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5
bne .Lschedule_mangle_dec
@ encrypting
@ Write to q2 so we do not overlap table and destination below.
veor q2, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4
add $out, $out, #16 @ add \$16, %rdx
vtbl.8 q4#lo, {q2}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm4
vtbl.8 q4#hi, {q2}, q5#hi
vtbl.8 q1#lo, {q4}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm1
vtbl.8 q1#hi, {q4}, q5#hi
vtbl.8 q3#lo, {q1}, q5#lo @ vpshufb %xmm5, %xmm1, %xmm3
vtbl.8 q3#hi, {q1}, q5#hi
veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3
b .Lschedule_mangle_both
.align 4
.Lschedule_mangle_dec:
@ inverse mix columns
adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11
vshr.u8 q1, q4, #4 @ vpsrlb \$4, %xmm4, %xmm1 # 1 = hi
vand q4, q4, $s0F @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2
@ vmovdqa 0x10(%r11), %xmm3
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dksb ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2
@ vmovdqa 0x30(%r11), %xmm3
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dkse ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2
@ vmovdqa 0x50(%r11), %xmm3
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dkse ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2
@ vmovdqa 0x70(%r11), %xmm4
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q4#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm4, %xmm4
vtbl.8 q4#hi, {q15}, q1#hi
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3
sub $out, $out, #16 @ add \$-16, %rdx
.Lschedule_mangle_both:
@ Write to q2 so table and destination do not overlap.
vtbl.8 q2#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q2#hi, {q3}, q1#hi
add r8, r8, #64-16 @ add \$-16, %r8
and r8, r8, #~(1<<6) @ and \$0x30, %r8
vst1.64 {q2}, [$out] @ vmovdqu %xmm3, (%rdx)
bx lr
.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
.globl vpaes_set_encrypt_key
.type vpaes_set_encrypt_key,%function
.align 4
vpaes_set_encrypt_key:
stmdb sp!, {r7-r11, lr}
vstmdb sp!, {d8-d15}
lsr r9, $bits, #5 @ shr \$5,%eax
add r9, r9, #5 @ \$5,%eax
str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
mov $dir, #0 @ mov \$0,%ecx
mov r8, #0x30 @ mov \$0x30,%r8d
bl _vpaes_schedule_core
eor r0, r0, r0
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key
.globl vpaes_set_decrypt_key
.type vpaes_set_decrypt_key,%function
.align 4
vpaes_set_decrypt_key:
stmdb sp!, {r7-r11, lr}
vstmdb sp!, {d8-d15}
lsr r9, $bits, #5 @ shr \$5,%eax
add r9, r9, #5 @ \$5,%eax
str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
lsl r9, r9, #4 @ shl \$4,%eax
add $out, $out, #16 @ lea 16(%rdx,%rax),%rdx
add $out, $out, r9
mov $dir, #1 @ mov \$1,%ecx
lsr r8, $bits, #1 @ shr \$1,%r8d
and r8, r8, #32 @ and \$32,%r8d
eor r8, r8, #32 @ xor \$32,%r8d # nbits==192?0:32
bl _vpaes_schedule_core
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key
___
}
{
my ($out, $inp) = map("r$_", (0..1));
my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12));
$code .= <<___;
@ Additional constants for converting to bsaes.
.type _vpaes_convert_consts,%object
.align 4
_vpaes_convert_consts:
@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
@ transform in the AES S-box. 0x63 is incorporated into the low half of the
@ table. This was computed with the following script:
@
@ def u64s_to_u128(x, y):
@ return x | (y << 64)
@ def u128_to_u64s(w):
@ return w & ((1<<64)-1), w >> 64
@ def get_byte(w, i):
@ return (w >> (i*8)) & 0xff
@ def apply_table(table, b):
@ lo = b & 0xf
@ hi = b >> 4
@ return get_byte(table[0], lo) ^ get_byte(table[1], hi)
@ def opt(b):
@ table = [
@ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
@ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
@ ]
@ return apply_table(table, b)
@ def rot_byte(b, n):
@ return 0xff & ((b << n) | (b >> (8-n)))
@ def skew(x):
@ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
@ rot_byte(x, 4))
@ table = [0, 0]
@ for i in range(16):
@ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
@ table[1] |= skew(opt(i<<4)) << (i*8)
@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0]))
@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1]))
.Lk_opt_then_skew:
.quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b
.quad 0x1f30062936192f00, 0xb49bad829db284ab
@ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation
@ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344
@ becomes 0x22334411 and then 0x11443322.
.Lk_decrypt_transform:
.quad 0x0704050603000102, 0x0f0c0d0e0b08090a
.size _vpaes_convert_consts,.-_vpaes_convert_consts
@ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
.globl vpaes_encrypt_key_to_bsaes
.type vpaes_encrypt_key_to_bsaes,%function
.align 4
vpaes_encrypt_key_to_bsaes:
stmdb sp!, {r11, lr}
@ See _vpaes_schedule_core for the key schedule logic. In particular,
@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
@ contain the transformations not in the bsaes representation. This
@ function inverts those transforms.
@
@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
@ representation, which does not match the other aes_nohw_*
@ implementations. The ARM aes_nohw_* stores each 32-bit word
@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
@ cost of extra REV and VREV32 operations in little-endian ARM.
vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform
adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16.
add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
vld1.64 {$mc_forward}, [r2]
vmov.i8 $s63, #0x5b @ .Lk_s63 from vpaes-x86_64
adr r11, .Lk_opt @ Must be aligned to 8 mod 16.
vmov.i8 $s63_raw, #0x63 @ .LK_s63 without .Lk_ipt applied
@ vpaes stores one fewer round count than bsaes, but the number of keys
@ is the same.
ldr r2, [$inp,#240]
add r2, r2, #1
str r2, [$out,#240]
@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
@ Invert this with .Lk_opt.
vld1.64 {q0}, [$inp]!
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
.Loop_enc_key_to_bsaes:
vld1.64 {q0}, [$inp]!
@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
@ We use r3 rather than r8 to avoid a callee-saved register.
vld1.64 {q1}, [r3]
vtbl.8 q2#lo, {q0}, q1#lo
vtbl.8 q2#hi, {q0}, q1#hi
add r3, r3, #16
and r3, r3, #~(1<<6)
vmov q0, q2
@ Handle the last key differently.
subs r2, r2, #1
beq .Loop_enc_key_to_bsaes_last
@ Multiply by the circulant. This is its own inverse.
vtbl.8 q1#lo, {q0}, $mc_forward#lo
vtbl.8 q1#hi, {q0}, $mc_forward#hi
vmov q0, q1
vtbl.8 q2#lo, {q1}, $mc_forward#lo
vtbl.8 q2#hi, {q1}, $mc_forward#hi
veor q0, q0, q2
vtbl.8 q1#lo, {q2}, $mc_forward#lo
vtbl.8 q1#hi, {q2}, $mc_forward#hi
veor q0, q0, q1
@ XOR and finish.
veor q0, q0, $s63
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
b .Loop_enc_key_to_bsaes
.Loop_enc_key_to_bsaes_last:
@ The final key does not have a basis transform (note
@ .Lschedule_mangle_last inverts the original transform). It only XORs
@ 0x63 and applies ShiftRows. The latter was already inverted in the
@ loop. Note that, because we act on the original representation, we use
@ $s63_raw, not $s63.
veor q0, q0, $s63_raw
vrev32.8 q0, q0
vst1.64 {q0}, [$out]
@ Wipe registers which contained key material.
veor q0, q0, q0
veor q1, q1, q1
veor q2, q2, q2
ldmia sp!, {r11, pc} @ return
.size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes
@ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes);
.globl vpaes_decrypt_key_to_bsaes
.type vpaes_decrypt_key_to_bsaes,%function
.align 4
vpaes_decrypt_key_to_bsaes:
stmdb sp!, {r11, lr}
@ See _vpaes_schedule_core for the key schedule logic. Note vpaes
@ computes the decryption key schedule in reverse. Additionally,
@ aes-x86_64.pl shares some transformations, so we must only partially
@ invert vpaes's transformations. In general, vpaes computes in a
@ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of
@ MixColumns, ShiftRows, and the affine part of the AES S-box (which is
@ split into a linear skew and XOR of 0x63). We undo all but MixColumns.
@
@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
@ representation, which does not match the other aes_nohw_*
@ implementations. The ARM aes_nohw_* stores each 32-bit word
@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
@ cost of extra REV and VREV32 operations in little-endian ARM.
adr r2, .Lk_decrypt_transform
adr r3, .Lk_sr+0x30
adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform.
vld1.64 {$mc_forward}, [r2] @ Reuse $mc_forward from encryption.
vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform
@ vpaes stores one fewer round count than bsaes, but the number of keys
@ is the same.
ldr r2, [$inp,#240]
add r2, r2, #1
str r2, [$out,#240]
@ Undo the basis change and reapply the S-box affine transform. See
@ .Lschedule_mangle_last.
vld1.64 {q0}, [$inp]!
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ See _vpaes_schedule_mangle for the transform on the middle keys. Note
@ it simultaneously inverts MixColumns and the S-box affine transform.
@ See .Lk_dksd through .Lk_dks9.
.Loop_dec_key_to_bsaes:
vld1.64 {q0}, [$inp]!
@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going
@ forwards cancels inverting for which direction we cycle r3. We use r3
@ rather than r8 to avoid a callee-saved register.
vld1.64 {q1}, [r3]
vtbl.8 q2#lo, {q0}, q1#lo
vtbl.8 q2#hi, {q0}, q1#hi
add r3, r3, #64-16
and r3, r3, #~(1<<6)
vmov q0, q2
@ Handle the last key differently.
subs r2, r2, #1
beq .Loop_dec_key_to_bsaes_last
@ Undo the basis change and reapply the S-box affine transform.
bl _vpaes_schedule_transform
@ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We
@ combine the two operations in .Lk_decrypt_transform.
@
@ TODO(davidben): Where does the rotation come from?
vtbl.8 q1#lo, {q0}, $mc_forward#lo
vtbl.8 q1#hi, {q0}, $mc_forward#hi
vst1.64 {q1}, [$out]!
b .Loop_dec_key_to_bsaes
.Loop_dec_key_to_bsaes_last:
@ The final key only inverts ShiftRows (already done in the loop). See
@ .Lschedule_am_decrypting. Its basis is not transformed.
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ Wipe registers which contained key material.
veor q0, q0, q0
veor q1, q1, q1
veor q2, q2, q2
ldmia sp!, {r11, pc} @ return
.size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes
___
}
{
# Register-passed parameters.
my ($inp, $out, $len, $key) = map("r$_", 0..3);
# Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and
# $tmp. $ctr is r7 because it must be preserved across calls.
my ($ctr, $ivec, $tmp) = map("r$_", 7..9);
# void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
# const AES_KEY *key, const uint8_t ivec[16]);
$code .= <<___;
.globl vpaes_ctr32_encrypt_blocks
.type vpaes_ctr32_encrypt_blocks,%function
.align 4
vpaes_ctr32_encrypt_blocks:
mov ip, sp
stmdb sp!, {r7-r11, lr}
@ This function uses q4-q7 (d8-d15), which are callee-saved.
vstmdb sp!, {d8-d15}
cmp $len, #0
@ $ivec is passed on the stack.
ldr $ivec, [ip]
beq .Lctr32_done
@ _vpaes_encrypt_core expects the key in r2, so swap $len and $key.
mov $tmp, $key
mov $key, $len
mov $len, $tmp
___
my ($len, $key) = ($key, $len);
$code .= <<___;
@ Load the IV and counter portion.
ldr $ctr, [$ivec, #12]
vld1.8 {q7}, [$ivec]
bl _vpaes_preheat
rev $ctr, $ctr @ The counter is big-endian.
.Lctr32_loop:
vmov q0, q7
vld1.8 {q6}, [$inp]! @ Load input ahead of time
bl _vpaes_encrypt_core
veor q0, q0, q6 @ XOR input and result
vst1.8 {q0}, [$out]!
subs $len, $len, #1
@ Update the counter.
add $ctr, $ctr, #1
rev $tmp, $ctr
vmov.32 q7#hi[1], $tmp
bne .Lctr32_loop
.Lctr32_done:
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks
___
}
foreach (split("\n",$code)) {
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;
print $_,"\n";
}
close STDOUT;