| #! /usr/bin/env perl |
| # Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| |
| ###################################################################### |
| ## Constant-time SSSE3 AES core implementation. |
| ## version 0.1 |
| ## |
| ## By Mike Hamburg (Stanford University), 2009 |
| ## Public domain. |
| ## |
| ## For details see http://shiftleft.org/papers/vector_aes/ and |
| ## http://crypto.stanford.edu/vpaes/. |
| ## |
| ###################################################################### |
| # Adapted from the original x86_64 version and <appro@openssl.org>'s ARMv8 |
| # version. |
| # |
| # armv7, aarch64, and x86_64 differ in several ways: |
| # |
| # * x86_64 SSSE3 instructions are two-address (destination operand is also a |
| # source), while NEON is three-address (destination operand is separate from |
| # two sources). |
| # |
| # * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16. |
| # |
| # * x86_64 instructions can take memory references, while ARM is a load/store |
| # architecture. This means we sometimes need a spare register. |
| # |
| # * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb), |
| # while armv7 only has a 64-bit byte shuffle (vtbl). |
| # |
| # This means this armv7 version must be a mix of both aarch64 and x86_64 |
| # implementations. armv7 and aarch64 have analogous SIMD instructions, so we |
| # base the instructions on aarch64. However, we cannot use aarch64's register |
| # allocation. x86_64's register count matches, but x86_64 is two-address. |
| # vpaes-armv8.pl already accounts for this in the comments, which use |
| # three-address AVX instructions instead of the original SSSE3 ones. We base |
| # register usage on these comments, which are preserved in this file. |
| # |
| # This means we do not use separate input and output registers as in aarch64 and |
| # cannot pin as many constants in the preheat functions. However, the load/store |
| # architecture means we must still deviate from x86_64 in places. |
| # |
| # Next, we account for the byte shuffle instructions. vtbl takes 64-bit source |
| # and destination and 128-bit table. Fortunately, armv7 also allows addressing |
| # upper and lower halves of each 128-bit register. The lower half of q{N} is |
| # d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent |
| # instruction, |
| # |
| # vtbl.8 q0, q1, q2 @ Index each of q2's 16 bytes into q1. Store in q0. |
| # |
| # we write: |
| # |
| # vtbl.8 d0, q1, d4 @ Index each of d4's 8 bytes into q1. Store in d0. |
| # vtbl.8 d1, q1, d5 @ Index each of d5's 8 bytes into q1. Store in d1. |
| # |
| # For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and |
| # post-process before outputting. (This is adapted from ghash-armv4.pl.) Note, |
| # however, that destination (q0) and table (q1) registers may no longer match. |
| # We adjust the register usage from x86_64 to avoid this. (Unfortunately, the |
| # two-address pshufb always matched these operands, so this is common.) |
| # |
| # This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR |
| # expands to an ADD or SUB of the pc register to find an address. That immediate |
| # must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation. |
| # This means larger values must be more aligned. |
| # |
| # ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may |
| # use either encoding (do we actually need to support this?). In ARM mode, the |
| # distances get large enough to require 16-byte alignment. Moving constants |
| # closer to their use resolves most of this, but common constants in |
| # _vpaes_consts are used by the whole file. Affected ADR instructions must be |
| # placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this |
| # constraint have been commented. |
| # |
| # For details on ARM's immediate value encoding scheme, see |
| # https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/ |
| # |
| # Finally, a summary of armv7 and aarch64 SIMD syntax differences: |
| # |
| # * armv7 prefixes SIMD instructions with 'v', while aarch64 does not. |
| # |
| # * armv7 SIMD registers are named like q0 (and d0 for the half-width ones). |
| # aarch64 names registers like v0, and denotes half-width operations in an |
| # instruction suffix (see below). |
| # |
| # * aarch64 embeds size and lane information in register suffixes. v0.16b is |
| # 16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s. |
| # armv7 embeds the total size in the register name (see above) and the size of |
| # each element in an instruction suffix, which may look like vmov.i8, |
| # vshr.u8, or vtbl.8, depending on instruction. |
| |
| use strict; |
| |
| my $flavour = shift; |
| my $output; |
| while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; |
| my $dir=$1; |
| my $xlate; |
| ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or |
| die "can't locate arm-xlate.pl"; |
| |
| open OUT,"| \"$^X\" $xlate $flavour $output"; |
| *STDOUT=*OUT; |
| |
| my $code = ""; |
| |
| $code.=<<___; |
| .syntax unified |
| |
| .arch armv7-a |
| .fpu neon |
| |
| #if defined(__thumb2__) |
| .thumb |
| #else |
| .code 32 |
| #endif |
| |
| .text |
| |
| .type _vpaes_consts,%object |
| .align 7 @ totally strategic alignment |
| _vpaes_consts: |
| .Lk_mc_forward: @ mc_forward |
| .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 |
| .quad 0x080B0A0904070605, 0x000302010C0F0E0D |
| .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 |
| .quad 0x000302010C0F0E0D, 0x080B0A0904070605 |
| .Lk_mc_backward:@ mc_backward |
| .quad 0x0605040702010003, 0x0E0D0C0F0A09080B |
| .quad 0x020100030E0D0C0F, 0x0A09080B06050407 |
| .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 |
| .quad 0x0A09080B06050407, 0x020100030E0D0C0F |
| .Lk_sr: @ sr |
| .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 |
| .quad 0x030E09040F0A0500, 0x0B06010C07020D08 |
| .quad 0x0F060D040B020900, 0x070E050C030A0108 |
| .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 |
| |
| @ |
| @ "Hot" constants |
| @ |
| .Lk_inv: @ inv, inva |
| .quad 0x0E05060F0D080180, 0x040703090A0B0C02 |
| .quad 0x01040A060F0B0780, 0x030D0E0C02050809 |
| .Lk_ipt: @ input transform (lo, hi) |
| .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 |
| .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 |
| .Lk_sbo: @ sbou, sbot |
| .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 |
| .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA |
| .Lk_sb1: @ sb1u, sb1t |
| .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF |
| .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 |
| .Lk_sb2: @ sb2u, sb2t |
| .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A |
| .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD |
| |
| .asciz "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)" |
| .size _vpaes_consts,.-_vpaes_consts |
| .align 6 |
| ___ |
| |
| { |
| my ($inp,$out,$key) = map("r$_", (0..2)); |
| |
| my ($invlo,$invhi) = map("q$_", (10..11)); |
| my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15)); |
| |
| $code.=<<___; |
| @@ |
| @@ _aes_preheat |
| @@ |
| @@ Fills q9-q15 as specified below. |
| @@ |
| .type _vpaes_preheat,%function |
| .align 4 |
| _vpaes_preheat: |
| adr r10, .Lk_inv |
| vmov.i8 q9, #0x0f @ .Lk_s0F |
| vld1.64 {q10,q11}, [r10]! @ .Lk_inv |
| add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo |
| vld1.64 {q12,q13}, [r10]! @ .Lk_sb1 |
| vld1.64 {q14,q15}, [r10] @ .Lk_sb2 |
| bx lr |
| |
| @@ |
| @@ _aes_encrypt_core |
| @@ |
| @@ AES-encrypt q0. |
| @@ |
| @@ Inputs: |
| @@ q0 = input |
| @@ q9-q15 as in _vpaes_preheat |
| @@ [$key] = scheduled keys |
| @@ |
| @@ Output in q0 |
| @@ Clobbers q1-q5, r8-r11 |
| @@ Preserves q6-q8 so you get some local vectors |
| @@ |
| @@ |
| .type _vpaes_encrypt_core,%function |
| .align 4 |
| _vpaes_encrypt_core: |
| mov r9, $key |
| ldr r8, [$key,#240] @ pull rounds |
| adr r11, .Lk_ipt |
| @ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo |
| @ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi |
| vld1.64 {q2, q3}, [r11] |
| adr r11, .Lk_mc_forward+16 |
| vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key |
| vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 |
| vtbl.8 q1#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm1 |
| vtbl.8 q1#hi, {q2}, q1#hi |
| vtbl.8 q2#lo, {q3}, q0#lo @ vpshufb %xmm0, %xmm3, %xmm2 |
| vtbl.8 q2#hi, {q3}, q0#hi |
| veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0 |
| veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 |
| |
| @ .Lenc_entry ends with a bnz instruction which is normally paired with |
| @ subs in .Lenc_loop. |
| tst r8, r8 |
| b .Lenc_entry |
| |
| .align 4 |
| .Lenc_loop: |
| @ middle of middle round |
| add r10, r11, #0x40 |
| vtbl.8 q4#lo, {$sb1t}, q2#lo @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u |
| vtbl.8 q4#hi, {$sb1t}, q2#hi |
| vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] |
| vtbl.8 q0#lo, {$sb1u}, q3#lo @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t |
| vtbl.8 q0#hi, {$sb1u}, q3#hi |
| veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k |
| vtbl.8 q5#lo, {$sb2t}, q2#lo @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u |
| vtbl.8 q5#hi, {$sb2t}, q2#hi |
| veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A |
| vtbl.8 q2#lo, {$sb2u}, q3#lo @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t |
| vtbl.8 q2#hi, {$sb2u}, q3#hi |
| vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] |
| vtbl.8 q3#lo, {q0}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B |
| vtbl.8 q3#hi, {q0}, q1#hi |
| veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A |
| @ Write to q5 instead of q0, so the table and destination registers do |
| @ not overlap. |
| vtbl.8 q5#lo, {q0}, q4#lo @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D |
| vtbl.8 q5#hi, {q0}, q4#hi |
| veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B |
| vtbl.8 q4#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C |
| vtbl.8 q4#hi, {q3}, q1#hi |
| @ Here we restore the original q0/q5 usage. |
| veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D |
| and r11, r11, #~(1<<6) @ and \$0x30, %r11 # ... mod 4 |
| veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D |
| subs r8, r8, #1 @ nr-- |
| |
| .Lenc_entry: |
| @ top of round |
| vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i |
| vtbl.8 q5#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k |
| vtbl.8 q5#hi, {$invhi}, q1#hi |
| veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j |
| vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i |
| vtbl.8 q3#hi, {$invlo}, q0#hi |
| vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j |
| vtbl.8 q4#hi, {$invlo}, q1#hi |
| veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k |
| veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k |
| vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak |
| vtbl.8 q2#hi, {$invlo}, q3#hi |
| vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak |
| vtbl.8 q3#hi, {$invlo}, q4#hi |
| veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io |
| veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo |
| vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 |
| bne .Lenc_loop |
| |
| @ middle of last round |
| add r10, r11, #0x80 |
| |
| adr r11, .Lk_sbo |
| @ Read to q1 instead of q4, so the vtbl.8 instruction below does not |
| @ overlap table and destination registers. |
| vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou |
| vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 |
| vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou |
| vtbl.8 q4#hi, {q1}, q2#hi |
| vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] |
| @ Write to q2 instead of q0 below, to avoid overlapping table and |
| @ destination registers. |
| vtbl.8 q2#lo, {q0}, q3#lo @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t |
| vtbl.8 q2#hi, {q0}, q3#hi |
| veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k |
| veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A |
| @ Here we restore the original q0/q2 usage. |
| vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 |
| vtbl.8 q0#hi, {q2}, q1#hi |
| bx lr |
| .size _vpaes_encrypt_core,.-_vpaes_encrypt_core |
| |
| .globl vpaes_encrypt |
| .type vpaes_encrypt,%function |
| .align 4 |
| vpaes_encrypt: |
| @ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack |
| @ alignment. |
| stmdb sp!, {r7-r11,lr} |
| @ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved. |
| vstmdb sp!, {d8-d11} |
| |
| vld1.64 {q0}, [$inp] |
| bl _vpaes_preheat |
| bl _vpaes_encrypt_core |
| vst1.64 {q0}, [$out] |
| |
| vldmia sp!, {d8-d11} |
| ldmia sp!, {r7-r11, pc} @ return |
| .size vpaes_encrypt,.-vpaes_encrypt |
| |
| @ |
| @ Decryption stuff |
| @ |
| .type _vpaes_decrypt_consts,%object |
| .align 4 |
| _vpaes_decrypt_consts: |
| .Lk_dipt: @ decryption input transform |
| .quad 0x0F505B040B545F00, 0x154A411E114E451A |
| .quad 0x86E383E660056500, 0x12771772F491F194 |
| .Lk_dsbo: @ decryption sbox final output |
| .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D |
| .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C |
| .Lk_dsb9: @ decryption sbox output *9*u, *9*t |
| .quad 0x851C03539A86D600, 0xCAD51F504F994CC9 |
| .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565 |
| .Lk_dsbd: @ decryption sbox output *D*u, *D*t |
| .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439 |
| .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3 |
| .Lk_dsbb: @ decryption sbox output *B*u, *B*t |
| .quad 0xD022649296B44200, 0x602646F6B0F2D404 |
| .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B |
| .Lk_dsbe: @ decryption sbox output *E*u, *E*t |
| .quad 0x46F2929626D4D000, 0x2242600464B4F6B0 |
| .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32 |
| .size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts |
| |
| @@ |
| @@ Decryption core |
| @@ |
| @@ Same API as encryption core, except it clobbers q12-q15 rather than using |
| @@ the values from _vpaes_preheat. q9-q11 must still be set from |
| @@ _vpaes_preheat. |
| @@ |
| .type _vpaes_decrypt_core,%function |
| .align 4 |
| _vpaes_decrypt_core: |
| mov r9, $key |
| ldr r8, [$key,#240] @ pull rounds |
| |
| @ This function performs shuffles with various constants. The x86_64 |
| @ version loads them on-demand into %xmm0-%xmm5. This does not work well |
| @ for ARMv7 because those registers are shuffle destinations. The ARMv8 |
| @ version preloads those constants into registers, but ARMv7 has half |
| @ the registers to work with. Instead, we load them on-demand into |
| @ q12-q15, registers normally use for preloaded constants. This is fine |
| @ because decryption doesn't use those constants. The values are |
| @ constant, so this does not interfere with potential 2x optimizations. |
| adr r7, .Lk_dipt |
| |
| vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo |
| lsl r11, r8, #4 @ mov %rax, %r11; shl \$4, %r11 |
| eor r11, r11, #0x30 @ xor \$0x30, %r11 |
| adr r10, .Lk_sr |
| and r11, r11, #0x30 @ and \$0x30, %r11 |
| add r11, r11, r10 |
| adr r10, .Lk_mc_forward+48 |
| |
| vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key |
| vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 |
| vtbl.8 q2#lo, {q12}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q12}, q1#hi |
| vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5 |
| @ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi |
| vtbl.8 q0#lo, {q13}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0 |
| vtbl.8 q0#hi, {q13}, q0#hi |
| veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2 |
| veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 |
| |
| @ .Ldec_entry ends with a bnz instruction which is normally paired with |
| @ subs in .Ldec_loop. |
| tst r8, r8 |
| b .Ldec_entry |
| |
| .align 4 |
| .Ldec_loop: |
| @ |
| @ Inverse mix columns |
| @ |
| |
| @ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of |
| @ the function. |
| adr r10, .Lk_dsb9 |
| vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u |
| @ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t |
| @ Load sbd* ahead of time. |
| vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu |
| @ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt |
| vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u |
| vtbl.8 q4#hi, {q12}, q2#hi |
| vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t |
| vtbl.8 q1#hi, {q13}, q3#hi |
| veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0 |
| |
| veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch |
| |
| @ Load sbb* ahead of time. |
| vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu |
| @ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt |
| |
| vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu |
| vtbl.8 q4#hi, {q14}, q2#hi |
| @ Write to q1 instead of q0, so the table and destination registers do |
| @ not overlap. |
| vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch |
| vtbl.8 q1#hi, {q0}, q5#hi |
| @ Here we restore the original q0/q1 usage. This instruction is |
| @ reordered from the ARMv8 version so we do not clobber the vtbl.8 |
| @ below. |
| veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch |
| vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt |
| vtbl.8 q1#hi, {q15}, q3#hi |
| @ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu |
| veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch |
| @ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt |
| |
| @ Load sbd* ahead of time. |
| vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu |
| @ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet |
| |
| vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu |
| vtbl.8 q4#hi, {q12}, q2#hi |
| @ Write to q1 instead of q0, so the table and destination registers do |
| @ not overlap. |
| vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch |
| vtbl.8 q1#hi, {q0}, q5#hi |
| @ Here we restore the original q0/q1 usage. This instruction is |
| @ reordered from the ARMv8 version so we do not clobber the vtbl.8 |
| @ below. |
| veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch |
| vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt |
| vtbl.8 q1#hi, {q13}, q3#hi |
| veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch |
| |
| vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu |
| vtbl.8 q4#hi, {q14}, q2#hi |
| @ Write to q1 instead of q0, so the table and destination registers do |
| @ not overlap. |
| vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch |
| vtbl.8 q1#hi, {q0}, q5#hi |
| @ Here we restore the original q0/q1 usage. This instruction is |
| @ reordered from the ARMv8 version so we do not clobber the vtbl.8 |
| @ below. |
| veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch |
| vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet |
| vtbl.8 q1#hi, {q15}, q3#hi |
| vext.8 q5, q5, q5, #12 @ vpalignr \$12, %xmm5, %xmm5, %xmm5 |
| veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch |
| subs r8, r8, #1 @ sub \$1,%rax # nr-- |
| |
| .Ldec_entry: |
| @ top of round |
| vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i |
| vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k |
| vtbl.8 q2#hi, {$invhi}, q1#hi |
| veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j |
| vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i |
| vtbl.8 q3#hi, {$invlo}, q0#hi |
| vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j |
| vtbl.8 q4#hi, {$invlo}, q1#hi |
| veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k |
| veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k |
| vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak |
| vtbl.8 q2#hi, {$invlo}, q3#hi |
| vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak |
| vtbl.8 q3#hi, {$invlo}, q4#hi |
| veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io |
| veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo |
| vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0 |
| bne .Ldec_loop |
| |
| @ middle of last round |
| |
| adr r10, .Lk_dsbo |
| |
| @ Write to q1 rather than q4 to avoid overlapping table and destination. |
| vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou |
| vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou |
| vtbl.8 q4#hi, {q1}, q2#hi |
| @ Write to q2 rather than q1 to avoid overlapping table and destination. |
| vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot |
| vtbl.8 q1#lo, {q2}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t |
| vtbl.8 q1#hi, {q2}, q3#hi |
| vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160 |
| veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k |
| @ Write to q1 rather than q0 so the table and destination registers |
| @ below do not overlap. |
| veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A |
| vtbl.8 q0#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm0, %xmm0 |
| vtbl.8 q0#hi, {q1}, q2#hi |
| bx lr |
| .size _vpaes_decrypt_core,.-_vpaes_decrypt_core |
| |
| .globl vpaes_decrypt |
| .type vpaes_decrypt,%function |
| .align 4 |
| vpaes_decrypt: |
| @ _vpaes_decrypt_core uses r7-r11. |
| stmdb sp!, {r7-r11,lr} |
| @ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved. |
| vstmdb sp!, {d8-d11} |
| |
| vld1.64 {q0}, [$inp] |
| bl _vpaes_preheat |
| bl _vpaes_decrypt_core |
| vst1.64 {q0}, [$out] |
| |
| vldmia sp!, {d8-d11} |
| ldmia sp!, {r7-r11, pc} @ return |
| .size vpaes_decrypt,.-vpaes_decrypt |
| ___ |
| } |
| { |
| my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3"); |
| my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12)); |
| |
| $code.=<<___; |
| @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
| @@ @@ |
| @@ AES key schedule @@ |
| @@ @@ |
| @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
| |
| @ This function diverges from both x86_64 and armv7 in which constants are |
| @ pinned. x86_64 has a common preheat function for all operations. aarch64 |
| @ separates them because it has enough registers to pin nearly all constants. |
| @ armv7 does not have enough registers, but needing explicit loads and stores |
| @ also complicates using x86_64's register allocation directly. |
| @ |
| @ We pin some constants for convenience and leave q14 and q15 free to load |
| @ others on demand. |
| |
| @ |
| @ Key schedule constants |
| @ |
| .type _vpaes_key_consts,%object |
| .align 4 |
| _vpaes_key_consts: |
| .Lk_dksd: @ decryption key schedule: invskew x*D |
| .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9 |
| .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E |
| .Lk_dksb: @ decryption key schedule: invskew x*B |
| .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99 |
| .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8 |
| .Lk_dkse: @ decryption key schedule: invskew x*E + 0x63 |
| .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086 |
| .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487 |
| .Lk_dks9: @ decryption key schedule: invskew x*9 |
| .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC |
| .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE |
| |
| .Lk_rcon: @ rcon |
| .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 |
| |
| .Lk_opt: @ output transform |
| .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 |
| .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 |
| .Lk_deskew: @ deskew tables: inverts the sbox's "skew" |
| .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A |
| .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 |
| .size _vpaes_key_consts,.-_vpaes_key_consts |
| |
| .type _vpaes_key_preheat,%function |
| .align 4 |
| _vpaes_key_preheat: |
| adr r11, .Lk_rcon |
| vmov.i8 $s63, #0x5b @ .Lk_s63 |
| adr r10, .Lk_inv @ Must be aligned to 8 mod 16. |
| vmov.i8 $s0F, #0x0f @ .Lk_s0F |
| vld1.64 {$invlo,$invhi}, [r10] @ .Lk_inv |
| vld1.64 {$rcon}, [r11] @ .Lk_rcon |
| bx lr |
| .size _vpaes_key_preheat,.-_vpaes_key_preheat |
| |
| .type _vpaes_schedule_core,%function |
| .align 4 |
| _vpaes_schedule_core: |
| @ We only need to save lr, but ARM requires an 8-byte stack alignment, |
| @ so save an extra register. |
| stmdb sp!, {r3,lr} |
| |
| bl _vpaes_key_preheat @ load the tables |
| |
| adr r11, .Lk_ipt @ Must be aligned to 8 mod 16. |
| vld1.64 {q0}, [$inp]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned) |
| |
| @ input transform |
| @ Use q4 here rather than q3 so .Lschedule_am_decrypting does not |
| @ overlap table and destination. |
| vmov q4, q0 @ vmovdqa %xmm0, %xmm3 |
| bl _vpaes_schedule_transform |
| adr r10, .Lk_sr @ Must be aligned to 8 mod 16. |
| vmov q7, q0 @ vmovdqa %xmm0, %xmm7 |
| |
| add r8, r8, r10 |
| tst $dir, $dir |
| bne .Lschedule_am_decrypting |
| |
| @ encrypting, output zeroth round key after transform |
| vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) |
| b .Lschedule_go |
| |
| .Lschedule_am_decrypting: |
| @ decrypting, output zeroth round key after shiftrows |
| vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 |
| vtbl.8 q3#lo, {q4}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q4}, q1#hi |
| vst1.64 {q3}, [$out] @ vmovdqu %xmm3, (%rdx) |
| eor r8, r8, #0x30 @ xor \$0x30, %r8 |
| |
| .Lschedule_go: |
| cmp $bits, #192 @ cmp \$192, %esi |
| bhi .Lschedule_256 |
| beq .Lschedule_192 |
| @ 128: fall though |
| |
| @@ |
| @@ .schedule_128 |
| @@ |
| @@ 128-bit specific part of key schedule. |
| @@ |
| @@ This schedule is really simple, because all its parts |
| @@ are accomplished by the subroutines. |
| @@ |
| .Lschedule_128: |
| mov $inp, #10 @ mov \$10, %esi |
| |
| .Loop_schedule_128: |
| bl _vpaes_schedule_round |
| subs $inp, $inp, #1 @ dec %esi |
| beq .Lschedule_mangle_last |
| bl _vpaes_schedule_mangle @ write output |
| b .Loop_schedule_128 |
| |
| @@ |
| @@ .aes_schedule_192 |
| @@ |
| @@ 192-bit specific part of key schedule. |
| @@ |
| @@ The main body of this schedule is the same as the 128-bit |
| @@ schedule, but with more smearing. The long, high side is |
| @@ stored in q7 as before, and the short, low side is in |
| @@ the high bits of q6. |
| @@ |
| @@ This schedule is somewhat nastier, however, because each |
| @@ round produces 192 bits of key material, or 1.5 round keys. |
| @@ Therefore, on each cycle we do 2 rounds and produce 3 round |
| @@ keys. |
| @@ |
| .align 4 |
| .Lschedule_192: |
| sub $inp, $inp, #8 |
| vld1.64 {q0}, [$inp] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned) |
| bl _vpaes_schedule_transform @ input transform |
| vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part |
| vmov.i8 q6#lo, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4 |
| @ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros |
| mov $inp, #4 @ mov \$4, %esi |
| |
| .Loop_schedule_192: |
| bl _vpaes_schedule_round |
| vext.8 q0, q6, q0, #8 @ vpalignr \$8,%xmm6,%xmm0,%xmm0 |
| bl _vpaes_schedule_mangle @ save key n |
| bl _vpaes_schedule_192_smear |
| bl _vpaes_schedule_mangle @ save key n+1 |
| bl _vpaes_schedule_round |
| subs $inp, $inp, #1 @ dec %esi |
| beq .Lschedule_mangle_last |
| bl _vpaes_schedule_mangle @ save key n+2 |
| bl _vpaes_schedule_192_smear |
| b .Loop_schedule_192 |
| |
| @@ |
| @@ .aes_schedule_256 |
| @@ |
| @@ 256-bit specific part of key schedule. |
| @@ |
| @@ The structure here is very similar to the 128-bit |
| @@ schedule, but with an additional "low side" in |
| @@ q6. The low side's rounds are the same as the |
| @@ high side's, except no rcon and no rotation. |
| @@ |
| .align 4 |
| .Lschedule_256: |
| vld1.64 {q0}, [$inp] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) |
| bl _vpaes_schedule_transform @ input transform |
| mov $inp, #7 @ mov \$7, %esi |
| |
| .Loop_schedule_256: |
| bl _vpaes_schedule_mangle @ output low result |
| vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6 |
| |
| @ high round |
| bl _vpaes_schedule_round |
| subs $inp, $inp, #1 @ dec %esi |
| beq .Lschedule_mangle_last |
| bl _vpaes_schedule_mangle |
| |
| @ low round. swap xmm7 and xmm6 |
| vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0 |
| vmov.i8 q4, #0 |
| vmov q5, q7 @ vmovdqa %xmm7, %xmm5 |
| vmov q7, q6 @ vmovdqa %xmm6, %xmm7 |
| bl _vpaes_schedule_low_round |
| vmov q7, q5 @ vmovdqa %xmm5, %xmm7 |
| |
| b .Loop_schedule_256 |
| |
| @@ |
| @@ .aes_schedule_mangle_last |
| @@ |
| @@ Mangler for last round of key schedule |
| @@ Mangles q0 |
| @@ when encrypting, outputs out(q0) ^ 63 |
| @@ when decrypting, outputs unskew(q0) |
| @@ |
| @@ Always called right before return... jumps to cleanup and exits |
| @@ |
| .align 4 |
| .Lschedule_mangle_last: |
| @ schedule last round key from xmm0 |
| adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew |
| tst $dir, $dir |
| bne .Lschedule_mangle_last_dec |
| |
| @ encrypting |
| vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1 |
| adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform |
| add $out, $out, #32 @ add \$32, %rdx |
| vmov q2, q0 |
| vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 # output permute |
| vtbl.8 q0#hi, {q2}, q1#hi |
| |
| .Lschedule_mangle_last_dec: |
| sub $out, $out, #16 @ add \$-16, %rdx |
| veor q0, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0 |
| bl _vpaes_schedule_transform @ output transform |
| vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) # save last key |
| |
| @ cleanup |
| veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0 |
| veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 |
| veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2 |
| veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3 |
| veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4 |
| veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5 |
| veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6 |
| veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7 |
| ldmia sp!, {r3,pc} @ return |
| .size _vpaes_schedule_core,.-_vpaes_schedule_core |
| |
| @@ |
| @@ .aes_schedule_192_smear |
| @@ |
| @@ Smear the short, low side in the 192-bit key schedule. |
| @@ |
| @@ Inputs: |
| @@ q7: high side, b a x y |
| @@ q6: low side, d c 0 0 |
| @@ |
| @@ Outputs: |
| @@ q6: b+c+d b+c 0 0 |
| @@ q0: b+c+d b+c b a |
| @@ |
| .type _vpaes_schedule_192_smear,%function |
| .align 4 |
| _vpaes_schedule_192_smear: |
| vmov.i8 q1, #0 |
| vdup.32 q0, q7#hi[1] |
| vshl.i64 q1, q6, #32 @ vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0 |
| vmov q0#lo, q7#hi @ vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a |
| veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0 |
| veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1 |
| veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a |
| vmov q0, q6 @ vmovdqa %xmm6, %xmm0 |
| vmov q6#lo, q1#lo @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros |
| bx lr |
| .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear |
| |
| @@ |
| @@ .aes_schedule_round |
| @@ |
| @@ Runs one main round of the key schedule on q0, q7 |
| @@ |
| @@ Specifically, runs subbytes on the high dword of q0 |
| @@ then rotates it by one byte and xors into the low dword of |
| @@ q7. |
| @@ |
| @@ Adds rcon from low byte of q8, then rotates q8 for |
| @@ next rcon. |
| @@ |
| @@ Smears the dwords of q7 by xoring the low into the |
| @@ second low, result into third, result into highest. |
| @@ |
| @@ Returns results in q7 = q0. |
| @@ Clobbers q1-q4, r11. |
| @@ |
| .type _vpaes_schedule_round,%function |
| .align 4 |
| _vpaes_schedule_round: |
| @ extract rcon from xmm8 |
| vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4 |
| vext.8 q1, $rcon, q4, #15 @ vpalignr \$15, %xmm8, %xmm4, %xmm1 |
| vext.8 $rcon, $rcon, $rcon, #15 @ vpalignr \$15, %xmm8, %xmm8, %xmm8 |
| veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 |
| |
| @ rotate |
| vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0 |
| vext.8 q0, q0, q0, #1 @ vpalignr \$1, %xmm0, %xmm0, %xmm0 |
| |
| @ fall through... |
| |
| @ low round: same as high round, but no rotation and no rcon. |
| _vpaes_schedule_low_round: |
| @ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12. |
| @ We pin other values in _vpaes_key_preheat, so load them now. |
| adr r11, .Lk_sb1 |
| vld1.64 {q14,q15}, [r11] |
| |
| @ smear xmm7 |
| vext.8 q1, q4, q7, #12 @ vpslldq \$4, %xmm7, %xmm1 |
| veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7 |
| vext.8 q4, q4, q7, #8 @ vpslldq \$8, %xmm7, %xmm4 |
| |
| @ subbytes |
| vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 # 0 = k |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i |
| veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7 |
| vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k |
| vtbl.8 q2#hi, {$invhi}, q1#hi |
| veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j |
| vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i |
| vtbl.8 q3#hi, {$invlo}, q0#hi |
| veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k |
| vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j |
| vtbl.8 q4#hi, {$invlo}, q1#hi |
| veor q7, q7, $s63 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7 |
| vtbl.8 q3#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak |
| vtbl.8 q3#hi, {$invlo}, q3#hi |
| veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k |
| vtbl.8 q2#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak |
| vtbl.8 q2#hi, {$invlo}, q4#hi |
| veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io |
| veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo |
| vtbl.8 q4#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou |
| vtbl.8 q4#hi, {q15}, q3#hi |
| vtbl.8 q1#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t |
| vtbl.8 q1#hi, {q14}, q2#hi |
| veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output |
| |
| @ add in smeared stuff |
| veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0 |
| veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7 |
| bx lr |
| .size _vpaes_schedule_round,.-_vpaes_schedule_round |
| |
| @@ |
| @@ .aes_schedule_transform |
| @@ |
| @@ Linear-transform q0 according to tables at [r11] |
| @@ |
| @@ Requires that q9 = 0x0F0F... as in preheat |
| @@ Output in q0 |
| @@ Clobbers q1, q2, q14, q15 |
| @@ |
| .type _vpaes_schedule_transform,%function |
| .align 4 |
| _vpaes_schedule_transform: |
| vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo |
| @ vmovdqa 16(%r11), %xmm1 # hi |
| vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 |
| vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 |
| vtbl.8 q2#lo, {q14}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q14}, q1#hi |
| vtbl.8 q0#lo, {q15}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0 |
| vtbl.8 q0#hi, {q15}, q0#hi |
| veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0 |
| bx lr |
| .size _vpaes_schedule_transform,.-_vpaes_schedule_transform |
| |
| @@ |
| @@ .aes_schedule_mangle |
| @@ |
| @@ Mangles q0 from (basis-transformed) standard version |
| @@ to our version. |
| @@ |
| @@ On encrypt, |
| @@ xor with 0x63 |
| @@ multiply by circulant 0,1,1,1 |
| @@ apply shiftrows transform |
| @@ |
| @@ On decrypt, |
| @@ xor with 0x63 |
| @@ multiply by "inverse mixcolumns" circulant E,B,D,9 |
| @@ deskew |
| @@ apply shiftrows transform |
| @@ |
| @@ |
| @@ Writes out to [r2], and increments or decrements it |
| @@ Keeps track of round number mod 4 in r8 |
| @@ Preserves q0 |
| @@ Clobbers q1-q5 |
| @@ |
| .type _vpaes_schedule_mangle,%function |
| .align 4 |
| _vpaes_schedule_mangle: |
| tst $dir, $dir |
| vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later |
| adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16. |
| vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5 |
| bne .Lschedule_mangle_dec |
| |
| @ encrypting |
| @ Write to q2 so we do not overlap table and destination below. |
| veor q2, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4 |
| add $out, $out, #16 @ add \$16, %rdx |
| vtbl.8 q4#lo, {q2}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm4 |
| vtbl.8 q4#hi, {q2}, q5#hi |
| vtbl.8 q1#lo, {q4}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm1 |
| vtbl.8 q1#hi, {q4}, q5#hi |
| vtbl.8 q3#lo, {q1}, q5#lo @ vpshufb %xmm5, %xmm1, %xmm3 |
| vtbl.8 q3#hi, {q1}, q5#hi |
| veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4 |
| vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 |
| veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3 |
| |
| b .Lschedule_mangle_both |
| .align 4 |
| .Lschedule_mangle_dec: |
| @ inverse mix columns |
| adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11 |
| vshr.u8 q1, q4, #4 @ vpsrlb \$4, %xmm4, %xmm1 # 1 = hi |
| vand q4, q4, $s0F @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo |
| |
| vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2 |
| @ vmovdqa 0x10(%r11), %xmm3 |
| vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q14}, q4#hi |
| vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q15}, q1#hi |
| @ Load .Lk_dksb ahead of time. |
| vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2 |
| @ vmovdqa 0x30(%r11), %xmm3 |
| @ Write to q13 so we do not overlap table and destination. |
| veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 |
| vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q13}, q5#hi |
| |
| vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q14}, q4#hi |
| veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 |
| vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q15}, q1#hi |
| @ Load .Lk_dkse ahead of time. |
| vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2 |
| @ vmovdqa 0x50(%r11), %xmm3 |
| @ Write to q13 so we do not overlap table and destination. |
| veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 |
| vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q13}, q5#hi |
| |
| vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q14}, q4#hi |
| veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 |
| vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q15}, q1#hi |
| @ Load .Lk_dkse ahead of time. |
| vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2 |
| @ vmovdqa 0x70(%r11), %xmm4 |
| @ Write to q13 so we do not overlap table and destination. |
| veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 |
| |
| vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2 |
| vtbl.8 q2#hi, {q14}, q4#hi |
| vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3 |
| vtbl.8 q3#hi, {q13}, q5#hi |
| vtbl.8 q4#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm4, %xmm4 |
| vtbl.8 q4#hi, {q15}, q1#hi |
| vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1 |
| veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2 |
| veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3 |
| |
| sub $out, $out, #16 @ add \$-16, %rdx |
| |
| .Lschedule_mangle_both: |
| @ Write to q2 so table and destination do not overlap. |
| vtbl.8 q2#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3 |
| vtbl.8 q2#hi, {q3}, q1#hi |
| add r8, r8, #64-16 @ add \$-16, %r8 |
| and r8, r8, #~(1<<6) @ and \$0x30, %r8 |
| vst1.64 {q2}, [$out] @ vmovdqu %xmm3, (%rdx) |
| bx lr |
| .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle |
| |
| .globl vpaes_set_encrypt_key |
| .type vpaes_set_encrypt_key,%function |
| .align 4 |
| vpaes_set_encrypt_key: |
| stmdb sp!, {r7-r11, lr} |
| vstmdb sp!, {d8-d15} |
| |
| lsr r9, $bits, #5 @ shr \$5,%eax |
| add r9, r9, #5 @ \$5,%eax |
| str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; |
| |
| mov $dir, #0 @ mov \$0,%ecx |
| mov r8, #0x30 @ mov \$0x30,%r8d |
| bl _vpaes_schedule_core |
| eor r0, r0, r0 |
| |
| vldmia sp!, {d8-d15} |
| ldmia sp!, {r7-r11, pc} @ return |
| .size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key |
| |
| .globl vpaes_set_decrypt_key |
| .type vpaes_set_decrypt_key,%function |
| .align 4 |
| vpaes_set_decrypt_key: |
| stmdb sp!, {r7-r11, lr} |
| vstmdb sp!, {d8-d15} |
| |
| lsr r9, $bits, #5 @ shr \$5,%eax |
| add r9, r9, #5 @ \$5,%eax |
| str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; |
| lsl r9, r9, #4 @ shl \$4,%eax |
| add $out, $out, #16 @ lea 16(%rdx,%rax),%rdx |
| add $out, $out, r9 |
| |
| mov $dir, #1 @ mov \$1,%ecx |
| lsr r8, $bits, #1 @ shr \$1,%r8d |
| and r8, r8, #32 @ and \$32,%r8d |
| eor r8, r8, #32 @ xor \$32,%r8d # nbits==192?0:32 |
| bl _vpaes_schedule_core |
| |
| vldmia sp!, {d8-d15} |
| ldmia sp!, {r7-r11, pc} @ return |
| .size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key |
| ___ |
| } |
| |
| { |
| my ($out, $inp) = map("r$_", (0..1)); |
| my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12)); |
| |
| $code .= <<___; |
| |
| @ Additional constants for converting to bsaes. |
| .type _vpaes_convert_consts,%object |
| .align 4 |
| _vpaes_convert_consts: |
| @ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear |
| @ transform in the AES S-box. 0x63 is incorporated into the low half of the |
| @ table. This was computed with the following script: |
| @ |
| @ def u64s_to_u128(x, y): |
| @ return x | (y << 64) |
| @ def u128_to_u64s(w): |
| @ return w & ((1<<64)-1), w >> 64 |
| @ def get_byte(w, i): |
| @ return (w >> (i*8)) & 0xff |
| @ def apply_table(table, b): |
| @ lo = b & 0xf |
| @ hi = b >> 4 |
| @ return get_byte(table[0], lo) ^ get_byte(table[1], hi) |
| @ def opt(b): |
| @ table = [ |
| @ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808), |
| @ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0), |
| @ ] |
| @ return apply_table(table, b) |
| @ def rot_byte(b, n): |
| @ return 0xff & ((b << n) | (b >> (8-n))) |
| @ def skew(x): |
| @ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^ |
| @ rot_byte(x, 4)) |
| @ table = [0, 0] |
| @ for i in range(16): |
| @ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8) |
| @ table[1] |= skew(opt(i<<4)) << (i*8) |
| @ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0])) |
| @ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1])) |
| .Lk_opt_then_skew: |
| .quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b |
| .quad 0x1f30062936192f00, 0xb49bad829db284ab |
| |
| @ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation |
| @ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344 |
| @ becomes 0x22334411 and then 0x11443322. |
| .Lk_decrypt_transform: |
| .quad 0x0704050603000102, 0x0f0c0d0e0b08090a |
| .size _vpaes_convert_consts,.-_vpaes_convert_consts |
| |
| @ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes); |
| .globl vpaes_encrypt_key_to_bsaes |
| .type vpaes_encrypt_key_to_bsaes,%function |
| .align 4 |
| vpaes_encrypt_key_to_bsaes: |
| stmdb sp!, {r11, lr} |
| |
| @ See _vpaes_schedule_core for the key schedule logic. In particular, |
| @ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper), |
| @ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last |
| @ contain the transformations not in the bsaes representation. This |
| @ function inverts those transforms. |
| @ |
| @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key |
| @ representation, which does not match the other aes_nohw_* |
| @ implementations. The ARM aes_nohw_* stores each 32-bit word |
| @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the |
| @ cost of extra REV and VREV32 operations in little-endian ARM. |
| |
| vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform |
| adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16. |
| add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression) |
| |
| vld1.64 {$mc_forward}, [r2] |
| vmov.i8 $s63, #0x5b @ .Lk_s63 from vpaes-x86_64 |
| adr r11, .Lk_opt @ Must be aligned to 8 mod 16. |
| vmov.i8 $s63_raw, #0x63 @ .LK_s63 without .Lk_ipt applied |
| |
| @ vpaes stores one fewer round count than bsaes, but the number of keys |
| @ is the same. |
| ldr r2, [$inp,#240] |
| add r2, r2, #1 |
| str r2, [$out,#240] |
| |
| @ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt). |
| @ Invert this with .Lk_opt. |
| vld1.64 {q0}, [$inp]! |
| bl _vpaes_schedule_transform |
| vrev32.8 q0, q0 |
| vst1.64 {q0}, [$out]! |
| |
| @ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied, |
| @ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63, |
| @ multiplies by the circulant 0,1,1,1, then applies ShiftRows. |
| .Loop_enc_key_to_bsaes: |
| vld1.64 {q0}, [$inp]! |
| |
| @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle |
| @ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30. |
| @ We use r3 rather than r8 to avoid a callee-saved register. |
| vld1.64 {q1}, [r3] |
| vtbl.8 q2#lo, {q0}, q1#lo |
| vtbl.8 q2#hi, {q0}, q1#hi |
| add r3, r3, #16 |
| and r3, r3, #~(1<<6) |
| vmov q0, q2 |
| |
| @ Handle the last key differently. |
| subs r2, r2, #1 |
| beq .Loop_enc_key_to_bsaes_last |
| |
| @ Multiply by the circulant. This is its own inverse. |
| vtbl.8 q1#lo, {q0}, $mc_forward#lo |
| vtbl.8 q1#hi, {q0}, $mc_forward#hi |
| vmov q0, q1 |
| vtbl.8 q2#lo, {q1}, $mc_forward#lo |
| vtbl.8 q2#hi, {q1}, $mc_forward#hi |
| veor q0, q0, q2 |
| vtbl.8 q1#lo, {q2}, $mc_forward#lo |
| vtbl.8 q1#hi, {q2}, $mc_forward#hi |
| veor q0, q0, q1 |
| |
| @ XOR and finish. |
| veor q0, q0, $s63 |
| bl _vpaes_schedule_transform |
| vrev32.8 q0, q0 |
| vst1.64 {q0}, [$out]! |
| b .Loop_enc_key_to_bsaes |
| |
| .Loop_enc_key_to_bsaes_last: |
| @ The final key does not have a basis transform (note |
| @ .Lschedule_mangle_last inverts the original transform). It only XORs |
| @ 0x63 and applies ShiftRows. The latter was already inverted in the |
| @ loop. Note that, because we act on the original representation, we use |
| @ $s63_raw, not $s63. |
| veor q0, q0, $s63_raw |
| vrev32.8 q0, q0 |
| vst1.64 {q0}, [$out] |
| |
| @ Wipe registers which contained key material. |
| veor q0, q0, q0 |
| veor q1, q1, q1 |
| veor q2, q2, q2 |
| |
| ldmia sp!, {r11, pc} @ return |
| .size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes |
| |
| @ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes); |
| .globl vpaes_decrypt_key_to_bsaes |
| .type vpaes_decrypt_key_to_bsaes,%function |
| .align 4 |
| vpaes_decrypt_key_to_bsaes: |
| stmdb sp!, {r11, lr} |
| |
| @ See _vpaes_schedule_core for the key schedule logic. Note vpaes |
| @ computes the decryption key schedule in reverse. Additionally, |
| @ aes-x86_64.pl shares some transformations, so we must only partially |
| @ invert vpaes's transformations. In general, vpaes computes in a |
| @ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of |
| @ MixColumns, ShiftRows, and the affine part of the AES S-box (which is |
| @ split into a linear skew and XOR of 0x63). We undo all but MixColumns. |
| @ |
| @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key |
| @ representation, which does not match the other aes_nohw_* |
| @ implementations. The ARM aes_nohw_* stores each 32-bit word |
| @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the |
| @ cost of extra REV and VREV32 operations in little-endian ARM. |
| |
| adr r2, .Lk_decrypt_transform |
| adr r3, .Lk_sr+0x30 |
| adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform. |
| vld1.64 {$mc_forward}, [r2] @ Reuse $mc_forward from encryption. |
| vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform |
| |
| @ vpaes stores one fewer round count than bsaes, but the number of keys |
| @ is the same. |
| ldr r2, [$inp,#240] |
| add r2, r2, #1 |
| str r2, [$out,#240] |
| |
| @ Undo the basis change and reapply the S-box affine transform. See |
| @ .Lschedule_mangle_last. |
| vld1.64 {q0}, [$inp]! |
| bl _vpaes_schedule_transform |
| vrev32.8 q0, q0 |
| vst1.64 {q0}, [$out]! |
| |
| @ See _vpaes_schedule_mangle for the transform on the middle keys. Note |
| @ it simultaneously inverts MixColumns and the S-box affine transform. |
| @ See .Lk_dksd through .Lk_dks9. |
| .Loop_dec_key_to_bsaes: |
| vld1.64 {q0}, [$inp]! |
| |
| @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going |
| @ forwards cancels inverting for which direction we cycle r3. We use r3 |
| @ rather than r8 to avoid a callee-saved register. |
| vld1.64 {q1}, [r3] |
| vtbl.8 q2#lo, {q0}, q1#lo |
| vtbl.8 q2#hi, {q0}, q1#hi |
| add r3, r3, #64-16 |
| and r3, r3, #~(1<<6) |
| vmov q0, q2 |
| |
| @ Handle the last key differently. |
| subs r2, r2, #1 |
| beq .Loop_dec_key_to_bsaes_last |
| |
| @ Undo the basis change and reapply the S-box affine transform. |
| bl _vpaes_schedule_transform |
| |
| @ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We |
| @ combine the two operations in .Lk_decrypt_transform. |
| @ |
| @ TODO(davidben): Where does the rotation come from? |
| vtbl.8 q1#lo, {q0}, $mc_forward#lo |
| vtbl.8 q1#hi, {q0}, $mc_forward#hi |
| |
| vst1.64 {q1}, [$out]! |
| b .Loop_dec_key_to_bsaes |
| |
| .Loop_dec_key_to_bsaes_last: |
| @ The final key only inverts ShiftRows (already done in the loop). See |
| @ .Lschedule_am_decrypting. Its basis is not transformed. |
| vrev32.8 q0, q0 |
| vst1.64 {q0}, [$out]! |
| |
| @ Wipe registers which contained key material. |
| veor q0, q0, q0 |
| veor q1, q1, q1 |
| veor q2, q2, q2 |
| |
| ldmia sp!, {r11, pc} @ return |
| .size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes |
| ___ |
| } |
| |
| { |
| # Register-passed parameters. |
| my ($inp, $out, $len, $key) = map("r$_", 0..3); |
| # Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and |
| # $tmp. $ctr is r7 because it must be preserved across calls. |
| my ($ctr, $ivec, $tmp) = map("r$_", 7..9); |
| |
| # void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| # const AES_KEY *key, const uint8_t ivec[16]); |
| $code .= <<___; |
| .globl vpaes_ctr32_encrypt_blocks |
| .type vpaes_ctr32_encrypt_blocks,%function |
| .align 4 |
| vpaes_ctr32_encrypt_blocks: |
| mov ip, sp |
| stmdb sp!, {r7-r11, lr} |
| @ This function uses q4-q7 (d8-d15), which are callee-saved. |
| vstmdb sp!, {d8-d15} |
| |
| cmp $len, #0 |
| @ $ivec is passed on the stack. |
| ldr $ivec, [ip] |
| beq .Lctr32_done |
| |
| @ _vpaes_encrypt_core expects the key in r2, so swap $len and $key. |
| mov $tmp, $key |
| mov $key, $len |
| mov $len, $tmp |
| ___ |
| my ($len, $key) = ($key, $len); |
| $code .= <<___; |
| |
| @ Load the IV and counter portion. |
| ldr $ctr, [$ivec, #12] |
| vld1.8 {q7}, [$ivec] |
| |
| bl _vpaes_preheat |
| rev $ctr, $ctr @ The counter is big-endian. |
| |
| .Lctr32_loop: |
| vmov q0, q7 |
| vld1.8 {q6}, [$inp]! @ Load input ahead of time |
| bl _vpaes_encrypt_core |
| veor q0, q0, q6 @ XOR input and result |
| vst1.8 {q0}, [$out]! |
| subs $len, $len, #1 |
| @ Update the counter. |
| add $ctr, $ctr, #1 |
| rev $tmp, $ctr |
| vmov.32 q7#hi[1], $tmp |
| bne .Lctr32_loop |
| |
| .Lctr32_done: |
| vldmia sp!, {d8-d15} |
| ldmia sp!, {r7-r11, pc} @ return |
| .size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks |
| ___ |
| } |
| |
| foreach (split("\n",$code)) { |
| s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; |
| print $_,"\n"; |
| } |
| |
| close STDOUT; |