blob: 0ead1822cad25d44923825626a8ae680789ad68d [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/rand.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#if defined(BORINGSSL_FIPS)
#include <unistd.h>
#endif
#include <openssl/chacha.h>
#include <openssl/ctrdrbg.h>
#include <openssl/mem.h>
#include "internal.h"
#include "fork_detect.h"
#include "../../internal.h"
#include "../delocate.h"
// It's assumed that the operating system always has an unfailing source of
// entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating
// system entropy source fails, it's up to |CRYPTO_sysrand| to abort the
// process—we don't try to handle it.)
//
// In addition, the hardware may provide a low-latency RNG. Intel's rdrand
// instruction is the canonical example of this. When a hardware RNG is
// available we don't need to worry about an RNG failure arising from fork()ing
// the process or moving a VM, so we can keep thread-local RNG state and use it
// as an additional-data input to CTR-DRBG.
//
// (We assume that the OS entropy is safe from fork()ing and VM duplication.
// This might be a bit of a leap of faith, esp on Windows, but there's nothing
// that we can do about it.)
// kReseedInterval is the number of generate calls made to CTR-DRBG before
// reseeding.
static const unsigned kReseedInterval = 4096;
// CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the
// continuous random number generator test in FIPS 140-2, section 4.9.2.
#define CRNGT_BLOCK_SIZE 16
// rand_thread_state contains the per-thread state for the RNG.
struct rand_thread_state {
CTR_DRBG_STATE drbg;
uint64_t fork_generation;
// calls is the number of generate calls made on |drbg| since it was last
// (re)seeded. This is bound by |kReseedInterval|.
unsigned calls;
// last_block_valid is non-zero iff |last_block| contains data from
// |get_seed_entropy|.
int last_block_valid;
#if defined(BORINGSSL_FIPS)
// last_block contains the previous block from |get_seed_entropy|.
uint8_t last_block[CRNGT_BLOCK_SIZE];
// next and prev form a NULL-terminated, double-linked list of all states in
// a process.
struct rand_thread_state *next, *prev;
#endif
};
#if defined(BORINGSSL_FIPS)
// thread_states_list is the head of a linked-list of all |rand_thread_state|
// objects in the process, one per thread. This is needed because FIPS requires
// that they be zeroed on process exit, but thread-local destructors aren't
// called when the whole process is exiting.
DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list);
DEFINE_STATIC_MUTEX(thread_states_list_lock);
DEFINE_STATIC_MUTEX(state_clear_all_lock);
static void rand_thread_state_clear_all(void) __attribute__((destructor));
static void rand_thread_state_clear_all(void) {
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
CRYPTO_STATIC_MUTEX_lock_write(state_clear_all_lock_bss_get());
for (struct rand_thread_state *cur = *thread_states_list_bss_get();
cur != NULL; cur = cur->next) {
CTR_DRBG_clear(&cur->drbg);
}
// The locks are deliberately left locked so that any threads that are still
// running will hang if they try to call |RAND_bytes|.
}
#endif
// rand_thread_state_free frees a |rand_thread_state|. This is called when a
// thread exits.
static void rand_thread_state_free(void *state_in) {
struct rand_thread_state *state = state_in;
if (state_in == NULL) {
return;
}
#if defined(BORINGSSL_FIPS)
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
if (state->prev != NULL) {
state->prev->next = state->next;
} else {
*thread_states_list_bss_get() = state->next;
}
if (state->next != NULL) {
state->next->prev = state->prev;
}
CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
CTR_DRBG_clear(&state->drbg);
#endif
OPENSSL_free(state);
}
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
!defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
// rdrand should only be called if either |have_rdrand| or |have_fast_rdrand|
// returned true.
static int rdrand(uint8_t *buf, const size_t len) {
const size_t len_multiple8 = len & ~7;
if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
return 0;
}
const size_t remainder = len - len_multiple8;
if (remainder != 0) {
assert(remainder < 8);
uint8_t rand_buf[8];
if (!CRYPTO_rdrand(rand_buf)) {
return 0;
}
OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder);
}
return 1;
}
#else
static int rdrand(uint8_t *buf, size_t len) {
return 0;
}
#endif
#if defined(BORINGSSL_FIPS)
void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
int *out_want_additional_input) {
*out_want_additional_input = 0;
if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) {
*out_want_additional_input = 1;
} else {
CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
}
}
// In passive entropy mode, entropy is supplied from outside of the module via
// |RAND_load_entropy| and is stored in global instance of the following
// structure.
struct entropy_buffer {
// bytes contains entropy suitable for seeding a DRBG.
uint8_t
bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
// bytes_valid indicates the number of bytes of |bytes| that contain valid
// data.
size_t bytes_valid;
// want_additional_input is true if any of the contents of |bytes| were
// obtained via a method other than from the kernel. In these cases entropy
// from the kernel is also provided via an additional input to the DRBG.
int want_additional_input;
};
DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer);
DEFINE_STATIC_MUTEX(entropy_buffer_lock);
void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
int want_additional_input) {
struct entropy_buffer *const buffer = entropy_buffer_bss_get();
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid;
if (entropy_len > space) {
entropy_len = space;
}
OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len);
buffer->bytes_valid += entropy_len;
buffer->want_additional_input |=
want_additional_input && (entropy_len != 0);
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
}
// get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the
// global |entropy_buffer|.
static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
int *out_want_additional_input) {
struct entropy_buffer *const buffer = entropy_buffer_bss_get();
if (out_entropy_len > sizeof(buffer->bytes)) {
abort();
}
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
while (buffer->bytes_valid < out_entropy_len) {
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
RAND_need_entropy(out_entropy_len - buffer->bytes_valid);
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
}
*out_want_additional_input = buffer->want_additional_input;
OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len);
OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len],
buffer->bytes_valid - out_entropy_len);
buffer->bytes_valid -= out_entropy_len;
if (buffer->bytes_valid == 0) {
buffer->want_additional_input = 0;
}
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
}
// rand_get_seed fills |seed| with entropy. In some cases, it will additionally
// fill |additional_input| with entropy to supplement |seed|. It sets
// |*out_additional_input_len| to the number of extra bytes.
static void rand_get_seed(struct rand_thread_state *state,
uint8_t seed[CTR_DRBG_ENTROPY_LEN],
uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
size_t *out_additional_input_len) {
uint8_t entropy_bytes[sizeof(state->last_block) +
CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
uint8_t *entropy = entropy_bytes;
size_t entropy_len = sizeof(entropy_bytes);
if (state->last_block_valid) {
// No need to fill |state->last_block| with entropy from the read.
entropy += sizeof(state->last_block);
entropy_len -= sizeof(state->last_block);
}
int want_additional_input;
get_seed_entropy(entropy, entropy_len, &want_additional_input);
if (!state->last_block_valid) {
OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block));
entropy += sizeof(state->last_block);
entropy_len -= sizeof(state->last_block);
}
// See FIPS 140-2, section 4.9.2. This is the “continuous random number
// generator test” which causes the program to randomly abort. Hopefully the
// rate of failure is small enough not to be a problem in practice.
if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) ==
0) {
fprintf(stderr, "CRNGT failed.\n");
BORINGSSL_FIPS_abort();
}
assert(entropy_len % CRNGT_BLOCK_SIZE == 0);
for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) {
if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i,
CRNGT_BLOCK_SIZE) == 0) {
fprintf(stderr, "CRNGT failed.\n");
BORINGSSL_FIPS_abort();
}
}
OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE,
CRNGT_BLOCK_SIZE);
assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN);
OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN);
for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) {
for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) {
seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j];
}
}
// If we used something other than system entropy then also
// opportunistically read from the system. This avoids solely relying on the
// hardware once the entropy pool has been initialized.
*out_additional_input_len = 0;
if (want_additional_input &&
CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) {
*out_additional_input_len = CTR_DRBG_ENTROPY_LEN;
}
}
#else
// rand_get_seed fills |seed| with entropy. In some cases, it will additionally
// fill |additional_input| with entropy to supplement |seed|. It sets
// |*out_additional_input_len| to the number of extra bytes.
static void rand_get_seed(struct rand_thread_state *state,
uint8_t seed[CTR_DRBG_ENTROPY_LEN],
uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
size_t *out_additional_input_len) {
// If not in FIPS mode, we don't overread from the system entropy source and
// we don't depend only on the hardware RDRAND.
CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN);
*out_additional_input_len = 0;
}
#endif
void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
const uint8_t user_additional_data[32]) {
if (out_len == 0) {
return;
}
const uint64_t fork_generation = CRYPTO_get_fork_generation();
// Additional data is mixed into every CTR-DRBG call to protect, as best we
// can, against forks & VM clones. We do not over-read this information and
// don't reseed with it so, from the point of view of FIPS, this doesn't
// provide “prediction resistance”. But, in practice, it does.
uint8_t additional_data[32];
// Intel chips have fast RDRAND instructions while, in other cases, RDRAND can
// be _slower_ than a system call.
if (!have_fast_rdrand() ||
!rdrand(additional_data, sizeof(additional_data))) {
// Without a hardware RNG to save us from address-space duplication, the OS
// entropy is used. This can be expensive (one read per |RAND_bytes| call)
// and so is disabled when we have fork detection, or if the application has
// promised not to fork.
if (fork_generation != 0 || rand_fork_unsafe_buffering_enabled()) {
OPENSSL_memset(additional_data, 0, sizeof(additional_data));
} else if (!have_rdrand()) {
// No alternative so block for OS entropy.
CRYPTO_sysrand(additional_data, sizeof(additional_data));
} else if (!CRYPTO_sysrand_if_available(additional_data,
sizeof(additional_data)) &&
!rdrand(additional_data, sizeof(additional_data))) {
// RDRAND failed: block for OS entropy.
CRYPTO_sysrand(additional_data, sizeof(additional_data));
}
}
for (size_t i = 0; i < sizeof(additional_data); i++) {
additional_data[i] ^= user_additional_data[i];
}
struct rand_thread_state stack_state;
struct rand_thread_state *state =
CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
if (state == NULL) {
state = OPENSSL_malloc(sizeof(struct rand_thread_state));
if (state == NULL ||
!CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
rand_thread_state_free)) {
// If the system is out of memory, use an ephemeral state on the
// stack.
state = &stack_state;
}
state->last_block_valid = 0;
uint8_t seed[CTR_DRBG_ENTROPY_LEN];
uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0};
size_t personalization_len = 0;
rand_get_seed(state, seed, personalization, &personalization_len);
if (!CTR_DRBG_init(&state->drbg, seed, personalization,
personalization_len)) {
abort();
}
state->calls = 0;
state->fork_generation = fork_generation;
#if defined(BORINGSSL_FIPS)
if (state != &stack_state) {
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
struct rand_thread_state **states_list = thread_states_list_bss_get();
state->next = *states_list;
if (state->next != NULL) {
state->next->prev = state;
}
state->prev = NULL;
*states_list = state;
CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
}
#endif
}
if (state->calls >= kReseedInterval ||
state->fork_generation != fork_generation) {
uint8_t seed[CTR_DRBG_ENTROPY_LEN];
uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0};
size_t reseed_additional_data_len = 0;
rand_get_seed(state, seed, reseed_additional_data,
&reseed_additional_data_len);
#if defined(BORINGSSL_FIPS)
// Take a read lock around accesses to |state->drbg|. This is needed to
// avoid returning bad entropy if we race with
// |rand_thread_state_clear_all|.
CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get());
#endif
if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data,
reseed_additional_data_len)) {
abort();
}
state->calls = 0;
state->fork_generation = fork_generation;
} else {
#if defined(BORINGSSL_FIPS)
CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get());
#endif
}
int first_call = 1;
while (out_len > 0) {
size_t todo = out_len;
if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) {
todo = CTR_DRBG_MAX_GENERATE_LENGTH;
}
if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data,
first_call ? sizeof(additional_data) : 0)) {
abort();
}
out += todo;
out_len -= todo;
// Though we only check before entering the loop, this cannot add enough to
// overflow a |size_t|.
state->calls++;
first_call = 0;
}
if (state == &stack_state) {
CTR_DRBG_clear(&state->drbg);
}
#if defined(BORINGSSL_FIPS)
CRYPTO_STATIC_MUTEX_unlock_read(state_clear_all_lock_bss_get());
#endif
}
int RAND_bytes(uint8_t *out, size_t out_len) {
static const uint8_t kZeroAdditionalData[32] = {0};
RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData);
return 1;
}
int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
return RAND_bytes(buf, len);
}
void RAND_get_system_entropy_for_custom_prng(uint8_t *buf, size_t len) {
if (len > 256) {
abort();
}
CRYPTO_sysrand_for_seed(buf, len);
}