| /* ==================================================================== |
| * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #include <openssl/base.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/mem.h> |
| #include <openssl/cpu.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ |
| defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) |
| #define GHASH_ASM |
| #endif |
| |
| #if defined(BSWAP4) && STRICT_ALIGNMENT == 1 |
| /* redefine, because alignment is ensured */ |
| #undef GETU32 |
| #define GETU32(p) BSWAP4(*(const uint32_t *)(p)) |
| #undef PUTU32 |
| #define PUTU32(p, v) *(uint32_t *)(p) = BSWAP4(v) |
| #endif |
| |
| #define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16)) |
| #define REDUCE1BIT(V) \ |
| do { \ |
| if (sizeof(size_t) == 8) { \ |
| uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V.lo & 1)); \ |
| V.lo = (V.hi << 63) | (V.lo >> 1); \ |
| V.hi = (V.hi >> 1) ^ T; \ |
| } else { \ |
| uint32_t T = 0xe1000000U & (0 - (uint32_t)(V.lo & 1)); \ |
| V.lo = (V.hi << 63) | (V.lo >> 1); \ |
| V.hi = (V.hi >> 1) ^ ((uint64_t)T << 32); \ |
| } \ |
| } while (0) |
| |
| // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four |
| // bits of a |size_t|. |
| static const size_t kSizeTWithoutLower4Bits = (size_t) -16; |
| |
| static void gcm_init_4bit(u128 Htable[16], uint64_t H[2]) { |
| u128 V; |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| Htable[8] = V; |
| REDUCE1BIT(V); |
| Htable[4] = V; |
| REDUCE1BIT(V); |
| Htable[2] = V; |
| REDUCE1BIT(V); |
| Htable[1] = V; |
| Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
| V = Htable[4]; |
| Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
| Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
| Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
| V = Htable[8]; |
| Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
| Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
| Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
| Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
| Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
| Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
| Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
| |
| #if defined(GHASH_ASM) && defined(OPENSSL_ARM) |
| /* ARM assembler expects specific dword order in Htable. */ |
| { |
| int j; |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| |
| if (is_endian.little) { |
| for (j = 0; j < 16; ++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo; |
| Htable[j].lo = V.hi; |
| } |
| } else { |
| for (j = 0; j < 16; ++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo << 32 | V.lo >> 32; |
| Htable[j].lo = V.hi << 32 | V.hi >> 32; |
| } |
| } |
| } |
| #endif |
| } |
| |
| #if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) |
| static const size_t rem_4bit[16] = { |
| PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)}; |
| |
| static void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) { |
| u128 Z; |
| int cnt = 15; |
| size_t rem, nlo, nhi; |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| |
| nlo = ((const uint8_t *)Xi)[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) { |
| break; |
| } |
| |
| nlo = ((const uint8_t *)Xi)[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| uint8_t *p = (uint8_t *)Xi; |
| uint32_t v; |
| v = (uint32_t)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (uint32_t)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (uint32_t)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (uint32_t)(Z.lo); |
| PUTU32(p + 12, v); |
| #endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| |
| /* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| * details... Compiler-generated code doesn't seem to give any |
| * performance improvement, at least not on x86[_64]. It's here |
| * mostly as reference and a placeholder for possible future |
| * non-trivial optimization[s]... */ |
| static void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) { |
| u128 Z; |
| int cnt; |
| size_t rem, nlo, nhi; |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| |
| do { |
| cnt = 15; |
| nlo = ((const uint8_t *)Xi)[15]; |
| nlo ^= inp[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) { |
| break; |
| } |
| |
| nlo = ((const uint8_t *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| uint8_t *p = (uint8_t *)Xi; |
| uint32_t v; |
| v = (uint32_t)(Z.hi >> 32); |
| PUTU32(p, v); |
| v = (uint32_t)(Z.hi); |
| PUTU32(p + 4, v); |
| v = (uint32_t)(Z.lo >> 32); |
| PUTU32(p + 8, v); |
| v = (uint32_t)(Z.lo); |
| PUTU32(p + 12, v); |
| #endif |
| } else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } while (inp += 16, len -= 16); |
| } |
| #else /* GHASH_ASM */ |
| void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| #endif |
| |
| #define GCM_MUL(ctx, Xi) gcm_gmult_4bit(ctx->Xi.u, ctx->Htable) |
| #if defined(GHASH_ASM) |
| #define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len) |
| /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
| * trashing effect. In other words idea is to hash data while it's |
| * still in L1 cache after encryption pass... */ |
| #define GHASH_CHUNK (3 * 1024) |
| #endif |
| |
| |
| #if defined(GHASH_ASM) |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| #define GHASH_ASM_X86_OR_64 |
| #define GCM_FUNCREF_4BIT |
| void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #if defined(OPENSSL_X86) |
| #define gcm_init_avx gcm_init_clmul |
| #define gcm_gmult_avx gcm_gmult_clmul |
| #define gcm_ghash_avx gcm_ghash_clmul |
| #else |
| void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
| size_t len); |
| #define AESNI_GCM |
| static int aesni_gcm_enabled(GCM128_CONTEXT *ctx, ctr128_f stream) { |
| return stream == aesni_ctr32_encrypt_blocks && |
| ctx->ghash == gcm_ghash_avx; |
| } |
| |
| size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], uint64_t *Xi); |
| size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], uint64_t *Xi); |
| #endif |
| |
| #if defined(OPENSSL_X86) |
| #define GHASH_ASM_X86 |
| void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| void gcm_gmult_4bit_x86(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_4bit_x86(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| #endif |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| #include <openssl/arm_arch.h> |
| #if __ARM_ARCH__ >= 7 |
| #define GHASH_ASM_ARM |
| #define GCM_FUNCREF_4BIT |
| |
| static int pmull_capable(void) { |
| return CRYPTO_is_ARMv8_PMULL_capable(); |
| } |
| |
| void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #if defined(OPENSSL_ARM) |
| /* 32-bit ARM also has support for doing GCM with NEON instructions. */ |
| static int neon_capable(void) { |
| return CRYPTO_is_NEON_capable(); |
| } |
| |
| void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| #else |
| /* AArch64 only has the ARMv8 versions of functions. */ |
| static int neon_capable(void) { |
| return 0; |
| } |
| void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]) { |
| abort(); |
| } |
| void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]) { |
| abort(); |
| } |
| void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) { |
| abort(); |
| } |
| #endif |
| |
| #endif |
| #endif |
| #endif |
| |
| #ifdef GCM_FUNCREF_4BIT |
| #undef GCM_MUL |
| #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)(ctx->Xi.u, ctx->Htable) |
| #ifdef GHASH |
| #undef GHASH |
| #define GHASH(ctx, in, len) (*gcm_ghash_p)(ctx->Xi.u, ctx->Htable, in, len) |
| #endif |
| #endif |
| |
| void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key, |
| block128_f block) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| ctx->block = block; |
| |
| (*block)(ctx->H.c, ctx->H.c, key); |
| |
| if (is_endian.little) { |
| /* H is stored in host byte order */ |
| #ifdef BSWAP8 |
| ctx->H.u[0] = BSWAP8(ctx->H.u[0]); |
| ctx->H.u[1] = BSWAP8(ctx->H.u[1]); |
| #else |
| uint8_t *p = ctx->H.c; |
| uint64_t hi, lo; |
| hi = (uint64_t)GETU32(p) << 32 | GETU32(p + 4); |
| lo = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12); |
| ctx->H.u[0] = hi; |
| ctx->H.u[1] = lo; |
| #endif |
| } |
| |
| #if defined(GHASH_ASM_X86_OR_64) |
| if (crypto_gcm_clmul_enabled()) { |
| if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ |
| gcm_init_avx(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_avx; |
| ctx->ghash = gcm_ghash_avx; |
| } else { |
| gcm_init_clmul(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_clmul; |
| ctx->ghash = gcm_ghash_clmul; |
| } |
| return; |
| } |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| #if defined(GHASH_ASM_X86) /* x86 only */ |
| if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ |
| ctx->gmult = gcm_gmult_4bit_mmx; |
| ctx->ghash = gcm_ghash_4bit_mmx; |
| } else { |
| ctx->gmult = gcm_gmult_4bit_x86; |
| ctx->ghash = gcm_ghash_4bit_x86; |
| } |
| #else |
| ctx->gmult = gcm_gmult_4bit; |
| ctx->ghash = gcm_ghash_4bit; |
| #endif |
| #elif defined(GHASH_ASM_ARM) |
| if (pmull_capable()) { |
| gcm_init_v8(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_v8; |
| ctx->ghash = gcm_ghash_v8; |
| } else if (neon_capable()) { |
| gcm_init_neon(ctx->Htable,ctx->H.u); |
| ctx->gmult = gcm_gmult_neon; |
| ctx->ghash = gcm_ghash_neon; |
| } else { |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| ctx->ghash = gcm_ghash_4bit; |
| } |
| #else |
| gcm_init_4bit(ctx->Htable, ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| ctx->ghash = gcm_ghash_4bit; |
| #endif |
| } |
| |
| void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *iv, size_t len) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| unsigned int ctr; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| ctx->Yi.u[0] = 0; |
| ctx->Yi.u[1] = 0; |
| ctx->Xi.u[0] = 0; |
| ctx->Xi.u[1] = 0; |
| ctx->len.u[0] = 0; /* AAD length */ |
| ctx->len.u[1] = 0; /* message length */ |
| ctx->ares = 0; |
| ctx->mres = 0; |
| |
| if (len == 12) { |
| memcpy(ctx->Yi.c, iv, 12); |
| ctx->Yi.c[15] = 1; |
| ctr = 1; |
| } else { |
| size_t i; |
| uint64_t len0 = len; |
| |
| while (len >= 16) { |
| for (i = 0; i < 16; ++i) { |
| ctx->Yi.c[i] ^= iv[i]; |
| } |
| GCM_MUL(ctx, Yi); |
| iv += 16; |
| len -= 16; |
| } |
| if (len) { |
| for (i = 0; i < len; ++i) { |
| ctx->Yi.c[i] ^= iv[i]; |
| } |
| GCM_MUL(ctx, Yi); |
| } |
| len0 <<= 3; |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| ctx->Yi.u[1] ^= BSWAP8(len0); |
| #else |
| ctx->Yi.c[8] ^= (uint8_t)(len0 >> 56); |
| ctx->Yi.c[9] ^= (uint8_t)(len0 >> 48); |
| ctx->Yi.c[10] ^= (uint8_t)(len0 >> 40); |
| ctx->Yi.c[11] ^= (uint8_t)(len0 >> 32); |
| ctx->Yi.c[12] ^= (uint8_t)(len0 >> 24); |
| ctx->Yi.c[13] ^= (uint8_t)(len0 >> 16); |
| ctx->Yi.c[14] ^= (uint8_t)(len0 >> 8); |
| ctx->Yi.c[15] ^= (uint8_t)(len0); |
| #endif |
| } else { |
| ctx->Yi.u[1] ^= len0; |
| } |
| |
| GCM_MUL(ctx, Yi); |
| |
| if (is_endian.little) { |
| ctr = GETU32(ctx->Yi.c + 12); |
| } else { |
| ctr = ctx->Yi.d[3]; |
| } |
| } |
| |
| (*ctx->block)(ctx->Yi.c, ctx->EK0.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| } |
| |
| int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { |
| size_t i; |
| unsigned int n; |
| uint64_t alen = ctx->len.u[0]; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->ghash; |
| #endif |
| #endif |
| |
| if (ctx->len.u[1]) { |
| return 0; |
| } |
| |
| alen += len; |
| if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { |
| return 0; |
| } |
| ctx->len.u[0] = alen; |
| |
| n = ctx->ares; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(aad++); |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->ares = n; |
| return 1; |
| } |
| } |
| |
| #ifdef GHASH |
| i = len & kSizeTWithoutLower4Bits; |
| if (i != 0) { |
| GHASH(ctx, aad, i); |
| aad += i; |
| len -= i; |
| } |
| #else |
| while (len >= 16) { |
| for (i = 0; i < 16; ++i) { |
| ctx->Xi.c[i] ^= aad[i]; |
| } |
| GCM_MUL(ctx, Xi); |
| aad += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| n = (unsigned int)len; |
| for (i = 0; i < len; ++i) { |
| ctx->Xi.c[i] ^= aad[i]; |
| } |
| } |
| |
| ctx->ares = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key, |
| const unsigned char *in, unsigned char *out, |
| size_t len) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| uint64_t mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->ghash; |
| #endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) { |
| ctr = GETU32(ctx->Yi.c + 12); |
| } else { |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) { |
| for (i = 0; i < len; ++i) { |
| if (n == 0) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| } |
| ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; |
| n = (n + 1) % 16; |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| #if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| while (j) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| } |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
| len -= GHASH_CHUNK; |
| } |
| if ((i = (len & (size_t) - 16))) { |
| size_t j = i; |
| |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| } |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| GHASH(ctx, out - j, j); |
| } |
| #else |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| } |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key, |
| const unsigned char *in, unsigned char *out, |
| size_t len) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| uint64_t mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->ghash; |
| #endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) { |
| ctr = GETU32(ctx->Yi.c + 12); |
| } else { |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| uint8_t c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) { |
| for (i = 0; i < len; ++i) { |
| uint8_t c; |
| if (n == 0) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| } |
| c = in[i]; |
| out[i] = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| n = (n + 1) % 16; |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| #if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| GHASH(ctx, in, GHASH_CHUNK); |
| while (j) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| } |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| len -= GHASH_CHUNK; |
| } |
| i = len & kSizeTWithoutLower4Bits; |
| if (i != 0) { |
| GHASH(ctx, in, i); |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
| } |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| } |
| #else |
| while (len >= 16) { |
| size_t *out_t = (size_t *)out; |
| const size_t *in_t = (const size_t *)in; |
| |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| for (i = 0; i < 16 / sizeof(size_t); ++i) { |
| size_t c = in_t[i]; |
| out_t[i] = c ^ ctx->EKi.t[i]; |
| ctx->Xi.t[i] ^= c; |
| } |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| while (len--) { |
| uint8_t c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *in, uint8_t *out, size_t len, |
| ctr128_f stream) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| unsigned int n, ctr; |
| uint64_t mlen = ctx->len.u[1]; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->ghash; |
| #endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| #if defined(AESNI_GCM) |
| if (aesni_gcm_enabled(ctx, stream)) { |
| /* |aesni_gcm_encrypt| may not process all the input given to it. It may |
| * not process *any* of its input if it is deemed too small. */ |
| size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| in += bulk; |
| out += bulk; |
| len -= bulk; |
| } |
| #endif |
| |
| if (is_endian.little) { |
| ctr = GETU32(ctx->Yi.c + 12); |
| } else { |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| #if defined(GHASH) |
| while (len >= GHASH_CHUNK) { |
| (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| GHASH(ctx, out, GHASH_CHUNK); |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| #endif |
| size_t i = len & kSizeTWithoutLower4Bits; |
| if (i != 0) { |
| size_t j = i / 16; |
| |
| (*stream)(in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| in += i; |
| len -= i; |
| #if defined(GHASH) |
| GHASH(ctx, out, i); |
| out += i; |
| #else |
| while (j--) { |
| for (i = 0; i < 16; ++i) { |
| ctx->Xi.c[i] ^= out[i]; |
| } |
| GCM_MUL(ctx, Xi); |
| out += 16; |
| } |
| #endif |
| } |
| if (len) { |
| (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *in, uint8_t *out, size_t len, |
| ctr128_f stream) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| unsigned int n, ctr; |
| uint64_t mlen = ctx->len.u[1]; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->ghash; |
| #endif |
| #endif |
| |
| mlen += len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| uint8_t c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| #if defined(AESNI_GCM) |
| if (aesni_gcm_enabled(ctx, stream)) { |
| /* |aesni_gcm_decrypt| may not process all the input given to it. It may |
| * not process *any* of its input if it is deemed too small. */ |
| size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| in += bulk; |
| out += bulk; |
| len -= bulk; |
| } |
| #endif |
| |
| if (is_endian.little) { |
| ctr = GETU32(ctx->Yi.c + 12); |
| } else { |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| #if defined(GHASH) |
| while (len >= GHASH_CHUNK) { |
| GHASH(ctx, in, GHASH_CHUNK); |
| (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| #endif |
| size_t i = len & kSizeTWithoutLower4Bits; |
| if (i != 0) { |
| size_t j = i / 16; |
| |
| #if defined(GHASH) |
| GHASH(ctx, in, i); |
| #else |
| while (j--) { |
| size_t k; |
| for (k = 0; k < 16; ++k) { |
| ctx->Xi.c[k] ^= in[k]; |
| } |
| GCM_MUL(ctx, Xi); |
| in += 16; |
| } |
| j = i / 16; |
| in -= i; |
| #endif |
| (*stream)(in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| out += i; |
| in += i; |
| len -= i; |
| } |
| if (len) { |
| (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| if (is_endian.little) { |
| PUTU32(ctx->Yi.c + 12, ctr); |
| } else { |
| ctx->Yi.d[3] = ctr; |
| } |
| while (len--) { |
| uint8_t c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { |
| const union { |
| long one; |
| char little; |
| } is_endian = {1}; |
| uint64_t alen = ctx->len.u[0] << 3; |
| uint64_t clen = ctx->len.u[1] << 3; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| if (ctx->mres || ctx->ares) { |
| GCM_MUL(ctx, Xi); |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| alen = BSWAP8(alen); |
| clen = BSWAP8(clen); |
| #else |
| uint8_t *p = ctx->len.c; |
| |
| ctx->len.u[0] = alen; |
| ctx->len.u[1] = clen; |
| |
| alen = (uint64_t)GETU32(p) << 32 | GETU32(p + 4); |
| clen = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12); |
| #endif |
| } |
| |
| ctx->Xi.u[0] ^= alen; |
| ctx->Xi.u[1] ^= clen; |
| GCM_MUL(ctx, Xi); |
| |
| ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| |
| if (tag && len <= sizeof(ctx->Xi)) { |
| return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; |
| } else { |
| return 0; |
| } |
| } |
| |
| void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { |
| CRYPTO_gcm128_finish(ctx, NULL, 0); |
| memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
| } |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| int crypto_gcm_clmul_enabled(void) { |
| #ifdef GHASH_ASM |
| return OPENSSL_ia32cap_P[0] & (1 << 24) && /* check FXSR bit */ |
| OPENSSL_ia32cap_P[1] & (1 << 1); /* check PCLMULQDQ bit */ |
| #else |
| return 0; |
| #endif |
| } |
| #endif |