| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #ifndef OPENSSL_HEADER_EC_INTERNAL_H |
| #define OPENSSL_HEADER_EC_INTERNAL_H |
| |
| #include <openssl/base.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/ex_data.h> |
| #include <openssl/thread.h> |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| struct ec_method_st { |
| int (*group_init)(EC_GROUP *); |
| void (*group_finish)(EC_GROUP *); |
| int (*group_copy)(EC_GROUP *, const EC_GROUP *); |
| int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *, |
| BIGNUM *x, BIGNUM *y, BN_CTX *); |
| |
| /* Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar| |
| * are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null. |
| * Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar| |
| * and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is |
| * non-null. */ |
| int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
| const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx); |
| |
| /* |check_pub_key_order| checks that the public key is in the proper subgroup |
| * by checking that |pub_key*group->order| is the point at infinity. This may |
| * be NULL for |EC_METHOD|s specialized for prime-order curves (i.e. with |
| * cofactor one), as this check is not necessary for such curves (See section |
| * A.3 of the NSA's "Suite B Implementer's Guide to FIPS 186-3 |
| * (ECDSA)"). */ |
| int (*check_pub_key_order)(const EC_GROUP *group, const EC_POINT *pub_key, |
| BN_CTX *ctx); |
| |
| /* 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the |
| * same implementations of point operations can be used with different |
| * optimized implementations of expensive field operations: */ |
| int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); |
| |
| int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); /* e.g. to Montgomery */ |
| int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); /* e.g. from Montgomery */ |
| } /* EC_METHOD */; |
| |
| const EC_METHOD* EC_GFp_mont_method(void); |
| |
| struct ec_group_st { |
| const EC_METHOD *meth; |
| |
| EC_POINT *generator; |
| BIGNUM order, cofactor; |
| |
| int curve_name; /* optional NID for named curve */ |
| |
| const BN_MONT_CTX *mont_data; /* data for ECDSA inverse */ |
| |
| /* The following members are handled by the method functions, |
| * even if they appear generic */ |
| |
| BIGNUM field; /* For curves over GF(p), this is the modulus. */ |
| |
| BIGNUM a, b; /* Curve coefficients. */ |
| |
| int a_is_minus3; /* enable optimized point arithmetics for special case */ |
| |
| BN_MONT_CTX *mont; /* Montgomery structure. */ |
| |
| BIGNUM one; /* The value one. */ |
| } /* EC_GROUP */; |
| |
| struct ec_point_st { |
| const EC_METHOD *meth; |
| |
| BIGNUM X; |
| BIGNUM Y; |
| BIGNUM Z; /* Jacobian projective coordinates: |
| * (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0 */ |
| } /* EC_POINT */; |
| |
| EC_GROUP *ec_group_new(const EC_METHOD *meth); |
| int ec_group_copy(EC_GROUP *dest, const EC_GROUP *src); |
| |
| /* ec_group_get_mont_data returns a Montgomery context for operations in the |
| * scalar field of |group|. It may return NULL in the case that |group| is not |
| * a built-in group. */ |
| const BN_MONT_CTX *ec_group_get_mont_data(const EC_GROUP *group); |
| |
| int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
| const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx); |
| |
| /* method functions in simple.c */ |
| int ec_GFp_simple_group_init(EC_GROUP *); |
| void ec_GFp_simple_group_finish(EC_GROUP *); |
| int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *); |
| int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, |
| BIGNUM *b, BN_CTX *); |
| unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *); |
| int ec_GFp_simple_point_init(EC_POINT *); |
| void ec_GFp_simple_point_finish(EC_POINT *); |
| void ec_GFp_simple_point_clear_finish(EC_POINT *); |
| int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *); |
| int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); |
| int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *, |
| const BIGNUM *x, |
| const BIGNUM *y, |
| const BIGNUM *z, BN_CTX *); |
| int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *, |
| const EC_POINT *, BIGNUM *x, |
| BIGNUM *y, BIGNUM *z, |
| BN_CTX *); |
| int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, |
| const BIGNUM *x, const BIGNUM *y, |
| BN_CTX *); |
| int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *, |
| const EC_POINT *, BIGNUM *x, |
| BIGNUM *y, BN_CTX *); |
| int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, |
| const BIGNUM *x, int y_bit, |
| BN_CTX *); |
| int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *); |
| int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, |
| BN_CTX *); |
| int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); |
| int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); |
| int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); |
| int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, |
| BN_CTX *); |
| int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); |
| int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, |
| EC_POINT * [], BN_CTX *); |
| int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); |
| |
| /* method functions in montgomery.c */ |
| int ec_GFp_mont_group_init(EC_GROUP *); |
| int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| void ec_GFp_mont_group_finish(EC_GROUP *); |
| int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *); |
| int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *); |
| int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); |
| int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); |
| int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *); |
| |
| int ec_point_set_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| EC_POINT *point, const BIGNUM *x, |
| const BIGNUM *y, const BIGNUM *z, |
| BN_CTX *ctx); |
| |
| void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in); |
| |
| const EC_METHOD *EC_GFp_nistp224_method(void); |
| const EC_METHOD *EC_GFp_nistp256_method(void); |
| |
| /* Returns GFp methods using montgomery multiplication, with x86-64 |
| * optimized P256. See http://eprint.iacr.org/2013/816. */ |
| const EC_METHOD *EC_GFp_nistz256_method(void); |
| |
| struct ec_key_st { |
| EC_GROUP *group; |
| |
| EC_POINT *pub_key; |
| BIGNUM *priv_key; |
| |
| unsigned int enc_flag; |
| point_conversion_form_t conv_form; |
| |
| CRYPTO_refcount_t references; |
| |
| ECDSA_METHOD *ecdsa_meth; |
| |
| CRYPTO_EX_DATA ex_data; |
| } /* EC_KEY */; |
| |
| /* curve_data contains data about a built-in elliptic curve. */ |
| struct curve_data { |
| /* comment is a human-readable string describing the curve. */ |
| const char *comment; |
| /* param_len is the number of bytes needed to store a field element. */ |
| uint8_t param_len; |
| /* cofactor is the cofactor of the group (i.e. the number of elements in the |
| * group divided by the size of the main subgroup. */ |
| uint8_t cofactor; /* promoted to BN_ULONG */ |
| /* data points to an array of 6*|param_len| bytes which hold the field |
| * elements of the following (in big-endian order): prime, a, b, generator x, |
| * generator y, order. */ |
| const uint8_t data[]; |
| }; |
| |
| struct built_in_curve { |
| int nid; |
| const struct curve_data *data; |
| const EC_METHOD *(*method)(void); |
| }; |
| |
| /* OPENSSL_built_in_curves is terminated with an entry where |nid| is |
| * |NID_undef|. */ |
| extern const struct built_in_curve OPENSSL_built_in_curves[]; |
| |
| #if defined(__cplusplus) |
| } /* extern C */ |
| #endif |
| |
| #endif /* OPENSSL_HEADER_EC_INTERNAL_H */ |