blob: 4fb3a31f5d41596a2b0275c642b7d83b5af6bab6 [file] [log] [blame]
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <string.h>
#include <memory>
#include <vector>
#include <openssl/aes.h>
#include <openssl/crypto.h>
#include "../test/file_test.h"
static bool TestRaw(FileTest *t) {
std::vector<uint8_t> key, plaintext, ciphertext;
if (!t->GetBytes(&key, "Key") ||
!t->GetBytes(&plaintext, "Plaintext") ||
!t->GetBytes(&ciphertext, "Ciphertext")) {
return false;
}
if (plaintext.size() != AES_BLOCK_SIZE ||
ciphertext.size() != AES_BLOCK_SIZE) {
t->PrintLine("Plaintext or Ciphertext not a block size.");
return false;
}
AES_KEY aes_key;
if (AES_set_encrypt_key(key.data(), 8 * key.size(), &aes_key) != 0) {
t->PrintLine("AES_set_encrypt_key failed.");
return false;
}
// Test encryption.
uint8_t block[AES_BLOCK_SIZE];
AES_encrypt(plaintext.data(), block, &aes_key);
if (!t->ExpectBytesEqual(block, AES_BLOCK_SIZE, ciphertext.data(),
ciphertext.size())) {
t->PrintLine("AES_encrypt gave the wrong output.");
return false;
}
// Test in-place encryption.
memcpy(block, plaintext.data(), AES_BLOCK_SIZE);
AES_encrypt(block, block, &aes_key);
if (!t->ExpectBytesEqual(block, AES_BLOCK_SIZE, ciphertext.data(),
ciphertext.size())) {
t->PrintLine("In-place AES_encrypt gave the wrong output.");
return false;
}
if (AES_set_decrypt_key(key.data(), 8 * key.size(), &aes_key) != 0) {
t->PrintLine("AES_set_decrypt_key failed.");
return false;
}
// Test decryption.
AES_decrypt(ciphertext.data(), block, &aes_key);
if (!t->ExpectBytesEqual(block, AES_BLOCK_SIZE, plaintext.data(),
plaintext.size())) {
t->PrintLine("AES_decrypt gave the wrong output.");
return false;
}
// Test in-place decryption.
memcpy(block, ciphertext.data(), AES_BLOCK_SIZE);
AES_decrypt(block, block, &aes_key);
if (!t->ExpectBytesEqual(block, AES_BLOCK_SIZE, plaintext.data(),
plaintext.size())) {
t->PrintLine("In-place AES_decrypt gave the wrong output.");
return false;
}
return true;
}
static bool TestKeyWrap(FileTest *t) {
// All test vectors use the default IV, so test both with implicit and
// explicit IV.
//
// TODO(davidben): Find test vectors that use a different IV.
static const uint8_t kDefaultIV[] = {
0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6,
};
std::vector<uint8_t> key, plaintext, ciphertext;
if (!t->GetBytes(&key, "Key") ||
!t->GetBytes(&plaintext, "Plaintext") ||
!t->GetBytes(&ciphertext, "Ciphertext")) {
return false;
}
if (plaintext.size() + 8 != ciphertext.size()) {
t->PrintLine("Invalid Plaintext and Ciphertext lengths.");
return false;
}
AES_KEY aes_key;
if (AES_set_encrypt_key(key.data(), 8 * key.size(), &aes_key) != 0) {
t->PrintLine("AES_set_encrypt_key failed.");
return false;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[ciphertext.size()]);
if (AES_wrap_key(&aes_key, nullptr /* iv */, buf.get(), plaintext.data(),
plaintext.size()) != static_cast<int>(ciphertext.size()) ||
!t->ExpectBytesEqual(buf.get(), ciphertext.size(), ciphertext.data(),
ciphertext.size())) {
t->PrintLine("AES_wrap_key with implicit IV failed.");
return false;
}
memset(buf.get(), 0, ciphertext.size());
if (AES_wrap_key(&aes_key, kDefaultIV, buf.get(), plaintext.data(),
plaintext.size()) != static_cast<int>(ciphertext.size()) ||
!t->ExpectBytesEqual(buf.get(), ciphertext.size(), ciphertext.data(),
ciphertext.size())) {
t->PrintLine("AES_wrap_key with explicit IV failed.");
return false;
}
if (AES_set_decrypt_key(key.data(), 8 * key.size(), &aes_key) != 0) {
t->PrintLine("AES_set_decrypt_key failed.");
return false;
}
buf.reset(new uint8_t[plaintext.size()]);
if (AES_unwrap_key(&aes_key, nullptr /* iv */, buf.get(), ciphertext.data(),
ciphertext.size()) != static_cast<int>(plaintext.size()) ||
!t->ExpectBytesEqual(buf.get(), plaintext.size(), plaintext.data(),
plaintext.size())) {
t->PrintLine("AES_unwrap_key with implicit IV failed.");
return false;
}
memset(buf.get(), 0, plaintext.size());
if (AES_unwrap_key(&aes_key, kDefaultIV, buf.get(), ciphertext.data(),
ciphertext.size()) != static_cast<int>(plaintext.size()) ||
!t->ExpectBytesEqual(buf.get(), plaintext.size(), plaintext.data(),
plaintext.size())) {
t->PrintLine("AES_unwrap_key with explicit IV failed.");
return false;
}
return true;
}
static bool TestAES(FileTest *t, void *arg) {
if (t->GetParameter() == "Raw") {
return TestRaw(t);
}
if (t->GetParameter() == "KeyWrap") {
return TestKeyWrap(t);
}
t->PrintLine("Unknown mode '%s'.", t->GetParameter().c_str());
return false;
}
int main(int argc, char **argv) {
CRYPTO_library_init();
if (argc != 2) {
fprintf(stderr, "%s <test file.txt>\n", argv[0]);
return 1;
}
return FileTestMain(TestAES, nullptr, argv[1]);
}