|  | /* | 
|  | * DTLS implementation written by Nagendra Modadugu | 
|  | * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable | 
|  | // for these values? Notably, why is kMinMTU a function of the transport | 
|  | // protocol's overhead rather than, say, what's needed to hold a minimally-sized | 
|  | // handshake fragment plus protocol overhead. | 
|  |  | 
|  | // kMinMTU is the minimum acceptable MTU value. | 
|  | static const unsigned int kMinMTU = 256 - 28; | 
|  |  | 
|  | // kDefaultMTU is the default MTU value to use if neither the user nor | 
|  | // the underlying BIO supplies one. | 
|  | static const unsigned int kDefaultMTU = 1500 - 28; | 
|  |  | 
|  | // BitRange returns a |uint8_t| with bits |start|, inclusive, to |end|, | 
|  | // exclusive, set. | 
|  | static uint8_t BitRange(size_t start, size_t end) { | 
|  | assert(start <= end && end <= 8); | 
|  | return static_cast<uint8_t>(~((1u << start) - 1) & ((1u << end) - 1)); | 
|  | } | 
|  |  | 
|  | // FirstUnmarkedRangeInByte returns the first unmarked range in bits |b|. | 
|  | static DTLSMessageBitmap::Range FirstUnmarkedRangeInByte(uint8_t b) { | 
|  | size_t start, end; | 
|  | for (start = 0; start < 8; start++) { | 
|  | if ((b & (1u << start)) == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (end = start; end < 8; end++) { | 
|  | if ((b & (1u << end)) != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return DTLSMessageBitmap::Range{start, end}; | 
|  | } | 
|  |  | 
|  | bool DTLSMessageBitmap::Init(size_t num_bits) { | 
|  | if (num_bits + 7 < num_bits) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | size_t num_bytes = (num_bits + 7) / 8; | 
|  | size_t bits_rounded = num_bytes * 8; | 
|  | if (!bytes_.Init(num_bytes)) { | 
|  | return false; | 
|  | } | 
|  | MarkRange(num_bits, bits_rounded); | 
|  | first_unmarked_byte_ = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DTLSMessageBitmap::MarkRange(size_t start, size_t end) { | 
|  | assert(start <= end); | 
|  | // Don't bother touching bytes that have already been marked. | 
|  | start = std::max(start, first_unmarked_byte_ << 3); | 
|  | // Clamp everything within range. | 
|  | start = std::min(start, bytes_.size() << 3); | 
|  | end = std::min(end, bytes_.size() << 3); | 
|  | if (start >= end) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((start >> 3) == (end >> 3)) { | 
|  | bytes_[start >> 3] |= BitRange(start & 7, end & 7); | 
|  | } else { | 
|  | bytes_[start >> 3] |= BitRange(start & 7, 8); | 
|  | for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { | 
|  | bytes_[i] = 0xff; | 
|  | } | 
|  | if ((end & 7) != 0) { | 
|  | bytes_[end >> 3] |= BitRange(0, end & 7); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Maintain the |first_unmarked_byte_| invariant. This work is amortized | 
|  | // across all |MarkRange| calls. | 
|  | while (first_unmarked_byte_ < bytes_.size() && | 
|  | bytes_[first_unmarked_byte_] == 0xff) { | 
|  | first_unmarked_byte_++; | 
|  | } | 
|  | // If the whole message is marked, we no longer need to spend memory on the | 
|  | // bitmap. | 
|  | if (first_unmarked_byte_ >= bytes_.size()) { | 
|  | bytes_.Reset(); | 
|  | first_unmarked_byte_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | DTLSMessageBitmap::Range DTLSMessageBitmap::NextUnmarkedRange( | 
|  | size_t start) const { | 
|  | // Don't bother looking at bytes that are known to be fully marked. | 
|  | start = std::max(start, first_unmarked_byte_ << 3); | 
|  |  | 
|  | size_t idx = start >> 3; | 
|  | if (idx >= bytes_.size()) { | 
|  | return Range{0, 0}; | 
|  | } | 
|  |  | 
|  | // Look at the bits from |start| up to a byte boundary. | 
|  | uint8_t byte = bytes_[idx] | BitRange(0, start & 7); | 
|  | if (byte == 0xff) { | 
|  | // Nothing unmarked at this byte. Keep searching for an unmarked bit. | 
|  | for (idx = idx + 1; idx < bytes_.size(); idx++) { | 
|  | if (bytes_[idx] != 0xff) { | 
|  | byte = bytes_[idx]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (idx >= bytes_.size()) { | 
|  | return Range{0, 0}; | 
|  | } | 
|  | } | 
|  |  | 
|  | Range range = FirstUnmarkedRangeInByte(byte); | 
|  | assert(!range.empty()); | 
|  | bool should_extend = range.end == 8; | 
|  | range.start += idx << 3; | 
|  | range.end += idx << 3; | 
|  | if (!should_extend) { | 
|  | // The range did not end at a byte boundary. We're done. | 
|  | return range; | 
|  | } | 
|  |  | 
|  | // Collect all fully unmarked bytes. | 
|  | for (idx = idx + 1; idx < bytes_.size(); idx++) { | 
|  | if (bytes_[idx] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | range.end = idx << 3; | 
|  |  | 
|  | // Add any bits from the remaining byte, if any. | 
|  | if (idx < bytes_.size()) { | 
|  | Range extra = FirstUnmarkedRangeInByte(bytes_[idx]); | 
|  | if (extra.start == 0) { | 
|  | range.end += extra.end; | 
|  | } | 
|  | } | 
|  |  | 
|  | return range; | 
|  | } | 
|  |  | 
|  | // Receiving handshake messages. | 
|  |  | 
|  | static UniquePtr<DTLSIncomingMessage> dtls_new_incoming_message( | 
|  | const struct hm_header_st *msg_hdr) { | 
|  | ScopedCBB cbb; | 
|  | UniquePtr<DTLSIncomingMessage> frag = MakeUnique<DTLSIncomingMessage>(); | 
|  | if (!frag) { | 
|  | return nullptr; | 
|  | } | 
|  | frag->type = msg_hdr->type; | 
|  | frag->seq = msg_hdr->seq; | 
|  |  | 
|  | // Allocate space for the reassembled message and fill in the header. | 
|  | if (!frag->data.InitForOverwrite(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!CBB_init_fixed(cbb.get(), frag->data.data(), DTLS1_HM_HEADER_LENGTH) || | 
|  | !CBB_add_u8(cbb.get(), msg_hdr->type) || | 
|  | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || | 
|  | !CBB_add_u16(cbb.get(), msg_hdr->seq) || | 
|  | !CBB_add_u24(cbb.get(), 0 /* frag_off */) || | 
|  | !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || | 
|  | !CBB_finish(cbb.get(), NULL, NULL)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!frag->reassembly.Init(msg_hdr->msg_len)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return frag; | 
|  | } | 
|  |  | 
|  | // dtls1_is_current_message_complete returns whether the current handshake | 
|  | // message is complete. | 
|  | static bool dtls1_is_current_message_complete(const SSL *ssl) { | 
|  | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); | 
|  | return frag != nullptr && frag->reassembly.IsComplete(); | 
|  | } | 
|  |  | 
|  | // dtls1_get_incoming_message returns the incoming message corresponding to | 
|  | // |msg_hdr|. If none exists, it creates a new one and inserts it in the | 
|  | // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It | 
|  | // returns NULL on failure. The caller does not take ownership of the result. | 
|  | static DTLSIncomingMessage *dtls1_get_incoming_message( | 
|  | SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { | 
|  | if (msg_hdr->seq < ssl->d1->handshake_read_seq || | 
|  | msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | *out_alert = SSL_AD_INTERNAL_ERROR; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); | 
|  | if (frag != NULL) { | 
|  | assert(frag->seq == msg_hdr->seq); | 
|  | // The new fragment must be compatible with the previous fragments from this | 
|  | // message. | 
|  | if (frag->type != msg_hdr->type ||  // | 
|  | frag->msg_len() != msg_hdr->msg_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); | 
|  | *out_alert = SSL_AD_ILLEGAL_PARAMETER; | 
|  | return NULL; | 
|  | } | 
|  | return frag; | 
|  | } | 
|  |  | 
|  | // This is the first fragment from this message. | 
|  | ssl->d1->incoming_messages[idx] = dtls_new_incoming_message(msg_hdr); | 
|  | if (!ssl->d1->incoming_messages[idx]) { | 
|  | *out_alert = SSL_AD_INTERNAL_ERROR; | 
|  | return NULL; | 
|  | } | 
|  | return ssl->d1->incoming_messages[idx].get(); | 
|  | } | 
|  |  | 
|  | bool dtls1_process_handshake_fragments(SSL *ssl, uint8_t *out_alert, | 
|  | DTLSRecordNumber record_number, | 
|  | Span<const uint8_t> record) { | 
|  | bool implicit_ack = false; | 
|  | bool skipped_fragments = false; | 
|  | CBS cbs = record; | 
|  | while (CBS_len(&cbs) > 0) { | 
|  | // Read a handshake fragment. | 
|  | struct hm_header_st msg_hdr; | 
|  | CBS body; | 
|  | if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); | 
|  | *out_alert = SSL_AD_DECODE_ERROR; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const size_t frag_off = msg_hdr.frag_off; | 
|  | const size_t frag_len = msg_hdr.frag_len; | 
|  | const size_t msg_len = msg_hdr.msg_len; | 
|  | if (frag_off > msg_len || frag_len > msg_len - frag_off || | 
|  | msg_len > ssl_max_handshake_message_len(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); | 
|  | *out_alert = SSL_AD_ILLEGAL_PARAMETER; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (msg_hdr.seq < ssl->d1->handshake_read_seq) { | 
|  | // Ignore fragments from the past. This is a retransmit of data we already | 
|  | // received. | 
|  | // | 
|  | // TODO(crbug.com/42290594): Use this to drive retransmits. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(record_number.epoch() == ssl->d1->read_epoch.epoch); | 
|  | if (ssl->d1->next_read_epoch != nullptr) { | 
|  | // Any any time, we only expect new messages in one epoch. If | 
|  | // |next_read_epoch| is set, we've started a new epoch but haven't | 
|  | // received records in it yet. (Once a record is received in the new | 
|  | // epoch, |next_read_epoch| becomes the current read epoch.) This new | 
|  | // fragment is in the old epoch, but we expect handshake messages to be in | 
|  | // the next epoch, so this is an error. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA); | 
|  | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SSL_in_init(ssl) && ssl_has_final_version(ssl) && | 
|  | ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | // During the handshake, if we receive any portion of the next flight, the | 
|  | // peer must have received our most recent flight. In DTLS 1.3, this is an | 
|  | // implicit ACK. See RFC 9147, Section 7.1. | 
|  | // | 
|  | // This only applies during the handshake. After the handshake, the next | 
|  | // message may be part of a post-handshake transaction. It also does not | 
|  | // apply immediately after the handshake. As a client, receiving a | 
|  | // KeyUpdate or NewSessionTicket does not imply the server has received | 
|  | // our Finished. The server may have sent those messages in half-RTT. | 
|  | // | 
|  | // TODO(crbug.com/42290594): Once post-handshake messages are working, | 
|  | // write a test for the half-RTT KeyUpdate case. | 
|  | implicit_ack = true; | 
|  | } | 
|  |  | 
|  | if (msg_hdr.seq - ssl->d1->handshake_read_seq > SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | // Ignore fragments too far in the future. | 
|  | skipped_fragments = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DTLSIncomingMessage *frag = | 
|  | dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); | 
|  | if (frag == nullptr) { | 
|  | return false; | 
|  | } | 
|  | assert(frag->msg_len() == msg_len); | 
|  |  | 
|  | if (frag->reassembly.IsComplete()) { | 
|  | // The message is already assembled. | 
|  | continue; | 
|  | } | 
|  | assert(msg_len > 0); | 
|  |  | 
|  | // Copy the body into the fragment. | 
|  | Span<uint8_t> dest = frag->msg().subspan(frag_off, CBS_len(&body)); | 
|  | OPENSSL_memcpy(dest.data(), CBS_data(&body), CBS_len(&body)); | 
|  | frag->reassembly.MarkRange(frag_off, frag_off + frag_len); | 
|  | } | 
|  |  | 
|  | if (implicit_ack) { | 
|  | dtls1_stop_timer(ssl); | 
|  | dtls_clear_outgoing_messages(ssl); | 
|  | } | 
|  |  | 
|  | if (!skipped_fragments) { | 
|  | ssl->d1->records_to_ack.PushBack(record_number); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in) { | 
|  | uint8_t type; | 
|  | DTLSRecordNumber record_number; | 
|  | Span<uint8_t> record; | 
|  | auto ret = dtls_open_record(ssl, &type, &record_number, &record, out_consumed, | 
|  | out_alert, in); | 
|  | if (ret != ssl_open_record_success) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case SSL3_RT_APPLICATION_DATA: | 
|  | // In DTLS 1.2, out-of-order application data may be received between | 
|  | // ChangeCipherSpec and Finished. Discard it. | 
|  | return ssl_open_record_discard; | 
|  |  | 
|  | case SSL3_RT_CHANGE_CIPHER_SPEC: | 
|  | // We do not support renegotiation, so encrypted ChangeCipherSpec records | 
|  | // are illegal. | 
|  | if (ssl->d1->read_epoch.epoch != 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | if (record.size() != 1u || record[0] != SSL3_MT_CCS) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); | 
|  | *out_alert = SSL_AD_ILLEGAL_PARAMETER; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Flag the ChangeCipherSpec for later. | 
|  | // TODO(crbug.com/42290594): Should we reject this in DTLS 1.3? | 
|  | ssl->d1->has_change_cipher_spec = true; | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, | 
|  | record); | 
|  | return ssl_open_record_success; | 
|  |  | 
|  | case SSL3_RT_ACK: | 
|  | return dtls1_process_ack(ssl, out_alert, record_number, record); | 
|  |  | 
|  | case SSL3_RT_HANDSHAKE: | 
|  | // Break out to main processing. | 
|  | break; | 
|  |  | 
|  | default: | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | if (!dtls1_process_handshake_fragments(ssl, out_alert, record_number, | 
|  | record)) { | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | return ssl_open_record_success; | 
|  | } | 
|  |  | 
|  | bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { | 
|  | if (!dtls1_is_current_message_complete(ssl)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | const DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); | 
|  | out->type = frag->type; | 
|  | out->raw = CBS(frag->data); | 
|  | out->body = CBS(frag->msg()); | 
|  | out->is_v2_hello = false; | 
|  | if (!ssl->s3->has_message) { | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); | 
|  | ssl->s3->has_message = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void dtls1_next_message(SSL *ssl) { | 
|  | assert(ssl->s3->has_message); | 
|  | assert(dtls1_is_current_message_complete(ssl)); | 
|  | size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | ssl->d1->incoming_messages[index].reset(); | 
|  | ssl->d1->handshake_read_seq++; | 
|  | ssl->s3->has_message = false; | 
|  | // If we previously sent a flight, mark it as having a reply, so | 
|  | // |on_handshake_complete| can manage post-handshake retransmission. | 
|  | if (ssl->d1->outgoing_messages_complete) { | 
|  | ssl->d1->flight_has_reply = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { | 
|  | size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { | 
|  | // Skip the current message. | 
|  | if (ssl->s3->has_message && i == current) { | 
|  | assert(dtls1_is_current_message_complete(ssl)); | 
|  | continue; | 
|  | } | 
|  | if (ssl->d1->incoming_messages[i] != nullptr) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, | 
|  | CBS *out_body) { | 
|  | OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); | 
|  |  | 
|  | if (!CBS_get_u8(cbs, &out_hdr->type) || | 
|  | !CBS_get_u24(cbs, &out_hdr->msg_len) || | 
|  | !CBS_get_u16(cbs, &out_hdr->seq) || | 
|  | !CBS_get_u24(cbs, &out_hdr->frag_off) || | 
|  | !CBS_get_u24(cbs, &out_hdr->frag_len) || | 
|  | !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in) { | 
|  | if (!ssl->d1->has_change_cipher_spec) { | 
|  | // dtls1_open_handshake processes both handshake and ChangeCipherSpec. | 
|  | auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); | 
|  | if (ret != ssl_open_record_success) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | if (ssl->d1->has_change_cipher_spec) { | 
|  | ssl->d1->has_change_cipher_spec = false; | 
|  | return ssl_open_record_success; | 
|  | } | 
|  | return ssl_open_record_discard; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Sending handshake messages. | 
|  |  | 
|  | void dtls_clear_outgoing_messages(SSL *ssl) { | 
|  | ssl->d1->outgoing_messages.clear(); | 
|  | ssl->d1->sent_records = nullptr; | 
|  | ssl->d1->outgoing_written = 0; | 
|  | ssl->d1->outgoing_offset = 0; | 
|  | ssl->d1->outgoing_messages_complete = false; | 
|  | ssl->d1->flight_has_reply = false; | 
|  | dtls_clear_unused_write_epochs(ssl); | 
|  | } | 
|  |  | 
|  | void dtls_clear_unused_write_epochs(SSL *ssl) { | 
|  | ssl->d1->extra_write_epochs.EraseIf( | 
|  | [ssl](const UniquePtr<DTLSWriteEpoch> &write_epoch) -> bool { | 
|  | // Non-current epochs may be discarded once there are no incomplete | 
|  | // outgoing messages that reference them. | 
|  | // | 
|  | // TODO(crbug.com/42290594): Epoch 1 (0-RTT) should be retained until | 
|  | // epoch 3 (app data) is available. | 
|  | for (const auto &msg : ssl->d1->outgoing_messages) { | 
|  | if (msg.epoch == write_epoch->epoch() && !msg.IsFullyAcked()) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { | 
|  | // Pick a modest size hint to save most of the |realloc| calls. | 
|  | if (!CBB_init(cbb, 64) ||                                   // | 
|  | !CBB_add_u8(cbb, type) ||                               // | 
|  | !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||  // | 
|  | !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||      // | 
|  | !CBB_add_u24(cbb, 0 /* offset */) ||                    // | 
|  | !CBB_add_u24_length_prefixed(cbb, body)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { | 
|  | if (!CBBFinishArray(cbb, out_msg) || | 
|  | out_msg->size() < DTLS1_HM_HEADER_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Fix up the header. Copy the fragment length into the total message | 
|  | // length. | 
|  | OPENSSL_memcpy(out_msg->data() + 1, | 
|  | out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // add_outgoing adds a new handshake message or ChangeCipherSpec to the current | 
|  | // outgoing flight. It returns true on success and false on error. | 
|  | static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { | 
|  | if (ssl->d1->outgoing_messages_complete) { | 
|  | // If we've begun writing a new flight, we received the peer flight. Discard | 
|  | // the timer and the our flight. | 
|  | dtls1_stop_timer(ssl); | 
|  | dtls_clear_outgoing_messages(ssl); | 
|  | } | 
|  |  | 
|  | if (!is_ccs) { | 
|  | // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript | 
|  | // on hs. | 
|  | if (ssl->s3->hs != NULL && !ssl->s3->hs->transcript.Update(data)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | ssl->d1->handshake_write_seq++; | 
|  | } | 
|  |  | 
|  | DTLSOutgoingMessage msg; | 
|  | msg.data = std::move(data); | 
|  | msg.epoch = ssl->d1->write_epoch.epoch(); | 
|  | msg.is_ccs = is_ccs; | 
|  | // Zero-length messages need 1 bit to track whether the peer has received the | 
|  | // message header. (Normally the message header is implicitly received when | 
|  | // any fragment of the message is received at all.) | 
|  | if (!is_ccs && !msg.acked.Init(std::max(msg.msg_len(), size_t{1}))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This should not fail if |SSL_MAX_HANDSHAKE_FLIGHT| was sized correctly. | 
|  | // | 
|  | // TODO(crbug.com/42290594): This can currently fail in DTLS 1.3. The caller | 
|  | // can configure how many tickets to send, up to kMaxTickets. Additionally, if | 
|  | // we send 0.5-RTT tickets in 0-RTT, we may even have tickets queued up with | 
|  | // the server flight. | 
|  | if (!ssl->d1->outgoing_messages.TryPushBack(std::move(msg))) { | 
|  | assert(false); | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { | 
|  | return add_outgoing(ssl, false /* handshake */, std::move(data)); | 
|  | } | 
|  |  | 
|  | bool dtls1_add_change_cipher_spec(SSL *ssl) { | 
|  | // DTLS 1.3 disables compatibility mode, which means that DTLS 1.3 never sends | 
|  | // a ChangeCipherSpec message. | 
|  | if (ssl_protocol_version(ssl) > TLS1_2_VERSION) { | 
|  | return true; | 
|  | } | 
|  | return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); | 
|  | } | 
|  |  | 
|  | // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above | 
|  | // the minimum. | 
|  | static void dtls1_update_mtu(SSL *ssl) { | 
|  | // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the | 
|  | // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use | 
|  | // |SSL_set_mtu|. Does this need to be so complex? | 
|  | if (ssl->d1->mtu < dtls1_min_mtu() && | 
|  | !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { | 
|  | long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); | 
|  | if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { | 
|  | ssl->d1->mtu = (unsigned)mtu; | 
|  | } else { | 
|  | ssl->d1->mtu = kDefaultMTU; | 
|  | BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The MTU should be above the minimum now. | 
|  | assert(ssl->d1->mtu >= dtls1_min_mtu()); | 
|  | } | 
|  |  | 
|  | enum seal_result_t { | 
|  | seal_error, | 
|  | seal_continue, | 
|  | seal_flush, | 
|  | }; | 
|  |  | 
|  | // seal_next_record seals one record's worth of messages to |out| and advances | 
|  | // |ssl|'s internal state past the data that was sealed. If progress was made, | 
|  | // it returns |seal_flush| or |seal_continue| and sets | 
|  | // |*out_len| to the number of bytes written. | 
|  | // | 
|  | // If the function stopped because the next message could not be combined into | 
|  | // this record, it returns |seal_continue| and the caller should loop again. | 
|  | // Otherwise, it returns |seal_flush| and the packet is complete (either because | 
|  | // there are no more messages or the packet is full). | 
|  | static seal_result_t seal_next_record(SSL *ssl, Span<uint8_t> out, | 
|  | size_t *out_len) { | 
|  | *out_len = 0; | 
|  |  | 
|  | // Skip any fully acked messages. | 
|  | while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size() && | 
|  | ssl->d1->outgoing_messages[ssl->d1->outgoing_written].IsFullyAcked()) { | 
|  | ssl->d1->outgoing_offset = 0; | 
|  | ssl->d1->outgoing_written++; | 
|  | } | 
|  |  | 
|  | // There was nothing left to write. | 
|  | if (ssl->d1->outgoing_written >= ssl->d1->outgoing_messages.size()) { | 
|  | return seal_flush; | 
|  | } | 
|  |  | 
|  | const auto &first_msg = ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; | 
|  | size_t prefix_len = dtls_seal_prefix_len(ssl, first_msg.epoch); | 
|  | size_t max_in_len = dtls_seal_max_input_len(ssl, first_msg.epoch, out.size()); | 
|  | if (max_in_len == 0) { | 
|  | // There is no room for a single record. | 
|  | return seal_flush; | 
|  | } | 
|  |  | 
|  | if (first_msg.is_ccs) { | 
|  | static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; | 
|  | DTLSRecordNumber record_number; | 
|  | if (!dtls_seal_record(ssl, &record_number, out.data(), out_len, out.size(), | 
|  | SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, | 
|  | sizeof(kChangeCipherSpec), first_msg.epoch)) { | 
|  | return seal_error; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_CHANGE_CIPHER_SPEC, | 
|  | kChangeCipherSpec); | 
|  | ssl->d1->outgoing_offset = 0; | 
|  | ssl->d1->outgoing_written++; | 
|  | return seal_continue; | 
|  | } | 
|  |  | 
|  | // TODO(crbug.com/374991962): For now, only send one message per record in | 
|  | // epoch 0. Sending multiple is allowed and more efficient, but breaks | 
|  | // b/378742138. | 
|  | const bool allow_multiple_messages = first_msg.epoch != 0; | 
|  |  | 
|  | // Pack as many handshake fragments into one record as we can. We stage the | 
|  | // fragments in the output buffer, to be sealed in-place. | 
|  | bool should_continue = false; | 
|  | Span<uint8_t> fragments = out.subspan(prefix_len, max_in_len); | 
|  | CBB cbb; | 
|  | CBB_init_fixed(&cbb, fragments.data(), fragments.size()); | 
|  | DTLSSentRecord sent_record; | 
|  | sent_record.first_msg = ssl->d1->outgoing_written; | 
|  | sent_record.first_msg_start = ssl->d1->outgoing_offset; | 
|  | while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { | 
|  | const auto &msg = ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; | 
|  | if (msg.epoch != first_msg.epoch || msg.is_ccs) { | 
|  | // We can only pack messages if the epoch matches. There may be more room | 
|  | // in the packet, so tell the caller to keep going. | 
|  | should_continue = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Decode |msg|'s header. | 
|  | CBS cbs(msg.data), body_cbs; | 
|  | struct hm_header_st hdr; | 
|  | if (!dtls1_parse_fragment(&cbs, &hdr, &body_cbs) ||  // | 
|  | hdr.frag_off != 0 ||                             // | 
|  | hdr.frag_len != CBS_len(&body_cbs) ||            // | 
|  | hdr.msg_len != CBS_len(&body_cbs) ||             // | 
|  | CBS_len(&cbs) != 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return seal_error; | 
|  | } | 
|  |  | 
|  | // Iterate over every un-acked range in the message, if any. | 
|  | Span<const uint8_t> body = body_cbs; | 
|  | for (;;) { | 
|  | auto range = msg.acked.NextUnmarkedRange(ssl->d1->outgoing_offset); | 
|  | if (range.empty()) { | 
|  | // Advance to the next message. | 
|  | ssl->d1->outgoing_offset = 0; | 
|  | ssl->d1->outgoing_written++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Determine how much progress can be made (minimum one byte of progress). | 
|  | size_t capacity = fragments.size() - CBB_len(&cbb); | 
|  | if (capacity < DTLS1_HM_HEADER_LENGTH + 1) { | 
|  | goto packet_full; | 
|  | } | 
|  | size_t todo = std::min(range.size(), capacity - DTLS1_HM_HEADER_LENGTH); | 
|  |  | 
|  | // Empty messages are special-cased in ACK tracking. We act as if they | 
|  | // have one byte, but in reality that byte is tracking the header. | 
|  | Span<const uint8_t> frag; | 
|  | if (!body.empty()) { | 
|  | frag = body.subspan(range.start, todo); | 
|  | } | 
|  |  | 
|  | // Assemble the fragment. | 
|  | size_t frag_start = CBB_len(&cbb); | 
|  | CBB child; | 
|  | if (!CBB_add_u8(&cbb, hdr.type) ||                       // | 
|  | !CBB_add_u24(&cbb, hdr.msg_len) ||                   // | 
|  | !CBB_add_u16(&cbb, hdr.seq) ||                       // | 
|  | !CBB_add_u24(&cbb, range.start) ||                   // | 
|  | !CBB_add_u24_length_prefixed(&cbb, &child) ||        // | 
|  | !CBB_add_bytes(&child, frag.data(), frag.size()) ||  // | 
|  | !CBB_flush(&cbb)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return seal_error; | 
|  | } | 
|  | size_t frag_end = CBB_len(&cbb); | 
|  |  | 
|  | // TODO(davidben): It is odd that, on output, we inform the caller of | 
|  | // retransmits and individual fragments, but on input we only inform the | 
|  | // caller of complete messages. | 
|  | ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_HANDSHAKE, | 
|  | fragments.subspan(frag_start, frag_end - frag_start)); | 
|  |  | 
|  | ssl->d1->outgoing_offset = range.start + todo; | 
|  | if (todo < range.size()) { | 
|  | // The packet was the limiting factor. | 
|  | goto packet_full; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!allow_multiple_messages) { | 
|  | should_continue = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | packet_full: | 
|  | sent_record.last_msg = ssl->d1->outgoing_written; | 
|  | sent_record.last_msg_end = ssl->d1->outgoing_offset; | 
|  |  | 
|  | // We could not fit anything. Don't try to make a record. | 
|  | if (CBB_len(&cbb) == 0) { | 
|  | assert(!should_continue); | 
|  | return seal_flush; | 
|  | } | 
|  |  | 
|  | if (!dtls_seal_record(ssl, &sent_record.number, out.data(), out_len, | 
|  | out.size(), SSL3_RT_HANDSHAKE, CBB_data(&cbb), | 
|  | CBB_len(&cbb), first_msg.epoch)) { | 
|  | return seal_error; | 
|  | } | 
|  |  | 
|  | // If DTLS 1.3 (or if the version is not yet known and it may be DTLS 1.3), | 
|  | // save the record number to match against ACKs later. | 
|  | if (ssl->s3->version == 0 || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | if (ssl->d1->sent_records == nullptr) { | 
|  | ssl->d1->sent_records = | 
|  | MakeUnique<MRUQueue<DTLSSentRecord, DTLS_MAX_ACK_BUFFER>>(); | 
|  | if (ssl->d1->sent_records == nullptr) { | 
|  | return seal_error; | 
|  | } | 
|  | } | 
|  | ssl->d1->sent_records->PushBack(sent_record); | 
|  | } | 
|  |  | 
|  | return should_continue ? seal_continue : seal_flush; | 
|  | } | 
|  |  | 
|  | // seal_next_packet writes as much of the next flight as possible to |out| and | 
|  | // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as | 
|  | // appropriate. | 
|  | static bool seal_next_packet(SSL *ssl, Span<uint8_t> out, size_t *out_len) { | 
|  | size_t total = 0; | 
|  | for (;;) { | 
|  | size_t len; | 
|  | seal_result_t ret = seal_next_record(ssl, out, &len); | 
|  | switch (ret) { | 
|  | case seal_error: | 
|  | return false; | 
|  |  | 
|  | case seal_flush: | 
|  | case seal_continue: | 
|  | out = out.subspan(len); | 
|  | total += len; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret == seal_flush) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_len = total; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int send_flight(SSL *ssl) { | 
|  | if (ssl->s3->write_shutdown != ssl_shutdown_none) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ssl->wbio == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dtls1_update_mtu(ssl); | 
|  |  | 
|  | Array<uint8_t> packet; | 
|  | if (!packet.InitForOverwrite(ssl->d1->mtu)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { | 
|  | uint8_t old_written = ssl->d1->outgoing_written; | 
|  | uint32_t old_offset = ssl->d1->outgoing_offset; | 
|  |  | 
|  | size_t packet_len; | 
|  | if (!seal_next_packet(ssl, MakeSpan(packet), &packet_len)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (packet_len == 0 && | 
|  | ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { | 
|  | // We made no progress with the packet size available, but did not reach | 
|  | // the end. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (packet_len != 0) { | 
|  | int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len); | 
|  | if (bio_ret <= 0) { | 
|  | // Retry this packet the next time around. | 
|  | ssl->d1->outgoing_written = old_written; | 
|  | ssl->d1->outgoing_offset = old_offset; | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return bio_ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BIO_flush(ssl->wbio.get()) <= 0) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_flush_flight(SSL *ssl, bool post_handshake) { | 
|  | ssl->d1->outgoing_messages_complete = true; | 
|  | if (!post_handshake) { | 
|  | // Our new flight implicitly ACKs the previous flight, so there is no need | 
|  | // to ACK previous records. This clears the ACK buffer slightly earlier than | 
|  | // the specification suggests. See the discussion in | 
|  | // https://mailarchive.ietf.org/arch/msg/tls/kjJnquJOVaWxu5hUCmNzB35eqY0/ | 
|  | // | 
|  | // TODO(crbug.com/42290594): When we introduce the ACK timer, this should | 
|  | // also stop the ACK timer. | 
|  | ssl->d1->records_to_ack.Clear(); | 
|  | } | 
|  | // Start the retransmission timer for the next flight (if any). | 
|  | dtls1_start_timer(ssl); | 
|  | return send_flight(ssl); | 
|  | } | 
|  |  | 
|  | int dtls1_send_ack(SSL *ssl) { | 
|  | assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION); | 
|  | if (ssl->d1->records_to_ack.empty()) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Ensure we don't send so many ACKs that we overflow the MTU. There is a | 
|  | // 2-byte length prefix and each ACK is 16 bytes. | 
|  | dtls1_update_mtu(ssl); | 
|  | size_t max_plaintext = | 
|  | dtls_seal_max_input_len(ssl, ssl->d1->write_epoch.epoch(), ssl->d1->mtu); | 
|  | if (max_plaintext < 2 + 16) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);  // No room for even one ACK. | 
|  | return -1; | 
|  | } | 
|  | size_t num_acks = | 
|  | std::min((max_plaintext - 2) / 16, ssl->d1->records_to_ack.size()); | 
|  |  | 
|  | // Assemble the ACK. RFC 9147 says to sort ACKs numerically. It is unclear if | 
|  | // other implementations do this, but go ahead and sort for now. See | 
|  | // https://mailarchive.ietf.org/arch/msg/tls/kjJnquJOVaWxu5hUCmNzB35eqY0/. | 
|  | // Remove this if rfc9147bis removes this requirement. | 
|  | InplaceVector<DTLSRecordNumber, DTLS_MAX_ACK_BUFFER> sorted; | 
|  | for (size_t i = ssl->d1->records_to_ack.size() - num_acks; | 
|  | i < ssl->d1->records_to_ack.size(); i++) { | 
|  | sorted.PushBack(ssl->d1->records_to_ack[i]); | 
|  | } | 
|  | std::sort(sorted.begin(), sorted.end()); | 
|  |  | 
|  | uint8_t buf[2 + 16 * DTLS_MAX_ACK_BUFFER]; | 
|  | CBB cbb, child; | 
|  | CBB_init_fixed(&cbb, buf, sizeof(buf)); | 
|  | BSSL_CHECK(CBB_add_u16_length_prefixed(&cbb, &child)); | 
|  | for (const auto &number : sorted) { | 
|  | BSSL_CHECK(CBB_add_u64(&child, number.epoch())); | 
|  | BSSL_CHECK(CBB_add_u64(&child, number.sequence())); | 
|  | } | 
|  | BSSL_CHECK(CBB_flush(&cbb)); | 
|  |  | 
|  | // Encrypt it. | 
|  | uint8_t record[DTLS1_3_RECORD_HEADER_WRITE_LENGTH + sizeof(buf) + | 
|  | 1 /* record type */ + EVP_AEAD_MAX_OVERHEAD]; | 
|  | size_t record_len; | 
|  | DTLSRecordNumber record_number; | 
|  | if (!dtls_seal_record(ssl, &record_number, record, &record_len, | 
|  | sizeof(record), SSL3_RT_ACK, CBB_data(&cbb), | 
|  | CBB_len(&cbb), ssl->d1->write_epoch.epoch())) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_ACK, | 
|  | MakeConstSpan(CBB_data(&cbb), CBB_len(&cbb))); | 
|  |  | 
|  | int bio_ret = | 
|  | BIO_write(ssl->wbio.get(), record, static_cast<int>(record_len)); | 
|  | if (bio_ret <= 0) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return bio_ret; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_retransmit_outgoing_messages(SSL *ssl) { | 
|  | // Rewind to the start of the flight and write it again. | 
|  | // | 
|  | // TODO(davidben): This does not allow retransmits to be resumed on | 
|  | // non-blocking write. | 
|  | ssl->d1->outgoing_written = 0; | 
|  | ssl->d1->outgoing_offset = 0; | 
|  |  | 
|  | return send_flight(ssl); | 
|  | } | 
|  |  | 
|  | unsigned int dtls1_min_mtu(void) { return kMinMTU; } | 
|  |  | 
|  | BSSL_NAMESPACE_END |