blob: 9a72a6649f216fbb3b9b05729fe7075f89faa350 [file] [log] [blame]
/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ec.h>
#include <assert.h>
#include "internal.h"
#include "../bn/internal.h"
#include "../../internal.h"
void ec_GFp_mont_mul(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p, const EC_SCALAR *scalar) {
// This is a generic implementation for uncommon curves that not do not
// warrant a tuned one. It uses unsigned digits so that the doubling case in
// |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity.
// Compute a table of the first 32 multiples of |p| (including infinity).
EC_JACOBIAN precomp[32];
ec_GFp_simple_point_set_to_infinity(group, &precomp[0]);
ec_GFp_simple_point_copy(&precomp[1], p);
for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
if (j & 1) {
ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]);
} else {
ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]);
}
}
// Divide bits in |scalar| into windows.
unsigned bits = BN_num_bits(&group->order);
int r_is_at_infinity = 1;
for (unsigned i = bits - 1; i < bits; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (i % 5 == 0) {
// Compute the next window value.
const size_t width = group->order.width;
uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4;
window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3;
window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2;
window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1;
window |= bn_is_bit_set_words(scalar->words, width, i);
// Select the entry in constant-time.
EC_JACOBIAN tmp;
OPENSSL_memset(&tmp, 0, sizeof(EC_JACOBIAN));
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
BN_ULONG mask = constant_time_eq_w(j, window);
ec_point_select(group, &tmp, mask, &precomp[j], &tmp);
}
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}
void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *scalar) {
ec_GFp_mont_mul(group, r, &group->generator->raw, scalar);
}
static void ec_GFp_mont_batch_precomp(const EC_GROUP *group, EC_JACOBIAN *out,
size_t num, const EC_JACOBIAN *p) {
assert(num > 1);
ec_GFp_simple_point_set_to_infinity(group, &out[0]);
ec_GFp_simple_point_copy(&out[1], p);
for (size_t j = 2; j < num; j++) {
if (j & 1) {
ec_GFp_mont_add(group, &out[j], &out[1], &out[j - 1]);
} else {
ec_GFp_mont_dbl(group, &out[j], &out[j / 2]);
}
}
}
static void ec_GFp_mont_batch_get_window(const EC_GROUP *group,
EC_JACOBIAN *out,
const EC_JACOBIAN precomp[17],
const EC_SCALAR *scalar, unsigned i) {
const size_t width = group->order.width;
uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 5;
window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 4;
window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 3;
window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 2;
window |= bn_is_bit_set_words(scalar->words, width, i) << 1;
if (i > 0) {
window |= bn_is_bit_set_words(scalar->words, width, i - 1);
}
crypto_word_t sign, digit;
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, window);
// Select the entry in constant-time.
OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN));
for (size_t j = 0; j < 17; j++) {
BN_ULONG mask = constant_time_eq_w(j, digit);
ec_point_select(group, out, mask, &precomp[j], out);
}
// Negate if necessary.
EC_FELEM neg_Y;
ec_felem_neg(group, &neg_Y, &out->Y);
crypto_word_t sign_mask = sign;
sign_mask = 0u - sign_mask;
ec_felem_select(group, &out->Y, sign_mask, &neg_Y, &out->Y);
}
void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p0, const EC_SCALAR *scalar0,
const EC_JACOBIAN *p1, const EC_SCALAR *scalar1,
const EC_JACOBIAN *p2, const EC_SCALAR *scalar2) {
EC_JACOBIAN precomp[3][17];
ec_GFp_mont_batch_precomp(group, precomp[0], 17, p0);
ec_GFp_mont_batch_precomp(group, precomp[1], 17, p1);
if (p2 != NULL) {
ec_GFp_mont_batch_precomp(group, precomp[2], 17, p2);
}
// Divide bits in |scalar| into windows.
unsigned bits = BN_num_bits(&group->order);
int r_is_at_infinity = 1;
for (unsigned i = bits; i <= bits; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (i % 5 == 0) {
EC_JACOBIAN tmp;
ec_GFp_mont_batch_get_window(group, &tmp, precomp[0], scalar0, i);
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
ec_GFp_mont_batch_get_window(group, &tmp, precomp[1], scalar1, i);
ec_GFp_mont_add(group, r, r, &tmp);
if (p2 != NULL) {
ec_GFp_mont_batch_get_window(group, &tmp, precomp[2], scalar2, i);
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}
static unsigned ec_GFp_mont_comb_stride(const EC_GROUP *group) {
return (BN_num_bits(&group->field) + EC_MONT_PRECOMP_COMB_SIZE - 1) /
EC_MONT_PRECOMP_COMB_SIZE;
}
int ec_GFp_mont_init_precomp(const EC_GROUP *group, EC_PRECOMP *out,
const EC_JACOBIAN *p) {
// comb[i - 1] stores the ith element of the comb. That is, if i is
// b4 * 2^4 + b3 * 2^3 + ... + b0 * 2^0, it stores k * |p|, where k is
// b4 * 2^(4*stride) + b3 * 2^(3*stride) + ... + b0 * 2^(0*stride). stride
// here is |ec_GFp_mont_comb_stride|. We store at index i - 1 because the 0th
// comb entry is always infinity.
EC_JACOBIAN comb[(1 << EC_MONT_PRECOMP_COMB_SIZE) - 1];
unsigned stride = ec_GFp_mont_comb_stride(group);
// We compute the comb sequentially by the highest set bit. Initially, all
// entries up to 2^0 are filled.
comb[(1 << 0) - 1] = *p;
for (unsigned i = 1; i < EC_MONT_PRECOMP_COMB_SIZE; i++) {
// Compute entry 2^i by doubling the entry for 2^(i-1) |stride| times.
unsigned bit = 1 << i;
ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit / 2 - 1]);
for (unsigned j = 1; j < stride; j++) {
ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit - 1]);
}
// Compute entries from 2^i + 1 to 2^i + (2^i - 1) by adding entry 2^i to
// a previous entry.
for (unsigned j = 1; j < bit; j++) {
ec_GFp_mont_add(group, &comb[bit + j - 1], &comb[bit - 1], &comb[j - 1]);
}
}
// Store the comb in affine coordinates to shrink the table. (This reduces
// cache pressure and makes the constant-time selects faster.)
static_assert(OPENSSL_ARRAY_SIZE(comb) == OPENSSL_ARRAY_SIZE(out->comb),
"comb sizes did not match");
return ec_jacobian_to_affine_batch(group, out->comb, comb,
OPENSSL_ARRAY_SIZE(comb));
}
static void ec_GFp_mont_get_comb_window(const EC_GROUP *group,
EC_JACOBIAN *out,
const EC_PRECOMP *precomp,
const EC_SCALAR *scalar, unsigned i) {
const size_t width = group->order.width;
unsigned stride = ec_GFp_mont_comb_stride(group);
// Select the bits corresponding to the comb shifted up by |i|.
unsigned window = 0;
for (unsigned j = 0; j < EC_MONT_PRECOMP_COMB_SIZE; j++) {
window |= bn_is_bit_set_words(scalar->words, width, j * stride + i)
<< j;
}
// Select precomp->comb[window - 1]. If |window| is zero, |match| will always
// be zero, which will leave |out| at infinity.
OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN));
for (unsigned j = 0; j < OPENSSL_ARRAY_SIZE(precomp->comb); j++) {
BN_ULONG match = constant_time_eq_w(window, j + 1);
ec_felem_select(group, &out->X, match, &precomp->comb[j].X, &out->X);
ec_felem_select(group, &out->Y, match, &precomp->comb[j].Y, &out->Y);
}
BN_ULONG is_infinity = constant_time_is_zero_w(window);
ec_felem_select(group, &out->Z, is_infinity, &out->Z, &group->one);
}
void ec_GFp_mont_mul_precomp(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_PRECOMP *p0, const EC_SCALAR *scalar0,
const EC_PRECOMP *p1, const EC_SCALAR *scalar1,
const EC_PRECOMP *p2, const EC_SCALAR *scalar2) {
unsigned stride = ec_GFp_mont_comb_stride(group);
int r_is_at_infinity = 1;
for (unsigned i = stride - 1; i < stride; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
EC_JACOBIAN tmp;
ec_GFp_mont_get_comb_window(group, &tmp, p0, scalar0, i);
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
if (p1 != NULL) {
ec_GFp_mont_get_comb_window(group, &tmp, p1, scalar1, i);
ec_GFp_mont_add(group, r, r, &tmp);
}
if (p2 != NULL) {
ec_GFp_mont_get_comb_window(group, &tmp, p2, scalar2, i);
ec_GFp_mont_add(group, r, r, &tmp);
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}