| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/asn1.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/asn1t.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| static int asn1_item_ex_i2d_opt(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_ITEM *it, int tag, int aclass, |
| int optional); |
| static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_ITEM *it, int tag, int aclass, |
| int optional); |
| static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cont, int *out_omit, |
| int *putype, const ASN1_ITEM *it); |
| static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out, |
| int skcontlen, const ASN1_ITEM *item, int do_sort); |
| static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_TEMPLATE *tt, int tag, int aclass, |
| int optional); |
| |
| // Top level i2d equivalents |
| |
| int ASN1_item_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it) { |
| if (out && !*out) { |
| unsigned char *p, *buf; |
| int len = ASN1_item_ex_i2d(&val, NULL, it, /*tag=*/-1, /*aclass=*/0); |
| if (len <= 0) { |
| return len; |
| } |
| buf = OPENSSL_malloc(len); |
| if (!buf) { |
| return -1; |
| } |
| p = buf; |
| int len2 = ASN1_item_ex_i2d(&val, &p, it, /*tag=*/-1, /*aclass=*/0); |
| if (len2 <= 0) { |
| OPENSSL_free(buf); |
| return len2; |
| } |
| assert(len == len2); |
| *out = buf; |
| return len; |
| } |
| |
| return ASN1_item_ex_i2d(&val, out, it, /*tag=*/-1, /*aclass=*/0); |
| } |
| |
| // Encode an item, taking care of IMPLICIT tagging (if any). This function |
| // performs the normal item handling: it can be used in external types. |
| |
| int ASN1_item_ex_i2d(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_ITEM *it, int tag, int aclass) { |
| int ret = asn1_item_ex_i2d_opt(pval, out, it, tag, aclass, /*optional=*/0); |
| assert(ret != 0); |
| return ret; |
| } |
| |
| // asn1_item_ex_i2d_opt behaves like |ASN1_item_ex_i2d| but, if |optional| is |
| // non-zero and |*pval| is omitted, it returns zero and writes no bytes. |
| int asn1_item_ex_i2d_opt(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_ITEM *it, int tag, int aclass, |
| int optional) { |
| const ASN1_TEMPLATE *tt = NULL; |
| int i, seqcontlen, seqlen; |
| |
| // Historically, |aclass| was repurposed to pass additional flags into the |
| // encoding process. |
| assert((aclass & ASN1_TFLG_TAG_CLASS) == aclass); |
| // If not overridding the tag, |aclass| is ignored and should be zero. |
| assert(tag != -1 || aclass == 0); |
| |
| // All fields are pointers, except for boolean |ASN1_ITYPE_PRIMITIVE|s. |
| // Optional primitives are handled later. |
| if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval) { |
| if (optional) { |
| return 0; |
| } |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE); |
| return -1; |
| } |
| |
| switch (it->itype) { |
| case ASN1_ITYPE_PRIMITIVE: |
| if (it->templates) { |
| // This is an |ASN1_ITEM_TEMPLATE|. |
| if (it->templates->flags & ASN1_TFLG_OPTIONAL) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| return asn1_template_ex_i2d(pval, out, it->templates, tag, aclass, |
| optional); |
| } |
| return asn1_i2d_ex_primitive(pval, out, it, tag, aclass, optional); |
| |
| case ASN1_ITYPE_MSTRING: |
| // It never makes sense for multi-strings to have implicit tagging, so |
| // if tag != -1, then this looks like an error in the template. |
| if (tag != -1) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| return asn1_i2d_ex_primitive(pval, out, it, -1, 0, optional); |
| |
| case ASN1_ITYPE_CHOICE: { |
| // It never makes sense for CHOICE types to have implicit tagging, so if |
| // tag != -1, then this looks like an error in the template. |
| if (tag != -1) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| i = asn1_get_choice_selector(pval, it); |
| if (i < 0 || i >= it->tcount) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NO_MATCHING_CHOICE_TYPE); |
| return -1; |
| } |
| const ASN1_TEMPLATE *chtt = it->templates + i; |
| if (chtt->flags & ASN1_TFLG_OPTIONAL) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| ASN1_VALUE **pchval = asn1_get_field_ptr(pval, chtt); |
| return asn1_template_ex_i2d(pchval, out, chtt, -1, 0, /*optional=*/0); |
| } |
| |
| case ASN1_ITYPE_EXTERN: { |
| // We don't support implicit tagging with external types. |
| if (tag != -1) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| const ASN1_EXTERN_FUNCS *ef = it->funcs; |
| int ret = ef->asn1_ex_i2d(pval, out, it); |
| if (ret == 0) { |
| // |asn1_ex_i2d| should never return zero. We have already checked |
| // for optional values generically, and |ASN1_ITYPE_EXTERN| fields |
| // must be pointers. |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| return ret; |
| } |
| |
| case ASN1_ITYPE_SEQUENCE: { |
| i = asn1_enc_restore(&seqcontlen, out, pval, it); |
| // An error occurred |
| if (i < 0) { |
| return -1; |
| } |
| // We have a valid cached encoding... |
| if (i > 0) { |
| return seqcontlen; |
| } |
| // Otherwise carry on |
| seqcontlen = 0; |
| // If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL |
| if (tag == -1) { |
| tag = V_ASN1_SEQUENCE; |
| aclass = V_ASN1_UNIVERSAL; |
| } |
| // First work out sequence content length |
| for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) { |
| const ASN1_TEMPLATE *seqtt; |
| ASN1_VALUE **pseqval; |
| int tmplen; |
| seqtt = asn1_do_adb(pval, tt, 1); |
| if (!seqtt) { |
| return -1; |
| } |
| pseqval = asn1_get_field_ptr(pval, seqtt); |
| tmplen = |
| asn1_template_ex_i2d(pseqval, NULL, seqtt, -1, 0, /*optional=*/0); |
| if (tmplen == -1 || (tmplen > INT_MAX - seqcontlen)) { |
| return -1; |
| } |
| seqcontlen += tmplen; |
| } |
| |
| seqlen = ASN1_object_size(/*constructed=*/1, seqcontlen, tag); |
| if (!out || seqlen == -1) { |
| return seqlen; |
| } |
| // Output SEQUENCE header |
| ASN1_put_object(out, /*constructed=*/1, seqcontlen, tag, aclass); |
| for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) { |
| const ASN1_TEMPLATE *seqtt; |
| ASN1_VALUE **pseqval; |
| seqtt = asn1_do_adb(pval, tt, 1); |
| if (!seqtt) { |
| return -1; |
| } |
| pseqval = asn1_get_field_ptr(pval, seqtt); |
| if (asn1_template_ex_i2d(pseqval, out, seqtt, -1, 0, /*optional=*/0) < |
| 0) { |
| return -1; |
| } |
| } |
| return seqlen; |
| } |
| |
| default: |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| } |
| |
| // asn1_template_ex_i2d behaves like |asn1_item_ex_i2d_opt| but uses an |
| // |ASN1_TEMPLATE| instead of an |ASN1_ITEM|. An |ASN1_TEMPLATE| wraps an |
| // |ASN1_ITEM| with modifiers such as tagging, SEQUENCE or SET, etc. |
| static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_TEMPLATE *tt, int tag, int iclass, |
| int optional) { |
| int i, ret, ttag, tclass; |
| size_t j; |
| uint32_t flags = tt->flags; |
| |
| // Historically, |iclass| was repurposed to pass additional flags into the |
| // encoding process. |
| assert((iclass & ASN1_TFLG_TAG_CLASS) == iclass); |
| // If not overridding the tag, |iclass| is ignored and should be zero. |
| assert(tag != -1 || iclass == 0); |
| |
| // Work out tag and class to use: tagging may come either from the |
| // template or the arguments, not both because this would create |
| // ambiguity. |
| if (flags & ASN1_TFLG_TAG_MASK) { |
| // Error if argument and template tagging |
| if (tag != -1) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); |
| return -1; |
| } |
| // Get tagging from template |
| ttag = tt->tag; |
| tclass = flags & ASN1_TFLG_TAG_CLASS; |
| } else if (tag != -1) { |
| // No template tagging, get from arguments |
| ttag = tag; |
| tclass = iclass & ASN1_TFLG_TAG_CLASS; |
| } else { |
| ttag = -1; |
| tclass = 0; |
| } |
| |
| // The template may itself by marked as optional, or this may be the template |
| // of an |ASN1_ITEM_TEMPLATE| type which was contained inside an outer |
| // optional template. (They cannot both be true because the |
| // |ASN1_ITEM_TEMPLATE| codepath rejects optional templates.) |
| assert(!optional || (flags & ASN1_TFLG_OPTIONAL) == 0); |
| optional = optional || (flags & ASN1_TFLG_OPTIONAL) != 0; |
| |
| // At this point 'ttag' contains the outer tag to use, and 'tclass' is the |
| // class. |
| |
| if (flags & ASN1_TFLG_SK_MASK) { |
| // SET OF, SEQUENCE OF |
| STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval; |
| int isset, sktag, skaclass; |
| int skcontlen, sklen; |
| ASN1_VALUE *skitem; |
| |
| if (!*pval) { |
| if (optional) { |
| return 0; |
| } |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE); |
| return -1; |
| } |
| |
| if (flags & ASN1_TFLG_SET_OF) { |
| isset = 1; |
| // Historically, types with both bits set were mutated when |
| // serialized to apply the sort. We no longer support this. |
| assert((flags & ASN1_TFLG_SEQUENCE_OF) == 0); |
| } else { |
| isset = 0; |
| } |
| |
| // Work out inner tag value: if EXPLICIT or no tagging use underlying |
| // type. |
| if ((ttag != -1) && !(flags & ASN1_TFLG_EXPTAG)) { |
| sktag = ttag; |
| skaclass = tclass; |
| } else { |
| skaclass = V_ASN1_UNIVERSAL; |
| if (isset) { |
| sktag = V_ASN1_SET; |
| } else { |
| sktag = V_ASN1_SEQUENCE; |
| } |
| } |
| |
| // Determine total length of items |
| skcontlen = 0; |
| for (j = 0; j < sk_ASN1_VALUE_num(sk); j++) { |
| int tmplen; |
| skitem = sk_ASN1_VALUE_value(sk, j); |
| tmplen = ASN1_item_ex_i2d(&skitem, NULL, ASN1_ITEM_ptr(tt->item), -1, 0); |
| if (tmplen == -1 || (skcontlen > INT_MAX - tmplen)) { |
| return -1; |
| } |
| skcontlen += tmplen; |
| } |
| sklen = ASN1_object_size(/*constructed=*/1, skcontlen, sktag); |
| if (sklen == -1) { |
| return -1; |
| } |
| // If EXPLICIT need length of surrounding tag |
| if (flags & ASN1_TFLG_EXPTAG) { |
| ret = ASN1_object_size(/*constructed=*/1, sklen, ttag); |
| } else { |
| ret = sklen; |
| } |
| |
| if (!out || ret == -1) { |
| return ret; |
| } |
| |
| // Now encode this lot... |
| // EXPLICIT tag |
| if (flags & ASN1_TFLG_EXPTAG) { |
| ASN1_put_object(out, /*constructed=*/1, sklen, ttag, tclass); |
| } |
| // SET or SEQUENCE and IMPLICIT tag |
| ASN1_put_object(out, /*constructed=*/1, skcontlen, sktag, skaclass); |
| // And the stuff itself |
| if (!asn1_set_seq_out(sk, out, skcontlen, ASN1_ITEM_ptr(tt->item), isset)) { |
| return -1; |
| } |
| return ret; |
| } |
| |
| if (flags & ASN1_TFLG_EXPTAG) { |
| // EXPLICIT tagging |
| // Find length of tagged item |
| i = asn1_item_ex_i2d_opt(pval, NULL, ASN1_ITEM_ptr(tt->item), -1, 0, |
| optional); |
| if (i <= 0) { |
| return i; |
| } |
| // Find length of EXPLICIT tag |
| ret = ASN1_object_size(/*constructed=*/1, i, ttag); |
| if (out && ret != -1) { |
| // Output tag and item |
| ASN1_put_object(out, /*constructed=*/1, i, ttag, tclass); |
| if (ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item), -1, 0) < 0) { |
| return -1; |
| } |
| } |
| return ret; |
| } |
| |
| // Either normal or IMPLICIT tagging |
| return asn1_item_ex_i2d_opt(pval, out, ASN1_ITEM_ptr(tt->item), ttag, tclass, |
| optional); |
| } |
| |
| // Temporary structure used to hold DER encoding of items for SET OF |
| |
| typedef struct { |
| unsigned char *data; |
| int length; |
| } DER_ENC; |
| |
| static int der_cmp(const void *a, const void *b) { |
| const DER_ENC *d1 = a, *d2 = b; |
| int cmplen, i; |
| cmplen = (d1->length < d2->length) ? d1->length : d2->length; |
| i = OPENSSL_memcmp(d1->data, d2->data, cmplen); |
| if (i) { |
| return i; |
| } |
| return d1->length - d2->length; |
| } |
| |
| // asn1_set_seq_out writes |sk| to |out| under the i2d output convention, |
| // excluding the tag and length. It returns one on success and zero on error. |
| // |skcontlen| must be the total encoded size. If |do_sort| is non-zero, the |
| // elements are sorted for a SET OF type. Each element of |sk| has type |
| // |item|. |
| static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out, |
| int skcontlen, const ASN1_ITEM *item, int do_sort) { |
| // No need to sort if there are fewer than two items. |
| if (!do_sort || sk_ASN1_VALUE_num(sk) < 2) { |
| for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) { |
| ASN1_VALUE *skitem = sk_ASN1_VALUE_value(sk, i); |
| if (ASN1_item_ex_i2d(&skitem, out, item, -1, 0) < 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| if (sk_ASN1_VALUE_num(sk) > ((size_t)-1) / sizeof(DER_ENC)) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| int ret = 0; |
| unsigned char *const buf = OPENSSL_malloc(skcontlen); |
| DER_ENC *encoded = OPENSSL_malloc(sk_ASN1_VALUE_num(sk) * sizeof(*encoded)); |
| if (encoded == NULL || buf == NULL) { |
| goto err; |
| } |
| |
| // Encode all the elements into |buf| and populate |encoded|. |
| unsigned char *p = buf; |
| for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) { |
| ASN1_VALUE *skitem = sk_ASN1_VALUE_value(sk, i); |
| encoded[i].data = p; |
| encoded[i].length = ASN1_item_ex_i2d(&skitem, &p, item, -1, 0); |
| if (encoded[i].length < 0) { |
| goto err; |
| } |
| assert(p - buf <= skcontlen); |
| } |
| |
| qsort(encoded, sk_ASN1_VALUE_num(sk), sizeof(*encoded), der_cmp); |
| |
| // Output the elements in sorted order. |
| p = *out; |
| for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) { |
| OPENSSL_memcpy(p, encoded[i].data, encoded[i].length); |
| p += encoded[i].length; |
| } |
| *out = p; |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(encoded); |
| OPENSSL_free(buf); |
| return ret; |
| } |
| |
| // asn1_i2d_ex_primitive behaves like |ASN1_item_ex_i2d| but |item| must be a |
| // a PRIMITIVE or MSTRING type that is not an |ASN1_ITEM_TEMPLATE|. |
| static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out, |
| const ASN1_ITEM *it, int tag, int aclass, |
| int optional) { |
| // Get length of content octets and maybe find out the underlying type. |
| int omit; |
| int utype = it->utype; |
| int len = asn1_ex_i2c(pval, NULL, &omit, &utype, it); |
| if (len < 0) { |
| return -1; |
| } |
| if (omit) { |
| if (optional) { |
| return 0; |
| } |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE); |
| return -1; |
| } |
| |
| // If SEQUENCE, SET or OTHER then header is included in pseudo content |
| // octets so don't include tag+length. We need to check here because the |
| // call to asn1_ex_i2c() could change utype. |
| int usetag = |
| utype != V_ASN1_SEQUENCE && utype != V_ASN1_SET && utype != V_ASN1_OTHER; |
| |
| // If not implicitly tagged get tag from underlying type |
| if (tag == -1) { |
| tag = utype; |
| } |
| |
| // Output tag+length followed by content octets |
| if (out) { |
| if (usetag) { |
| ASN1_put_object(out, /*constructed=*/0, len, tag, aclass); |
| } |
| int len2 = asn1_ex_i2c(pval, *out, &omit, &utype, it); |
| if (len2 < 0) { |
| return -1; |
| } |
| assert(len == len2); |
| assert(!omit); |
| *out += len; |
| } |
| |
| if (usetag) { |
| return ASN1_object_size(/*constructed=*/0, len, tag); |
| } |
| return len; |
| } |
| |
| // asn1_ex_i2c writes the |*pval| to |cout| under the i2d output convention, |
| // excluding the tag and length. It returns the number of bytes written, |
| // possibly zero, on success or -1 on error. If |*pval| should be omitted, it |
| // returns zero and sets |*out_omit| to true. |
| // |
| // If |it| is an MSTRING or ANY type, it gets the underlying type from |*pval|, |
| // which must be an |ASN1_STRING| or |ASN1_TYPE|, respectively. It then updates |
| // |*putype| with the tag number of type used, or |V_ASN1_OTHER| if it was not a |
| // universal type. If |*putype| is set to |V_ASN1_SEQUENCE|, |V_ASN1_SET|, or |
| // |V_ASN1_OTHER|, it additionally outputs the tag and length, so the caller |
| // must not do so. |
| // |
| // Otherwise, |*putype| must contain |it->utype|. |
| // |
| // WARNING: Unlike most functions in this file, |asn1_ex_i2c| can return zero |
| // without omitting the element. ASN.1 values may have empty contents. |
| static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cout, int *out_omit, |
| int *putype, const ASN1_ITEM *it) { |
| ASN1_BOOLEAN *tbool = NULL; |
| ASN1_STRING *strtmp; |
| ASN1_OBJECT *otmp; |
| int utype; |
| const unsigned char *cont; |
| unsigned char c; |
| int len; |
| |
| // Historically, |it->funcs| for primitive types contained an |
| // |ASN1_PRIMITIVE_FUNCS| table of callbacks. |
| assert(it->funcs == NULL); |
| |
| *out_omit = 0; |
| |
| // Should type be omitted? |
| if ((it->itype != ASN1_ITYPE_PRIMITIVE) || (it->utype != V_ASN1_BOOLEAN)) { |
| if (!*pval) { |
| *out_omit = 1; |
| return 0; |
| } |
| } |
| |
| if (it->itype == ASN1_ITYPE_MSTRING) { |
| // If MSTRING type set the underlying type |
| strtmp = (ASN1_STRING *)*pval; |
| utype = strtmp->type; |
| if (utype < 0 && utype != V_ASN1_OTHER) { |
| // MSTRINGs can have type -1 when default-constructed. |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TYPE); |
| return -1; |
| } |
| // Negative INTEGER and ENUMERATED values use |ASN1_STRING| type values |
| // that do not match their corresponding utype values. INTEGERs cannot |
| // participate in MSTRING types, but ENUMERATEDs can. |
| // |
| // TODO(davidben): Is this a bug? Although arguably one of the MSTRING |
| // types should contain more values, rather than less. See |
| // https://crbug.com/boringssl/412. But it is not possible to fit all |
| // possible ANY values into an |ASN1_STRING|, so matching the spec here |
| // is somewhat hopeless. |
| if (utype == V_ASN1_NEG_INTEGER) { |
| utype = V_ASN1_INTEGER; |
| } else if (utype == V_ASN1_NEG_ENUMERATED) { |
| utype = V_ASN1_ENUMERATED; |
| } |
| *putype = utype; |
| } else if (it->utype == V_ASN1_ANY) { |
| // If ANY set type and pointer to value |
| ASN1_TYPE *typ; |
| typ = (ASN1_TYPE *)*pval; |
| utype = typ->type; |
| if (utype < 0 && utype != V_ASN1_OTHER) { |
| // |ASN1_TYPE|s can have type -1 when default-constructed. |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TYPE); |
| return -1; |
| } |
| *putype = utype; |
| pval = &typ->value.asn1_value; |
| } else { |
| utype = *putype; |
| } |
| |
| switch (utype) { |
| case V_ASN1_OBJECT: |
| otmp = (ASN1_OBJECT *)*pval; |
| cont = otmp->data; |
| len = otmp->length; |
| if (len == 0) { |
| // Some |ASN1_OBJECT|s do not have OIDs and cannot be serialized. |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OBJECT); |
| return -1; |
| } |
| break; |
| |
| case V_ASN1_NULL: |
| cont = NULL; |
| len = 0; |
| break; |
| |
| case V_ASN1_BOOLEAN: |
| tbool = (ASN1_BOOLEAN *)pval; |
| if (*tbool == ASN1_BOOLEAN_NONE) { |
| *out_omit = 1; |
| return 0; |
| } |
| if (it->utype != V_ASN1_ANY) { |
| // Default handling if value == size field then omit |
| if ((*tbool && (it->size > 0)) || (!*tbool && !it->size)) { |
| *out_omit = 1; |
| return 0; |
| } |
| } |
| c = *tbool ? 0xff : 0x00; |
| cont = &c; |
| len = 1; |
| break; |
| |
| case V_ASN1_BIT_STRING: { |
| int ret = |
| i2c_ASN1_BIT_STRING((ASN1_BIT_STRING *)*pval, cout ? &cout : NULL); |
| // |i2c_ASN1_BIT_STRING| returns zero on error instead of -1. |
| return ret <= 0 ? -1 : ret; |
| } |
| |
| case V_ASN1_INTEGER: |
| case V_ASN1_ENUMERATED: { |
| // |i2c_ASN1_INTEGER| also handles ENUMERATED. |
| int ret = i2c_ASN1_INTEGER((ASN1_INTEGER *)*pval, cout ? &cout : NULL); |
| // |i2c_ASN1_INTEGER| returns zero on error instead of -1. |
| return ret <= 0 ? -1 : ret; |
| } |
| |
| case V_ASN1_OCTET_STRING: |
| case V_ASN1_NUMERICSTRING: |
| case V_ASN1_PRINTABLESTRING: |
| case V_ASN1_T61STRING: |
| case V_ASN1_VIDEOTEXSTRING: |
| case V_ASN1_IA5STRING: |
| case V_ASN1_UTCTIME: |
| case V_ASN1_GENERALIZEDTIME: |
| case V_ASN1_GRAPHICSTRING: |
| case V_ASN1_VISIBLESTRING: |
| case V_ASN1_GENERALSTRING: |
| case V_ASN1_UNIVERSALSTRING: |
| case V_ASN1_BMPSTRING: |
| case V_ASN1_UTF8STRING: |
| case V_ASN1_SEQUENCE: |
| case V_ASN1_SET: |
| // This is not a valid |ASN1_ITEM| type, but it appears in |ASN1_TYPE|. |
| case V_ASN1_OTHER: |
| // TODO(crbug.com/boringssl/412): This default case should be removed, now |
| // that we've resolved https://crbug.com/boringssl/561. However, it is still |
| // needed to support some edge cases in |ASN1_PRINTABLE|. |ASN1_PRINTABLE| |
| // broadly doesn't tolerate unrecognized universal tags, but except for |
| // eight values that map to |B_ASN1_UNKNOWN| instead of zero. See the |
| // X509Test.NameAttributeValues test. |
| default: |
| // All based on ASN1_STRING and handled the same |
| strtmp = (ASN1_STRING *)*pval; |
| cont = strtmp->data; |
| len = strtmp->length; |
| break; |
| } |
| if (cout && len) { |
| OPENSSL_memcpy(cout, cont, len); |
| } |
| return len; |
| } |