| /* Copyright (c) 2022, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| // Time conversion to/from POSIX time_t and struct tm, with no support |
| // for time zones other than UTC |
| |
| #include <openssl/time.h> |
| |
| #include <assert.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include "internal.h" |
| |
| #define SECS_PER_HOUR (60 * 60) |
| #define SECS_PER_DAY (24 * SECS_PER_HOUR) |
| |
| |
| // Is a year/month/day combination valid, in the range from year 0000 |
| // to 9999? |
| static int is_valid_date(int year, int month, int day) { |
| if (day < 1 || month < 1 || year < 0 || year > 9999) { |
| return 0; |
| } |
| switch (month) { |
| case 1: |
| case 3: |
| case 5: |
| case 7: |
| case 8: |
| case 10: |
| case 12: |
| return day > 0 && day <= 31; |
| case 4: |
| case 6: |
| case 9: |
| case 11: |
| return day > 0 && day <= 30; |
| case 2: |
| if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) { |
| return day > 0 && day <= 29; |
| } else { |
| return day > 0 && day <= 28; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| // Is a time valid? Leap seconds of 60 are not considered valid, as |
| // the POSIX time in seconds does not include them. |
| static int is_valid_time(int hours, int minutes, int seconds) { |
| if (hours < 0 || minutes < 0 || seconds < 0 || hours > 23 || minutes > 59 || |
| seconds > 59) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| // Is a int64 time representing a time within our expected range? |
| static int is_valid_epoch_time(int64_t time) { |
| // 0000-01-01 00:00:00 UTC to 9999-12-31 23:59:59 UTC |
| return (int64_t)-62167219200 <= time && time <= (int64_t)253402300799; |
| } |
| |
| // Inspired by algorithms presented in |
| // https://howardhinnant.github.io/date_algorithms.html |
| // (Public Domain) |
| static int posix_time_from_utc(int year, int month, int day, int hours, |
| int minutes, int seconds, int64_t *out_time) { |
| if (!is_valid_date(year, month, day) || |
| !is_valid_time(hours, minutes, seconds)) { |
| return 0; |
| } |
| if (month <= 2) { |
| year--; // Start years on Mar 1, so leap days always finish a year. |
| } |
| // At this point year will be in the range -1 and 9999. |
| assert(-1 <= year && year <= 9999); |
| int64_t era = (year >= 0 ? year : year - 399) / 400; |
| int64_t year_of_era = year - era * 400; |
| int64_t day_of_year = |
| (153 * (month > 2 ? month - 3 : month + 9) + 2) / 5 + day - 1; |
| int64_t day_of_era = |
| year_of_era * 365 + year_of_era / 4 - year_of_era / 100 + day_of_year; |
| int64_t posix_days = era * 146097 + day_of_era - 719468; |
| *out_time = posix_days * SECS_PER_DAY + hours * SECS_PER_HOUR + minutes * 60 + |
| seconds; |
| return 1; |
| } |
| |
| // Inspired by algorithms presented in |
| // https://howardhinnant.github.io/date_algorithms.html |
| // (Public Domain) |
| static int utc_from_posix_time(int64_t time, int *out_year, int *out_month, |
| int *out_day, int *out_hours, int *out_minutes, |
| int *out_seconds) { |
| if (!is_valid_epoch_time(time)) { |
| return 0; |
| } |
| int64_t days = time / SECS_PER_DAY; |
| int64_t leftover_seconds = time % SECS_PER_DAY; |
| if (leftover_seconds < 0) { |
| days--; |
| leftover_seconds += SECS_PER_DAY; |
| } |
| days += 719468; // Shift to starting epoch of Mar 1 0000. |
| // At this point, days will be in the range -61 and 3652364. |
| assert(-61 <= days && days <= 3652364); |
| int64_t era = (days > 0 ? days : days - 146096) / 146097; |
| int64_t day_of_era = days - era * 146097; |
| int64_t year_of_era = (day_of_era - day_of_era / 1460 + day_of_era / 36524 - |
| day_of_era / 146096) / |
| 365; |
| *out_year = (int)(year_of_era + era * 400); // Year starting on Mar 1. |
| int64_t day_of_year = |
| day_of_era - (365 * year_of_era + year_of_era / 4 - year_of_era / 100); |
| int64_t month_of_year = (5 * day_of_year + 2) / 153; |
| *out_month = |
| (int)(month_of_year < 10 ? month_of_year + 3 : month_of_year - 9); |
| if (*out_month <= 2) { |
| (*out_year)++; // Adjust year back to Jan 1 start of year. |
| } |
| *out_day = (int)(day_of_year - (153 * month_of_year + 2) / 5 + 1); |
| *out_hours = (int)(leftover_seconds / SECS_PER_HOUR); |
| leftover_seconds %= SECS_PER_HOUR; |
| *out_minutes = (int)(leftover_seconds / 60); |
| *out_seconds = (int)(leftover_seconds % 60); |
| return 1; |
| } |
| |
| int OPENSSL_tm_to_posix(const struct tm *tm, int64_t *out) { |
| return posix_time_from_utc(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, |
| tm->tm_hour, tm->tm_min, tm->tm_sec, out); |
| } |
| |
| int OPENSSL_posix_to_tm(int64_t time, struct tm *out_tm) { |
| memset(out_tm, 0, sizeof(struct tm)); |
| if (!utc_from_posix_time(time, &out_tm->tm_year, &out_tm->tm_mon, |
| &out_tm->tm_mday, &out_tm->tm_hour, &out_tm->tm_min, |
| &out_tm->tm_sec)) { |
| return 0; |
| } |
| out_tm->tm_year -= 1900; |
| out_tm->tm_mon -= 1; |
| |
| return 1; |
| } |
| |
| int OPENSSL_timegm(const struct tm *tm, time_t *out) { |
| static_assert( |
| sizeof(time_t) == sizeof(int32_t) || sizeof(time_t) == sizeof(int64_t), |
| "time_t is broken"); |
| int64_t posix_time; |
| if (!OPENSSL_tm_to_posix(tm, &posix_time)) { |
| return 0; |
| } |
| if (sizeof(time_t) == sizeof(int32_t) && |
| (posix_time > INT32_MAX || posix_time < INT32_MIN)) { |
| return 0; |
| } |
| *out = (time_t)posix_time; |
| return 1; |
| } |
| |
| struct tm *OPENSSL_gmtime(const time_t *time, struct tm *out_tm) { |
| static_assert( |
| sizeof(time_t) == sizeof(int32_t) || sizeof(time_t) == sizeof(int64_t), |
| "time_t is broken"); |
| int64_t posix_time = *time; |
| if (!OPENSSL_posix_to_tm(posix_time, out_tm)) { |
| return NULL; |
| } |
| return out_tm; |
| } |
| |
| int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec) { |
| int64_t posix_time; |
| if (!posix_time_from_utc(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, |
| tm->tm_hour, tm->tm_min, tm->tm_sec, &posix_time)) { |
| return 0; |
| } |
| if (!utc_from_posix_time( |
| posix_time + (int64_t)off_day * SECS_PER_DAY + offset_sec, |
| &tm->tm_year, &tm->tm_mon, &tm->tm_mday, &tm->tm_hour, &tm->tm_min, |
| &tm->tm_sec)) { |
| return 0; |
| } |
| tm->tm_year -= 1900; |
| tm->tm_mon -= 1; |
| |
| return 1; |
| } |
| |
| int OPENSSL_gmtime_diff(int *out_days, int *out_secs, const struct tm *from, |
| const struct tm *to) { |
| int64_t time_to; |
| if (!posix_time_from_utc(to->tm_year + 1900, to->tm_mon + 1, to->tm_mday, |
| to->tm_hour, to->tm_min, to->tm_sec, &time_to)) { |
| return 0; |
| } |
| int64_t time_from; |
| if (!posix_time_from_utc(from->tm_year + 1900, from->tm_mon + 1, |
| from->tm_mday, from->tm_hour, from->tm_min, |
| from->tm_sec, &time_from)) { |
| return 0; |
| } |
| int64_t timediff = time_to - time_from; |
| int64_t daydiff = timediff / SECS_PER_DAY; |
| timediff %= SECS_PER_DAY; |
| if (daydiff > INT_MAX || daydiff < INT_MIN) { |
| return 0; |
| } |
| *out_secs = (int)timediff; |
| *out_days = (int)daydiff; |
| return 1; |
| } |