| /* DTLS implementation written by Nagendra Modadugu |
| * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // dtls1_bitmap_should_discard returns one if |seq_num| has been seen in |
| // |bitmap| or is stale. Otherwise it returns zero. |
| static bool dtls1_bitmap_should_discard(DTLS1_BITMAP *bitmap, |
| uint64_t seq_num) { |
| const size_t kWindowSize = bitmap->map.size(); |
| |
| if (seq_num > bitmap->max_seq_num) { |
| return false; |
| } |
| uint64_t idx = bitmap->max_seq_num - seq_num; |
| return idx >= kWindowSize || bitmap->map[idx]; |
| } |
| |
| // dtls1_bitmap_record updates |bitmap| to record receipt of sequence number |
| // |seq_num|. It slides the window forward if needed. It is an error to call |
| // this function on a stale sequence number. |
| static void dtls1_bitmap_record(DTLS1_BITMAP *bitmap, uint64_t seq_num) { |
| const size_t kWindowSize = bitmap->map.size(); |
| |
| // Shift the window if necessary. |
| if (seq_num > bitmap->max_seq_num) { |
| uint64_t shift = seq_num - bitmap->max_seq_num; |
| if (shift >= kWindowSize) { |
| bitmap->map.reset(); |
| } else { |
| bitmap->map <<= shift; |
| } |
| bitmap->max_seq_num = seq_num; |
| } |
| |
| uint64_t idx = bitmap->max_seq_num - seq_num; |
| if (idx < kWindowSize) { |
| bitmap->map[idx] = true; |
| } |
| } |
| |
| // reconstruct_epoch finds the largest epoch that ends with the epoch bits from |
| // |wire_epoch| that is less than or equal to |current_epoch|, to match the |
| // epoch reconstruction algorithm described in RFC 9147 section 4.2.2. |
| static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) { |
| uint16_t current_epoch_high = current_epoch & 0xfffc; |
| uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high; |
| if (epoch > current_epoch && current_epoch_high > 0) { |
| epoch -= 0x4; |
| } |
| return epoch; |
| } |
| |
| uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, |
| uint64_t max_valid_seqnum) { |
| uint64_t max_seqnum_plus_one = max_valid_seqnum + 1; |
| uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask; |
| uint64_t step = seq_mask + 1; |
| uint64_t seqnum = max_seqnum_plus_one + diff; |
| // seqnum is computed as the addition of 3 non-negative values |
| // (max_valid_seqnum, 1, and diff). The values 1 and diff are small (relative |
| // to the size of a uint64_t), while max_valid_seqnum can span the range of |
| // all uint64_t values. If seqnum is less than max_valid_seqnum, then the |
| // addition overflowed. |
| bool overflowed = seqnum < max_valid_seqnum; |
| // If the diff is larger than half the step size, then the closest seqnum |
| // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of |
| // seqnum. |
| bool closer_is_less = diff > step / 2; |
| // Subtracting step from seqnum will cause underflow if seqnum is too small. |
| bool would_underflow = seqnum < step; |
| if (overflowed || (closer_is_less && !would_underflow)) { |
| seqnum -= step; |
| } |
| return seqnum; |
| } |
| |
| static bool parse_dtls13_record_header(SSL *ssl, CBS *in, Span<uint8_t> packet, |
| uint8_t type, CBS *out_body, |
| uint64_t *out_sequence, |
| uint16_t *out_epoch, |
| size_t *out_header_len) { |
| // TODO(crbug.com/boringssl/715): Decrypt the sequence number before |
| // decoding it. |
| if ((type & 0x10) == 0x10) { |
| // Connection ID bit set, which we didn't negotiate. |
| return false; |
| } |
| |
| // TODO(crbug.com/boringssl/715): Add a runner test that performs many |
| // key updates to verify epoch reconstruction works for epochs larger than |
| // 3. |
| *out_epoch = reconstruct_epoch(type, ssl->d1->r_epoch); |
| size_t seqlen = 1; |
| if ((type & 0x08) == 0x08) { |
| // If this bit is set, the sequence number is 16 bits long, otherwise it is |
| // 8 bits. The seqlen variable tracks the length of the sequence number in |
| // bytes. |
| seqlen = 2; |
| } |
| if (!CBS_skip(in, seqlen)) { |
| // The record header was incomplete or malformed. |
| return false; |
| } |
| *out_header_len = packet.size() - CBS_len(in); |
| if ((type & 0x04) == 0x04) { |
| *out_header_len += 2; |
| // 16-bit length present |
| if (!CBS_get_u16_length_prefixed(in, out_body)) { |
| // The record header was incomplete or malformed. |
| return false; |
| } |
| } else { |
| // No length present - the remaining contents are the whole packet. |
| // CBS_get_bytes is used here to advance |in| to the end so that future |
| // code that computes the number of consumed bytes functions correctly. |
| if (!CBS_get_bytes(in, out_body, CBS_len(in))) { |
| return false; |
| } |
| } |
| |
| // Decrypt and reconstruct the sequence number: |
| uint8_t mask[AES_BLOCK_SIZE]; |
| SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); |
| if (!aead->GenerateRecordNumberMask(mask, *out_body)) { |
| // GenerateRecordNumberMask most likely failed because the record body was |
| // not long enough. |
| return false; |
| } |
| // Apply the mask to the sequence number as it exists in the header. The |
| // header (with the decrypted sequence number bytes) is used as the |
| // additional data for the AEAD function. Since we don't support Connection |
| // ID, the sequence number starts immediately after the type byte. |
| uint64_t seq = 0; |
| for (size_t i = 0; i < seqlen; i++) { |
| packet[i + 1] ^= mask[i]; |
| seq = (seq << 8) | packet[i + 1]; |
| } |
| *out_sequence = reconstruct_seqnum(seq, (1 << (seqlen * 8)) - 1, |
| ssl->d1->bitmap.max_seq_num); |
| return true; |
| } |
| |
| static bool parse_dtls_plaintext_record_header( |
| SSL *ssl, CBS *in, size_t packet_size, uint8_t type, CBS *out_body, |
| uint64_t *out_sequence, uint16_t *out_epoch, size_t *out_header_len, |
| uint16_t *out_version) { |
| SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); |
| uint8_t sequence_bytes[8]; |
| if (!CBS_get_u16(in, out_version) || |
| !CBS_copy_bytes(in, sequence_bytes, sizeof(sequence_bytes))) { |
| return false; |
| } |
| *out_header_len = packet_size - CBS_len(in) + 2; |
| if (!CBS_get_u16_length_prefixed(in, out_body) || |
| CBS_len(out_body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| return false; |
| } |
| |
| bool version_ok; |
| if (aead->is_null_cipher()) { |
| // Only check the first byte. Enforcing beyond that can prevent decoding |
| // version negotiation failure alerts. |
| version_ok = (*out_version >> 8) == DTLS1_VERSION_MAJOR; |
| } else { |
| version_ok = *out_version == aead->RecordVersion(); |
| } |
| |
| if (!version_ok) { |
| return false; |
| } |
| |
| *out_sequence = CRYPTO_load_u64_be(sequence_bytes); |
| *out_epoch = static_cast<uint16_t>(*out_sequence >> 48); |
| |
| // Discard the packet if we're expecting an encrypted DTLS 1.3 record but we |
| // get the old record header format. |
| if (!aead->is_null_cipher() && aead->ProtocolVersion() >= TLS1_3_VERSION) { |
| return false; |
| } |
| return true; |
| } |
| |
| enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, |
| Span<uint8_t> *out, |
| size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in) { |
| *out_consumed = 0; |
| if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { |
| return ssl_open_record_close_notify; |
| } |
| |
| if (in.empty()) { |
| return ssl_open_record_partial; |
| } |
| |
| CBS cbs = CBS(in); |
| |
| uint8_t type; |
| size_t record_header_len; |
| if (!CBS_get_u8(&cbs, &type)) { |
| // The record header was incomplete or malformed. Drop the entire packet. |
| *out_consumed = in.size(); |
| return ssl_open_record_discard; |
| } |
| SSLAEADContext *aead = ssl->s3->aead_read_ctx.get(); |
| uint64_t sequence; |
| uint16_t epoch; |
| uint16_t version = 0; |
| CBS body; |
| bool valid_record_header; |
| // Decode the record header. If the 3 high bits of the type are 001, then the |
| // record header is the DTLS 1.3 format. The DTLS 1.3 format should only be |
| // used for encrypted records with DTLS 1.3. Plaintext records or DTLS 1.2 |
| // records use the old record header format. |
| if ((type & 0xe0) == 0x20 && !aead->is_null_cipher() && |
| aead->ProtocolVersion() >= TLS1_3_VERSION) { |
| valid_record_header = parse_dtls13_record_header( |
| ssl, &cbs, in, type, &body, &sequence, &epoch, &record_header_len); |
| } else { |
| valid_record_header = parse_dtls_plaintext_record_header( |
| ssl, &cbs, in.size(), type, &body, &sequence, &epoch, |
| &record_header_len, &version); |
| } |
| if (!valid_record_header) { |
| // The record header was incomplete or malformed. Drop the entire packet. |
| *out_consumed = in.size(); |
| return ssl_open_record_discard; |
| } |
| |
| Span<const uint8_t> header = in.subspan(0, record_header_len); |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, header); |
| |
| if (epoch != ssl->d1->r_epoch || |
| dtls1_bitmap_should_discard(&ssl->d1->bitmap, sequence)) { |
| // Drop this record. It's from the wrong epoch or is a replay. Note that if |
| // |epoch| is the next epoch, the record could be buffered for later. For |
| // simplicity, drop it and expect retransmit to handle it later; DTLS must |
| // handle packet loss anyway. |
| *out_consumed = in.size() - CBS_len(&cbs); |
| return ssl_open_record_discard; |
| } |
| |
| // discard the body in-place. |
| if (!aead->Open( |
| out, type, version, sequence, header, |
| MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) { |
| // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347. |
| // Clear the error queue of any errors decryption may have added. Drop the |
| // entire packet as it must not have come from the peer. |
| // |
| // TODO(davidben): This doesn't distinguish malloc failures from encryption |
| // failures. |
| ERR_clear_error(); |
| *out_consumed = in.size() - CBS_len(&cbs); |
| return ssl_open_record_discard; |
| } |
| *out_consumed = in.size() - CBS_len(&cbs); |
| |
| // DTLS 1.3 hides the record type inside the encrypted data. |
| bool has_padding = |
| !aead->is_null_cipher() && aead->ProtocolVersion() >= TLS1_3_VERSION; |
| // Check the plaintext length. |
| size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0); |
| if (out->size() > plaintext_limit) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| *out_alert = SSL_AD_RECORD_OVERFLOW; |
| return ssl_open_record_error; |
| } |
| |
| if (has_padding) { |
| do { |
| if (out->empty()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| *out_alert = SSL_AD_DECRYPT_ERROR; |
| return ssl_open_record_error; |
| } |
| type = out->back(); |
| *out = out->subspan(0, out->size() - 1); |
| } while (type == 0); |
| } |
| |
| dtls1_bitmap_record(&ssl->d1->bitmap, sequence); |
| |
| // TODO(davidben): Limit the number of empty records as in TLS? This is only |
| // useful if we also limit discarded packets. |
| |
| if (type == SSL3_RT_ALERT) { |
| return ssl_process_alert(ssl, out_alert, *out); |
| } |
| |
| ssl->s3->warning_alert_count = 0; |
| |
| *out_type = type; |
| return ssl_open_record_success; |
| } |
| |
| static SSLAEADContext *get_write_aead(const SSL *ssl, uint16_t epoch) { |
| if (epoch == 0) { |
| return ssl->d1->initial_epoch_state->aead_write_ctx.get(); |
| } |
| |
| if (epoch < ssl->d1->w_epoch) { |
| BSSL_CHECK(epoch + 1 == ssl->d1->w_epoch); |
| return ssl->d1->last_epoch_state.aead_write_ctx.get(); |
| } |
| |
| BSSL_CHECK(epoch == ssl->d1->w_epoch); |
| return ssl->s3->aead_write_ctx.get(); |
| } |
| |
| static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) { |
| // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for |
| // backwards compatibility. |
| return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION && |
| epoch > 0; |
| } |
| |
| size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) { |
| if (!use_dtls13_record_header(ssl, epoch)) { |
| return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH; |
| } |
| // The DTLS 1.3 has a variable length record header. We never send Connection |
| // ID, we always send 16-bit sequence numbers, and we send a length. (Length |
| // can be omitted, but only for the last record of a packet. Since we send |
| // multiple records in one packet, it's easier to implement always sending the |
| // length.) |
| return DTLS1_3_RECORD_HEADER_WRITE_LENGTH; |
| } |
| |
| size_t dtls_max_seal_overhead(const SSL *ssl, |
| uint16_t epoch) { |
| size_t ret = dtls_record_header_write_len(ssl, epoch) + |
| get_write_aead(ssl, epoch)->MaxOverhead(); |
| if (use_dtls13_record_header(ssl, epoch)) { |
| // Add 1 byte for the encrypted record type. |
| ret++; |
| } |
| return ret; |
| } |
| |
| size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) { |
| return dtls_record_header_write_len(ssl, epoch) + |
| get_write_aead(ssl, epoch)->ExplicitNonceLen(); |
| } |
| |
| bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint8_t type, const uint8_t *in, size_t in_len, |
| uint16_t epoch) { |
| const size_t prefix = dtls_seal_prefix_len(ssl, epoch); |
| if (buffers_alias(in, in_len, out, max_out) && |
| (max_out < prefix || out + prefix != in)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); |
| return false; |
| } |
| |
| // Determine the parameters for the current epoch. |
| SSLAEADContext *aead = get_write_aead(ssl, epoch); |
| uint64_t *seq = &ssl->s3->write_sequence; |
| if (epoch == 0) { |
| seq = &ssl->d1->initial_epoch_state->write_sequence; |
| } else if (epoch < ssl->d1->w_epoch) { |
| seq = &ssl->d1->last_epoch_state.write_sequence; |
| } |
| |
| const size_t record_header_len = dtls_record_header_write_len(ssl, epoch); |
| |
| // Ensure the sequence number update does not overflow. |
| const uint64_t kMaxSequenceNumber = (uint64_t{1} << 48) - 1; |
| if (*seq + 1 > kMaxSequenceNumber) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| |
| uint16_t record_version = ssl->s3->aead_write_ctx->RecordVersion(); |
| uint64_t seq_with_epoch = (uint64_t{epoch} << 48) | *seq; |
| |
| bool dtls13_header = use_dtls13_record_header(ssl, epoch); |
| uint8_t *extra_in = NULL; |
| size_t extra_in_len = 0; |
| if (dtls13_header) { |
| extra_in = &type; |
| extra_in_len = 1; |
| } |
| |
| size_t ciphertext_len; |
| if (!aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
| return false; |
| } |
| if (max_out < record_header_len + ciphertext_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); |
| return false; |
| } |
| |
| if (dtls13_header) { |
| // The first byte of the DTLS 1.3 record header has the following format: |
| // 0 1 2 3 4 5 6 7 |
| // +-+-+-+-+-+-+-+-+ |
| // |0|0|1|C|S|L|E E| |
| // +-+-+-+-+-+-+-+-+ |
| // |
| // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length |
| // is present), which is a mask of 0x2c. The E E bits are the low-order two |
| // bits of the epoch. |
| // |
| // +-+-+-+-+-+-+-+-+ |
| // |0|0|1|0|1|1|E E| |
| // +-+-+-+-+-+-+-+-+ |
| out[0] = 0x2c | (epoch & 0x3); |
| out[1] = *seq >> 8; |
| out[2] = *seq & 0xff; |
| out[3] = ciphertext_len >> 8; |
| out[4] = ciphertext_len & 0xff; |
| // DTLS 1.3 uses the sequence number without the epoch for the AEAD. |
| seq_with_epoch = *seq; |
| } else { |
| out[0] = type; |
| out[1] = record_version >> 8; |
| out[2] = record_version & 0xff; |
| CRYPTO_store_u64_be(&out[3], seq_with_epoch); |
| out[11] = ciphertext_len >> 8; |
| out[12] = ciphertext_len & 0xff; |
| } |
| Span<const uint8_t> header = MakeConstSpan(out, record_header_len); |
| |
| |
| if (!aead->SealScatter(out + record_header_len, out + prefix, |
| out + prefix + in_len, type, record_version, |
| seq_with_epoch, header, in, in_len, extra_in, |
| extra_in_len)) { |
| return false; |
| } |
| |
| // Perform record number encryption (RFC 9147 section 4.2.3). |
| if (dtls13_header) { |
| // Record number encryption uses bytes from the ciphertext as a sample to |
| // generate the mask used for encryption. For simplicity, pass in the whole |
| // ciphertext as the sample - GenerateRecordNumberMask will read only what |
| // it needs (and error if |sample| is too short). |
| Span<const uint8_t> sample = |
| MakeConstSpan(out + record_header_len, ciphertext_len); |
| // AES cipher suites require the mask be exactly AES_BLOCK_SIZE; ChaCha20 |
| // cipher suites have no requirements on the mask size. We only need the |
| // first two bytes from the mask. |
| uint8_t mask[AES_BLOCK_SIZE]; |
| if (!aead->GenerateRecordNumberMask(mask, sample)) { |
| return false; |
| } |
| out[1] ^= mask[0]; |
| out[2] ^= mask[1]; |
| } |
| |
| (*seq)++; |
| *out_len = record_header_len + ciphertext_len; |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); |
| return true; |
| } |
| |
| BSSL_NAMESPACE_END |