| /* Copyright (c) 2023, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/base.h> |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| |
| #include "../internal.h" |
| #include "./internal.h" |
| |
| |
| // keccak_f implements the Keccak-1600 permutation as described at |
| // https://keccak.team/keccak_specs_summary.html. Each lane is represented as a |
| // 64-bit value and the 5×5 lanes are stored as an array in row-major order. |
| static void keccak_f(uint64_t state[25]) { |
| static const int kNumRounds = 24; |
| for (int round = 0; round < kNumRounds; round++) { |
| // θ step |
| uint64_t c[5]; |
| for (int x = 0; x < 5; x++) { |
| c[x] = state[x] ^ state[x + 5] ^ state[x + 10] ^ state[x + 15] ^ |
| state[x + 20]; |
| } |
| |
| for (int x = 0; x < 5; x++) { |
| const uint64_t d = c[(x + 4) % 5] ^ CRYPTO_rotl_u64(c[(x + 1) % 5], 1); |
| for (int y = 0; y < 5; y++) { |
| state[y * 5 + x] ^= d; |
| } |
| } |
| |
| // ρ and π steps. |
| // |
| // These steps involve a mapping of the state matrix. Each input point, |
| // (x,y), is rotated and written to the point (y, 2x + 3y). In the Keccak |
| // pseudo-code a separate array is used because an in-place operation would |
| // overwrite some values that are subsequently needed. However, the mapping |
| // forms a trail through 24 of the 25 values so we can do it in place with |
| // only a single temporary variable. |
| // |
| // Start with (1, 0). The value here will be mapped and end up at (0, 2). |
| // That value will end up at (2, 1), then (1, 2), and so on. After 24 |
| // steps, 24 of the 25 values have been hit (as this mapping is injective) |
| // and the sequence will repeat. All that remains is to handle the element |
| // at (0, 0), but the rotation for that element is zero, and it goes to (0, |
| // 0), so we can ignore it. |
| static const uint8_t kIndexes[24] = {10, 7, 11, 17, 18, 3, 5, 16, |
| 8, 21, 24, 4, 15, 23, 19, 13, |
| 12, 2, 20, 14, 22, 9, 6, 1}; |
| static const uint8_t kRotations[24] = {1, 3, 6, 10, 15, 21, 28, 36, |
| 45, 55, 2, 14, 27, 41, 56, 8, |
| 25, 43, 62, 18, 39, 61, 20, 44}; |
| uint64_t prev_value = state[1]; |
| for (int i = 0; i < 24; i++) { |
| const uint64_t value = CRYPTO_rotl_u64(prev_value, kRotations[i]); |
| const size_t index = kIndexes[i]; |
| prev_value = state[index]; |
| state[index] = value; |
| } |
| |
| // χ step |
| for (int y = 0; y < 5; y++) { |
| const int row_index = 5 * y; |
| const uint64_t orig_x0 = state[row_index]; |
| const uint64_t orig_x1 = state[row_index + 1]; |
| state[row_index] ^= ~orig_x1 & state[row_index + 2]; |
| state[row_index + 1] ^= ~state[row_index + 2] & state[row_index + 3]; |
| state[row_index + 2] ^= ~state[row_index + 3] & state[row_index + 4]; |
| state[row_index + 3] ^= ~state[row_index + 4] & orig_x0; |
| state[row_index + 4] ^= ~orig_x0 & orig_x1; |
| } |
| |
| // ι step |
| // |
| // From https://keccak.team/files/Keccak-reference-3.0.pdf, section |
| // 1.2, the round constants are based on the output of a LFSR. Thus, as |
| // suggested in the appendix of of |
| // https://keccak.team/keccak_specs_summary.html, the values are |
| // simply encoded here. |
| static const uint64_t kRoundConstants[24] = { |
| 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, |
| 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, |
| 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, |
| 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, |
| 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, |
| 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, |
| 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, |
| 0x8000000000008080, 0x0000000080000001, 0x8000000080008008, |
| }; |
| |
| state[0] ^= kRoundConstants[round]; |
| } |
| } |
| |
| static void keccak_init(struct BORINGSSL_keccak_st *ctx, |
| size_t *out_required_out_len, const uint8_t *in, |
| size_t in_len, enum boringssl_keccak_config_t config) { |
| size_t capacity_bytes; |
| uint8_t terminator; |
| switch (config) { |
| case boringssl_sha3_256: |
| capacity_bytes = 512 / 8; |
| *out_required_out_len = 32; |
| terminator = 0x06; |
| break; |
| case boringssl_sha3_512: |
| capacity_bytes = 1024 / 8; |
| *out_required_out_len = 64; |
| terminator = 0x06; |
| break; |
| case boringssl_shake128: |
| capacity_bytes = 256 / 8; |
| *out_required_out_len = 0; |
| terminator = 0x1f; |
| break; |
| case boringssl_shake256: |
| capacity_bytes = 512 / 8; |
| *out_required_out_len = 0; |
| terminator = 0x1f; |
| break; |
| default: |
| abort(); |
| } |
| |
| OPENSSL_memset(ctx, 0, sizeof(*ctx)); |
| ctx->rate_bytes = 200 - capacity_bytes; |
| assert(ctx->rate_bytes % 8 == 0); |
| const size_t rate_words = ctx->rate_bytes / 8; |
| |
| while (in_len >= ctx->rate_bytes) { |
| for (size_t i = 0; i < rate_words; i++) { |
| ctx->state[i] ^= CRYPTO_load_u64_le(in + 8 * i); |
| } |
| keccak_f(ctx->state); |
| in += ctx->rate_bytes; |
| in_len -= ctx->rate_bytes; |
| } |
| |
| // XOR the final block. Accessing |ctx->state| as a |uint8_t*| is allowed by |
| // strict aliasing because we require |uint8_t| to be a character type. |
| uint8_t *state_bytes = (uint8_t *)ctx->state; |
| assert(in_len < ctx->rate_bytes); |
| for (size_t i = 0; i < in_len; i++) { |
| state_bytes[i] ^= in[i]; |
| } |
| state_bytes[in_len] ^= terminator; |
| state_bytes[ctx->rate_bytes - 1] ^= 0x80; |
| keccak_f(ctx->state); |
| } |
| |
| void BORINGSSL_keccak(uint8_t *out, size_t out_len, const uint8_t *in, |
| size_t in_len, enum boringssl_keccak_config_t config) { |
| struct BORINGSSL_keccak_st ctx; |
| size_t required_out_len; |
| keccak_init(&ctx, &required_out_len, in, in_len, config); |
| if (required_out_len != 0 && out_len != required_out_len) { |
| abort(); |
| } |
| BORINGSSL_keccak_squeeze(&ctx, out, out_len); |
| } |
| |
| void BORINGSSL_keccak_init(struct BORINGSSL_keccak_st *ctx, const uint8_t *in, |
| size_t in_len, |
| enum boringssl_keccak_config_t config) { |
| size_t required_out_len; |
| keccak_init(ctx, &required_out_len, in, in_len, config); |
| if (required_out_len != 0) { |
| abort(); |
| } |
| } |
| |
| void BORINGSSL_keccak_squeeze(struct BORINGSSL_keccak_st *ctx, uint8_t *out, |
| size_t out_len) { |
| // Accessing |ctx->state| as a |uint8_t*| is allowed by strict aliasing |
| // because we require |uint8_t| to be a character type. |
| const uint8_t *state_bytes = (const uint8_t *)ctx->state; |
| while (out_len) { |
| size_t remaining = ctx->rate_bytes - ctx->offset; |
| size_t todo = out_len; |
| if (todo > remaining) { |
| todo = remaining; |
| } |
| OPENSSL_memcpy(out, &state_bytes[ctx->offset], todo); |
| out += todo; |
| out_len -= todo; |
| ctx->offset += todo; |
| if (ctx->offset == ctx->rate_bytes) { |
| keccak_f(ctx->state); |
| ctx->offset = 0; |
| } |
| } |
| } |