| # Copyright (c) 2018, Amazon Inc. |
| # |
| # Permission to use, copy, modify, and/or distribute this software for any |
| # purpose with or without fee is hereby granted, provided that the above |
| # copyright notice and this permission notice appear in all copies. |
| # |
| # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| # SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| # OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| # |
| # Written by Nir Drucker, and Shay Gueron |
| # AWS Cryptographic Algorithms Group |
| # (ndrucker@amazon.com, gueron@amazon.com) |
| # based on BN_mod_inverse_odd |
| |
| $flavour = shift; |
| $output = shift; |
| if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } |
| |
| $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or |
| die "can't locate x86_64-xlate.pl"; |
| |
| open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; |
| *STDOUT=*OUT; |
| |
| ############################################################################# |
| # extern int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS], |
| # BN_ULONG a[P256_LIMBS], |
| # BN_ULONG n[P256_LIMBS]); |
| # |
| # (Binary Extended Euclidean Algorithm. |
| # See https://en.wikipedia.org/wiki/Binary_GCD_algorithm) |
| # |
| # Assumption 1: n is odd for the BEEU |
| # Assumption 2: 1 < a < n < 2^256 |
| |
| $out = "%rdi"; |
| $a = "%rsi"; |
| $n = "%rdx"; |
| |
| # X/Y will hold the inverse parameter |
| # Assumption: X,Y<2^(256) |
| $x0 = "%r8"; |
| $x1 = "%r9"; |
| $x2 = "%r10"; |
| $x3 = "%r11"; |
| # borrow from out (out is needed only at the end) |
| $x4 = "%rdi"; |
| $y0 = "%r12"; |
| $y1 = "%r13"; |
| $y2 = "%r14"; |
| $y3 = "%r15"; |
| $y4 = "%rbp"; |
| $shift = "%rcx"; |
| $t0 = "%rax"; |
| $t1 = "%rbx"; |
| $t2 = "%rsi"; |
| # borrow |
| $t3 = "%rcx"; |
| |
| $T0 = "%xmm0"; |
| $T1 = "%xmm1"; |
| |
| # Offsets on the stack |
| $out_rsp = 0; |
| $shift_rsp = $out_rsp+0x8; |
| $a_rsp0 = $shift_rsp+0x8; |
| $a_rsp1 = $a_rsp0+0x8; |
| $a_rsp2 = $a_rsp1+0x8; |
| $a_rsp3 = $a_rsp2+0x8; |
| $b_rsp0 = $a_rsp3+0x8; |
| $b_rsp1 = $b_rsp0+0x8; |
| $b_rsp2 = $b_rsp1+0x8; |
| $b_rsp3 = $b_rsp2+0x8; |
| |
| # Borrow when a_rsp/b_rsp are no longer needed. |
| $y_rsp0 = $a_rsp0; |
| $y_rsp1 = $y_rsp0+0x8; |
| $y_rsp2 = $y_rsp1+0x8; |
| $y_rsp3 = $y_rsp2+0x8; |
| $y_rsp4 = $y_rsp3+0x8; |
| $last_rsp_offset = $b_rsp3+0x8; |
| |
| sub TEST_B_ZERO { |
| return <<___; |
| xorq $t1, $t1 |
| or $b_rsp0(%rsp), $t1 |
| or $b_rsp1(%rsp), $t1 |
| or $b_rsp2(%rsp), $t1 |
| or $b_rsp3(%rsp), $t1 |
| jz .Lbeeu_loop_end |
| ___ |
| } |
| |
| $g_next_label = 0; |
| |
| sub SHIFT1 { |
| my ($var0, $var1, $var2, $var3, $var4) = @_; |
| my $label = ".Lshift1_${g_next_label}"; |
| $g_next_label++; |
| |
| return <<___; |
| # Ensure X is even and divide by two. |
| movq \$1, $t1 |
| andq $var0, $t1 |
| jz $label |
| add 0*8($n), $var0 |
| adc 1*8($n), $var1 |
| adc 2*8($n), $var2 |
| adc 3*8($n), $var3 |
| adc \$0, $var4 |
| |
| $label: |
| shrdq \$1, $var1, $var0 |
| shrdq \$1, $var2, $var1 |
| shrdq \$1, $var3, $var2 |
| shrdq \$1, $var4, $var3 |
| shrq \$1, $var4 |
| ___ |
| } |
| |
| sub SHIFT256 { |
| my ($var) = @_; |
| return <<___; |
| # Copy shifted values. |
| # Remember not to override t3=rcx |
| movq 1*8+$var(%rsp), $t0 |
| movq 2*8+$var(%rsp), $t1 |
| movq 3*8+$var(%rsp), $t2 |
| |
| shrdq %cl, $t0, 0*8+$var(%rsp) |
| shrdq %cl, $t1, 1*8+$var(%rsp) |
| shrdq %cl, $t2, 2*8+$var(%rsp) |
| |
| shrq %cl, $t2 |
| mov $t2, 3*8+$var(%rsp) |
| ___ |
| } |
| |
| $code.=<<___; |
| .text |
| |
| .type beeu_mod_inverse_vartime,\@function |
| .hidden beeu_mod_inverse_vartime |
| .globl beeu_mod_inverse_vartime |
| .align 32 |
| beeu_mod_inverse_vartime: |
| .cfi_startproc |
| push %rbp |
| .cfi_push rbp |
| push %r12 |
| .cfi_push r12 |
| push %r13 |
| .cfi_push r13 |
| push %r14 |
| .cfi_push r14 |
| push %r15 |
| .cfi_push r15 |
| push %rbx |
| .cfi_push rbx |
| push %rsi |
| .cfi_push rsi |
| |
| sub \$$last_rsp_offset, %rsp |
| .cfi_adjust_cfa_offset $last_rsp_offset |
| movq $out, $out_rsp(%rsp) |
| |
| # X=1, Y=0 |
| movq \$1, $x0 |
| xorq $x1, $x1 |
| xorq $x2, $x2 |
| xorq $x3, $x3 |
| xorq $x4, $x4 |
| |
| xorq $y0, $y0 |
| xorq $y1, $y1 |
| xorq $y2, $y2 |
| xorq $y3, $y3 |
| xorq $y4, $y4 |
| |
| # Copy a/n into B/A on the stack. |
| vmovdqu 0*8($a), $T0 |
| vmovdqu 2*8($a), $T1 |
| vmovdqu $T0, $b_rsp0(%rsp) |
| vmovdqu $T1, $b_rsp2(%rsp) |
| |
| vmovdqu 0*8($n), $T0 |
| vmovdqu 2*8($n), $T1 |
| vmovdqu $T0, $a_rsp0(%rsp) |
| vmovdqu $T1, $a_rsp2(%rsp) |
| |
| .Lbeeu_loop: |
| ${\TEST_B_ZERO} |
| |
| # 0 < B < |n|, |
| # 0 < A <= |n|, |
| # (1) X*a == B (mod |n|), |
| # (2) (-1)*Y*a == A (mod |n|) |
| |
| # Now divide B by the maximum possible power of two in the |
| # integers, and divide X by the same value mod |n|. When we're |
| # done, (1) still holds. |
| movq \$1, $shift |
| |
| # Note that B > 0 |
| .Lbeeu_shift_loop_XB: |
| movq $shift, $t1 |
| andq $b_rsp0(%rsp), $t1 |
| jnz .Lbeeu_shift_loop_end_XB |
| |
| ${\SHIFT1($x0, $x1, $x2, $x3, $x4)} |
| shl \$1, $shift |
| |
| # Test wraparound of the shift parameter. The probability to have 32 zeroes |
| # in a row is small Therefore having the value below equal \$0x8000000 or |
| # \$0x8000 does not affect the performance. We choose 0x8000000 because it |
| # is the maximal immediate value possible. |
| cmp \$0x8000000, $shift |
| jne .Lbeeu_shift_loop_XB |
| |
| .Lbeeu_shift_loop_end_XB: |
| bsf $shift, $shift |
| test $shift, $shift |
| jz .Lbeeu_no_shift_XB |
| |
| ${\SHIFT256($b_rsp0)} |
| |
| .Lbeeu_no_shift_XB: |
| # Same for A and Y. Afterwards, (2) still holds. |
| movq \$1, $shift |
| |
| # Note that A > 0 |
| .Lbeeu_shift_loop_YA: |
| movq $shift, $t1 |
| andq $a_rsp0(%rsp), $t1 |
| jnz .Lbeeu_shift_loop_end_YA |
| |
| ${\SHIFT1($y0, $y1, $y2, $y3, $y4)} |
| shl \$1, $shift |
| |
| # Test wraparound of the shift parameter. The probability to have 32 zeroes |
| # in a row is small therefore having the value below equal \$0x8000000 or |
| # \$0x8000 Does not affect the performance. We choose 0x8000000 because it |
| # is the maximal immediate value possible. |
| cmp \$0x8000000, $shift |
| jne .Lbeeu_shift_loop_YA |
| |
| .Lbeeu_shift_loop_end_YA: |
| bsf $shift, $shift |
| test $shift, $shift |
| jz .Lbeeu_no_shift_YA |
| |
| ${\SHIFT256($a_rsp0)} |
| |
| .Lbeeu_no_shift_YA: |
| # T = B-A (A,B < 2^256) |
| mov $b_rsp0(%rsp), $t0 |
| mov $b_rsp1(%rsp), $t1 |
| mov $b_rsp2(%rsp), $t2 |
| mov $b_rsp3(%rsp), $t3 |
| sub $a_rsp0(%rsp), $t0 |
| sbb $a_rsp1(%rsp), $t1 |
| sbb $a_rsp2(%rsp), $t2 |
| sbb $a_rsp3(%rsp), $t3 # borrow from shift |
| jnc .Lbeeu_B_bigger_than_A |
| |
| # A = A - B |
| mov $a_rsp0(%rsp), $t0 |
| mov $a_rsp1(%rsp), $t1 |
| mov $a_rsp2(%rsp), $t2 |
| mov $a_rsp3(%rsp), $t3 |
| sub $b_rsp0(%rsp), $t0 |
| sbb $b_rsp1(%rsp), $t1 |
| sbb $b_rsp2(%rsp), $t2 |
| sbb $b_rsp3(%rsp), $t3 |
| mov $t0, $a_rsp0(%rsp) |
| mov $t1, $a_rsp1(%rsp) |
| mov $t2, $a_rsp2(%rsp) |
| mov $t3, $a_rsp3(%rsp) |
| |
| # Y = Y + X |
| add $x0, $y0 |
| adc $x1, $y1 |
| adc $x2, $y2 |
| adc $x3, $y3 |
| adc $x4, $y4 |
| jmp .Lbeeu_loop |
| |
| .Lbeeu_B_bigger_than_A: |
| # B = T = B - A |
| mov $t0, $b_rsp0(%rsp) |
| mov $t1, $b_rsp1(%rsp) |
| mov $t2, $b_rsp2(%rsp) |
| mov $t3, $b_rsp3(%rsp) |
| |
| # X = Y + X |
| add $y0, $x0 |
| adc $y1, $x1 |
| adc $y2, $x2 |
| adc $y3, $x3 |
| adc $y4, $x4 |
| |
| jmp .Lbeeu_loop |
| |
| .Lbeeu_loop_end: |
| # The Euclid's algorithm loop ends when A == beeu(a,n); |
| # Therefore (-1)*Y*a == A (mod |n|), Y>0 |
| |
| # Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|) |
| mov $a_rsp0(%rsp), $t1 |
| sub \$1, $t1 |
| or $a_rsp1(%rsp), $t1 |
| or $a_rsp2(%rsp), $t1 |
| or $a_rsp3(%rsp), $t1 |
| # If not, fail. |
| jnz .Lbeeu_err |
| |
| # From this point on, we no longer need X |
| # Therefore we use it as a temporary storage. |
| # X = n |
| movq 0*8($n), $x0 |
| movq 1*8($n), $x1 |
| movq 2*8($n), $x2 |
| movq 3*8($n), $x3 |
| xorq $x4, $x4 |
| |
| .Lbeeu_reduction_loop: |
| movq $y0, $y_rsp0(%rsp) |
| movq $y1, $y_rsp1(%rsp) |
| movq $y2, $y_rsp2(%rsp) |
| movq $y3, $y_rsp3(%rsp) |
| movq $y4, $y_rsp4(%rsp) |
| |
| # If Y>n ==> Y=Y-n |
| sub $x0, $y0 |
| sbb $x1, $y1 |
| sbb $x2, $y2 |
| sbb $x3, $y3 |
| sbb \$0, $y4 |
| |
| # Choose old Y or new Y |
| cmovc $y_rsp0(%rsp), $y0 |
| cmovc $y_rsp1(%rsp), $y1 |
| cmovc $y_rsp2(%rsp), $y2 |
| cmovc $y_rsp3(%rsp), $y3 |
| jnc .Lbeeu_reduction_loop |
| |
| # X = n - Y (n, Y < 2^256), (Cancel the (-1)) |
| sub $y0, $x0 |
| sbb $y1, $x1 |
| sbb $y2, $x2 |
| sbb $y3, $x3 |
| |
| .Lbeeu_save: |
| # Save the inverse(<2^256) to out. |
| mov $out_rsp(%rsp), $out |
| |
| movq $x0, 0*8($out) |
| movq $x1, 1*8($out) |
| movq $x2, 2*8($out) |
| movq $x3, 3*8($out) |
| |
| # Return 1. |
| movq \$1, %rax |
| jmp .Lbeeu_finish |
| |
| .Lbeeu_err: |
| # Return 0. |
| xorq %rax, %rax |
| |
| .Lbeeu_finish: |
| add \$$last_rsp_offset, %rsp |
| .cfi_adjust_cfa_offset -$last_rsp_offset |
| pop %rsi |
| .cfi_pop rsi |
| pop %rbx |
| .cfi_pop rbx |
| pop %r15 |
| .cfi_pop r15 |
| pop %r14 |
| .cfi_pop r14 |
| pop %r13 |
| .cfi_pop r13 |
| pop %r12 |
| .cfi_pop r12 |
| pop %rbp |
| .cfi_pop rbp |
| ret |
| .cfi_endproc |
| |
| .size beeu_mod_inverse_vartime, .-beeu_mod_inverse_vartime |
| ___ |
| |
| print $code; |
| close STDOUT or die "error closing STDOUT: $!"; |