| /* Copyright (c) 2016, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include <map> |
| #include <string> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/asn1t.h> |
| #include <openssl/bio.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/pem.h> |
| #include <openssl/span.h> |
| #include <openssl/time.h> |
| #include <openssl/x509.h> |
| |
| #include "../test/test_util.h" |
| #include "internal.h" |
| |
| #if defined(OPENSSL_THREADS) |
| #include <thread> |
| #endif |
| |
| |
| // |obj| and |i2d_func| require different template parameters because C++ may |
| // deduce, say, |ASN1_STRING*| via |obj| and |const ASN1_STRING*| via |
| // |i2d_func|. Template argument deduction then fails. The language is not able |
| // to resolve this by observing that |const ASN1_STRING*| works for both. |
| template <typename T, typename U> |
| void TestSerialize(T obj, int (*i2d_func)(U a, uint8_t **pp), |
| bssl::Span<const uint8_t> expected) { |
| static_assert(std::is_convertible<T, U>::value, |
| "incompatible parameter to i2d_func"); |
| // Test the allocating version first. It is easiest to debug. |
| uint8_t *ptr = nullptr; |
| int len = i2d_func(obj, &ptr); |
| ASSERT_GT(len, 0); |
| EXPECT_EQ(Bytes(expected), Bytes(ptr, len)); |
| OPENSSL_free(ptr); |
| |
| len = i2d_func(obj, nullptr); |
| ASSERT_GT(len, 0); |
| EXPECT_EQ(len, static_cast<int>(expected.size())); |
| |
| std::vector<uint8_t> buf(len); |
| ptr = buf.data(); |
| len = i2d_func(obj, &ptr); |
| ASSERT_EQ(len, static_cast<int>(expected.size())); |
| EXPECT_EQ(ptr, buf.data() + buf.size()); |
| EXPECT_EQ(Bytes(expected), Bytes(buf)); |
| } |
| |
| // Historically, unknown universal tags were represented in |ASN1_TYPE| as |
| // |ASN1_STRING|s with the type matching the tag number. This can collide with |
| // |V_ASN_NEG|, which was one of the causes of CVE-2016-2108. We now represent |
| // unsupported values with |V_ASN1_OTHER|, but retain the |V_ASN1_MAX_UNIVERSAL| |
| // limit. |
| TEST(ASN1Test, UnknownTags) { |
| // kTag258 is an ASN.1 structure with a universal tag with number 258. |
| static const uint8_t kTag258[] = {0x1f, 0x82, 0x02, 0x01, 0x00}; |
| static_assert( |
| V_ASN1_NEG_INTEGER == 258, |
| "V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it."); |
| const uint8_t *p = kTag258; |
| bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258))); |
| EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type; |
| ERR_clear_error(); |
| |
| // kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1, |
| // which will not fit in an int. |
| static const uint8_t kTagOverflow[] = {0x1f, 0xff, 0xff, 0xff, |
| 0xff, 0x7f, 0x01, 0x00}; |
| p = kTagOverflow; |
| obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow))); |
| EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type; |
| ERR_clear_error(); |
| |
| // kTag128 is an ASN.1 structure with a universal tag with number 128. It |
| // should be parsed as |V_ASN1_OTHER|. |
| static const uint8_t kTag128[] = {0x1f, 0x81, 0x00, 0x01, 0x00}; |
| p = kTag128; |
| obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128))); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(V_ASN1_OTHER, obj->type); |
| EXPECT_EQ(Bytes(kTag128), Bytes(obj->value.asn1_string->data, |
| obj->value.asn1_string->length)); |
| TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128); |
| |
| // The historical in-memory representation of |kTag128| was for both |
| // |obj->type| and |obj->value.asn1_string->type| to be 128. This is no |
| // longer used but is still accepted by the encoder. |
| // |
| // TODO(crbug.com/boringssl/412): The encoder should reject it. However, it is |
| // still needed to support some edge cases in |ASN1_PRINTABLE|. When that is |
| // fixed, test that we reject it. |
| obj.reset(ASN1_TYPE_new()); |
| ASSERT_TRUE(obj); |
| obj->type = 128; |
| obj->value.asn1_string = ASN1_STRING_type_new(128); |
| ASSERT_TRUE(obj->value.asn1_string); |
| const uint8_t zero = 0; |
| ASSERT_TRUE(ASN1_STRING_set(obj->value.asn1_string, &zero, sizeof(zero))); |
| TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128); |
| |
| // If a tag is known, but has the wrong constructed bit, it should be |
| // rejected, not placed in |V_ASN1_OTHER|. |
| static const uint8_t kConstructedOctetString[] = {0x24, 0x00}; |
| p = kConstructedOctetString; |
| obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kConstructedOctetString))); |
| EXPECT_FALSE(obj); |
| |
| static const uint8_t kPrimitiveSequence[] = {0x10, 0x00}; |
| p = kPrimitiveSequence; |
| obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kPrimitiveSequence))); |
| EXPECT_FALSE(obj); |
| } |
| |
| static bssl::UniquePtr<BIGNUM> BIGNUMPow2(unsigned bit) { |
| bssl::UniquePtr<BIGNUM> bn(BN_new()); |
| if (!bn || |
| !BN_set_bit(bn.get(), bit)) { |
| return nullptr; |
| } |
| return bn; |
| } |
| |
| TEST(ASN1Test, Integer) { |
| bssl::UniquePtr<BIGNUM> int64_min = BIGNUMPow2(63); |
| ASSERT_TRUE(int64_min); |
| BN_set_negative(int64_min.get(), 1); |
| |
| bssl::UniquePtr<BIGNUM> int64_max = BIGNUMPow2(63); |
| ASSERT_TRUE(int64_max); |
| ASSERT_TRUE(BN_sub_word(int64_max.get(), 1)); |
| |
| bssl::UniquePtr<BIGNUM> int32_min = BIGNUMPow2(31); |
| ASSERT_TRUE(int32_min); |
| BN_set_negative(int32_min.get(), 1); |
| |
| bssl::UniquePtr<BIGNUM> int32_max = BIGNUMPow2(31); |
| ASSERT_TRUE(int32_max); |
| ASSERT_TRUE(BN_sub_word(int32_max.get(), 1)); |
| |
| struct { |
| // der is the DER encoding of the INTEGER, including the tag and length. |
| std::vector<uint8_t> der; |
| // type and data are the corresponding fields of the |ASN1_STRING| |
| // representation. |
| int type; |
| std::vector<uint8_t> data; |
| // bn_asc is the |BIGNUM| representation, as parsed by the |BN_asc2bn| |
| // function. |
| const char *bn_asc; |
| } kTests[] = { |
| // -2^64 - 1 |
| {{0x02, 0x09, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_NEG_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| "-0x10000000000000001"}, |
| // -2^64 |
| {{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_NEG_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| "-0x10000000000000000"}, |
| // -2^64 + 1 |
| {{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| V_ASN1_NEG_INTEGER, |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| "-0xffffffffffffffff"}, |
| // -2^63 - 1 |
| {{0x02, 0x09, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_NEG_INTEGER, |
| {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| "-0x8000000000000001"}, |
| // -2^63 (INT64_MIN) |
| {{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_NEG_INTEGER, |
| {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| "-0x8000000000000000"}, |
| // -2^63 + 1 |
| {{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| V_ASN1_NEG_INTEGER, |
| {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| "-0x7fffffffffffffff"}, |
| // -2^32 - 1 |
| {{0x02, 0x05, 0xfe, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_NEG_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x01}, |
| "-0x100000001"}, |
| // -2^32 |
| {{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_NEG_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00}, |
| "-0x100000000"}, |
| // -2^32 + 1 |
| {{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x01}, |
| V_ASN1_NEG_INTEGER, |
| {0xff, 0xff, 0xff, 0xff}, |
| "-0xffffffff"}, |
| // -2^31 - 1 |
| {{0x02, 0x05, 0xff, 0x7f, 0xff, 0xff, 0xff}, |
| V_ASN1_NEG_INTEGER, |
| {0x80, 0x00, 0x00, 0x01}, |
| "-0x80000001"}, |
| // -2^31 (INT32_MIN) |
| {{0x02, 0x04, 0x80, 0x00, 0x00, 0x00}, |
| V_ASN1_NEG_INTEGER, |
| {0x80, 0x00, 0x00, 0x00}, |
| "-0x80000000"}, |
| // -2^31 + 1 |
| {{0x02, 0x04, 0x80, 0x00, 0x00, 0x01}, |
| V_ASN1_NEG_INTEGER, |
| {0x7f, 0xff, 0xff, 0xff}, |
| "-0x7fffffff"}, |
| // -257 |
| {{0x02, 0x02, 0xfe, 0xff}, V_ASN1_NEG_INTEGER, {0x01, 0x01}, "-257"}, |
| // -256 |
| {{0x02, 0x02, 0xff, 0x00}, V_ASN1_NEG_INTEGER, {0x01, 0x00}, "-256"}, |
| // -255 |
| {{0x02, 0x02, 0xff, 0x01}, V_ASN1_NEG_INTEGER, {0xff}, "-255"}, |
| // -129 |
| {{0x02, 0x02, 0xff, 0x7f}, V_ASN1_NEG_INTEGER, {0x81}, "-129"}, |
| // -128 |
| {{0x02, 0x01, 0x80}, V_ASN1_NEG_INTEGER, {0x80}, "-128"}, |
| // -127 |
| {{0x02, 0x01, 0x81}, V_ASN1_NEG_INTEGER, {0x7f}, "-127"}, |
| // -1 |
| {{0x02, 0x01, 0xff}, V_ASN1_NEG_INTEGER, {0x01}, "-1"}, |
| // 0 |
| {{0x02, 0x01, 0x00}, V_ASN1_INTEGER, {}, "0"}, |
| // 1 |
| {{0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01}, "1"}, |
| // 127 |
| {{0x02, 0x01, 0x7f}, V_ASN1_INTEGER, {0x7f}, "127"}, |
| // 128 |
| {{0x02, 0x02, 0x00, 0x80}, V_ASN1_INTEGER, {0x80}, "128"}, |
| // 129 |
| {{0x02, 0x02, 0x00, 0x81}, V_ASN1_INTEGER, {0x81}, "129"}, |
| // 255 |
| {{0x02, 0x02, 0x00, 0xff}, V_ASN1_INTEGER, {0xff}, "255"}, |
| // 256 |
| {{0x02, 0x02, 0x01, 0x00}, V_ASN1_INTEGER, {0x01, 0x00}, "256"}, |
| // 257 |
| {{0x02, 0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01, 0x01}, "257"}, |
| // 2^31 - 2 |
| {{0x02, 0x04, 0x7f, 0xff, 0xff, 0xfe}, |
| V_ASN1_INTEGER, |
| {0x7f, 0xff, 0xff, 0xfe}, |
| "0x7ffffffe"}, |
| // 2^31 - 1 (INT32_MAX) |
| {{0x02, 0x04, 0x7f, 0xff, 0xff, 0xff}, |
| V_ASN1_INTEGER, |
| {0x7f, 0xff, 0xff, 0xff}, |
| "0x7fffffff"}, |
| // 2^31 |
| {{0x02, 0x05, 0x00, 0x80, 0x00, 0x00, 0x00}, |
| V_ASN1_INTEGER, |
| {0x80, 0x00, 0x00, 0x00}, |
| "0x80000000"}, |
| // 2^32 - 2 |
| {{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xfe}, |
| V_ASN1_INTEGER, |
| {0xff, 0xff, 0xff, 0xfe}, |
| "0xfffffffe"}, |
| // 2^32 - 1 (UINT32_MAX) |
| {{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_INTEGER, |
| {0xff, 0xff, 0xff, 0xff}, |
| "0xffffffff"}, |
| // 2^32 |
| {{0x02, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00}, |
| "0x100000000"}, |
| // 2^63 - 2 |
| {{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
| V_ASN1_INTEGER, |
| {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
| "0x7ffffffffffffffe"}, |
| // 2^63 - 1 (INT64_MAX) |
| {{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_INTEGER, |
| {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| "0x7fffffffffffffff"}, |
| // 2^63 |
| {{0x02, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_INTEGER, |
| {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| "0x8000000000000000"}, |
| // 2^64 - 2 |
| {{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
| V_ASN1_INTEGER, |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, |
| "0xfffffffffffffffe"}, |
| // 2^64 - 1 (UINT64_MAX) |
| {{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| V_ASN1_INTEGER, |
| {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| "0xffffffffffffffff"}, |
| // 2^64 |
| {{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| V_ASN1_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| "0x10000000000000000"}, |
| // 2^64 + 1 |
| {{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| V_ASN1_INTEGER, |
| {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| "0x10000000000000001"}, |
| }; |
| |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.bn_asc); |
| // Collect a map of different ways to construct the integer. The key is the |
| // method used and is only retained to aid debugging. |
| std::map<std::string, bssl::UniquePtr<ASN1_INTEGER>> objs; |
| |
| // Construct |ASN1_INTEGER| by setting the type and data manually. |
| bssl::UniquePtr<ASN1_INTEGER> by_data(ASN1_STRING_type_new(t.type)); |
| ASSERT_TRUE(by_data); |
| ASSERT_TRUE(ASN1_STRING_set(by_data.get(), t.data.data(), t.data.size())); |
| objs["data"] = std::move(by_data); |
| |
| // Construct |ASN1_INTEGER| from a |BIGNUM|. |
| BIGNUM *bn_raw = nullptr; |
| ASSERT_TRUE(BN_asc2bn(&bn_raw, t.bn_asc)); |
| bssl::UniquePtr<BIGNUM> bn(bn_raw); |
| bssl::UniquePtr<ASN1_INTEGER> by_bn(BN_to_ASN1_INTEGER(bn.get(), nullptr)); |
| ASSERT_TRUE(by_bn); |
| objs["bn"] = std::move(by_bn); |
| |
| // Construct |ASN1_INTEGER| from decoding. |
| const uint8_t *ptr = t.der.data(); |
| bssl::UniquePtr<ASN1_INTEGER> by_der( |
| d2i_ASN1_INTEGER(nullptr, &ptr, t.der.size())); |
| ASSERT_TRUE(by_der); |
| EXPECT_EQ(ptr, t.der.data() + t.der.size()); |
| objs["der"] = std::move(by_der); |
| |
| // Construct |ASN1_INTEGER| from various C types, if it fits. |
| bool fits_in_long = false, fits_in_i64 = false, fits_in_u64 = false; |
| uint64_t u64 = 0; |
| int64_t i64 = 0; |
| long l = 0; |
| uint64_t abs_u64; |
| if (BN_get_u64(bn.get(), &abs_u64)) { |
| fits_in_u64 = !BN_is_negative(bn.get()); |
| if (fits_in_u64) { |
| u64 = abs_u64; |
| bssl::UniquePtr<ASN1_INTEGER> by_u64(ASN1_INTEGER_new()); |
| ASSERT_TRUE(by_u64); |
| ASSERT_TRUE(ASN1_INTEGER_set_uint64(by_u64.get(), u64)); |
| objs["u64"] = std::move(by_u64); |
| } |
| |
| fits_in_i64 = BN_cmp(int64_min.get(), bn.get()) <= 0 && |
| BN_cmp(bn.get(), int64_max.get()) <= 0; |
| if (fits_in_i64) { |
| if (BN_is_negative(bn.get())) { |
| i64 = static_cast<int64_t>(0u - abs_u64); |
| } else { |
| i64 = static_cast<int64_t>(abs_u64); |
| } |
| bssl::UniquePtr<ASN1_INTEGER> by_i64(ASN1_INTEGER_new()); |
| ASSERT_TRUE(by_i64); |
| ASSERT_TRUE(ASN1_INTEGER_set_int64(by_i64.get(), i64)); |
| objs["i64"] = std::move(by_i64); |
| } |
| |
| if (sizeof(long) == 8) { |
| fits_in_long = fits_in_i64; |
| } else { |
| ASSERT_EQ(4u, sizeof(long)); |
| fits_in_long = BN_cmp(int32_min.get(), bn.get()) <= 0 && |
| BN_cmp(bn.get(), int32_max.get()) <= 0; |
| } |
| if (fits_in_long) { |
| l = static_cast<long>(i64); |
| bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new()); |
| ASSERT_TRUE(by_long); |
| ASSERT_TRUE(ASN1_INTEGER_set(by_long.get(), l)); |
| objs["long"] = std::move(by_long); |
| } |
| } |
| |
| // Default construction should return the zero |ASN1_INTEGER|. |
| if (BN_is_zero(bn.get())) { |
| bssl::UniquePtr<ASN1_INTEGER> by_default(ASN1_INTEGER_new()); |
| ASSERT_TRUE(by_default); |
| objs["default"] = std::move(by_default); |
| } |
| |
| // Test that every |ASN1_INTEGER| constructed behaves as expected. |
| for (const auto &pair : objs) { |
| // The fields should be as expected. |
| SCOPED_TRACE(pair.first); |
| const ASN1_INTEGER *obj = pair.second.get(); |
| EXPECT_EQ(t.type, ASN1_STRING_type(obj)); |
| EXPECT_EQ(Bytes(t.data), Bytes(ASN1_STRING_get0_data(obj), |
| ASN1_STRING_length(obj))); |
| |
| // The object should encode correctly. |
| TestSerialize(obj, i2d_ASN1_INTEGER, t.der); |
| |
| bssl::UniquePtr<BIGNUM> bn2(ASN1_INTEGER_to_BN(obj, nullptr)); |
| ASSERT_TRUE(bn2); |
| EXPECT_EQ(0, BN_cmp(bn.get(), bn2.get())); |
| |
| if (fits_in_u64) { |
| uint64_t v; |
| ASSERT_TRUE(ASN1_INTEGER_get_uint64(&v, obj)); |
| EXPECT_EQ(v, u64); |
| } else { |
| uint64_t v; |
| EXPECT_FALSE(ASN1_INTEGER_get_uint64(&v, obj)); |
| } |
| |
| if (fits_in_i64) { |
| int64_t v; |
| ASSERT_TRUE(ASN1_INTEGER_get_int64(&v, obj)); |
| EXPECT_EQ(v, i64); |
| } else { |
| int64_t v; |
| EXPECT_FALSE(ASN1_INTEGER_get_int64(&v, obj)); |
| } |
| |
| if (fits_in_long) { |
| EXPECT_EQ(l, ASN1_INTEGER_get(obj)); |
| } else { |
| EXPECT_EQ(-1, ASN1_INTEGER_get(obj)); |
| } |
| |
| // All variations of integers should compare as equal to each other, as |
| // strings or integers. (Functions like |ASN1_TYPE_cmp| rely on |
| // string-based comparison.) |
| for (const auto &pair2 : objs) { |
| SCOPED_TRACE(pair2.first); |
| EXPECT_EQ(0, ASN1_INTEGER_cmp(obj, pair2.second.get())); |
| EXPECT_EQ(0, ASN1_STRING_cmp(obj, pair2.second.get())); |
| } |
| } |
| |
| // Although our parsers will never output non-minimal |ASN1_INTEGER|s, it is |
| // possible to construct them manually. They should encode correctly. |
| std::vector<uint8_t> data = t.data; |
| const int kMaxExtraBytes = 5; |
| for (int i = 0; i < kMaxExtraBytes; i++) { |
| data.insert(data.begin(), 0x00); |
| SCOPED_TRACE(Bytes(data)); |
| |
| bssl::UniquePtr<ASN1_INTEGER> non_minimal(ASN1_STRING_type_new(t.type)); |
| ASSERT_TRUE(non_minimal); |
| ASSERT_TRUE(ASN1_STRING_set(non_minimal.get(), data.data(), data.size())); |
| |
| TestSerialize(non_minimal.get(), i2d_ASN1_INTEGER, t.der); |
| } |
| } |
| |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) { |
| SCOPED_TRACE(Bytes(kTests[i].der)); |
| const uint8_t *ptr = kTests[i].der.data(); |
| bssl::UniquePtr<ASN1_INTEGER> a( |
| d2i_ASN1_INTEGER(nullptr, &ptr, kTests[i].der.size())); |
| ASSERT_TRUE(a); |
| for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kTests); j++) { |
| SCOPED_TRACE(Bytes(kTests[j].der)); |
| ptr = kTests[j].der.data(); |
| bssl::UniquePtr<ASN1_INTEGER> b( |
| d2i_ASN1_INTEGER(nullptr, &ptr, kTests[j].der.size())); |
| ASSERT_TRUE(b); |
| |
| // |ASN1_INTEGER_cmp| should compare numerically. |ASN1_STRING_cmp| does |
| // not but should preserve equality. |
| if (i < j) { |
| EXPECT_LT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
| EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); |
| } else if (i > j) { |
| EXPECT_GT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
| EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); |
| } else { |
| EXPECT_EQ(ASN1_INTEGER_cmp(a.get(), b.get()), 0); |
| EXPECT_EQ(ASN1_STRING_cmp(a.get(), b.get()), 0); |
| } |
| } |
| } |
| |
| std::vector<uint8_t> kInvalidTests[] = { |
| // The empty string is not an integer. |
| {0x02, 0x00}, |
| // Integers must be minimally-encoded. |
| {0x02, 0x02, 0x00, 0x00}, |
| {0x02, 0x02, 0x00, 0x7f}, |
| {0x02, 0x02, 0xff, 0xff}, |
| {0x02, 0x02, 0xff, 0x80}, |
| }; |
| for (const auto &invalid : kInvalidTests) { |
| SCOPED_TRACE(Bytes(invalid)); |
| |
| const uint8_t *ptr = invalid.data(); |
| bssl::UniquePtr<ASN1_INTEGER> integer( |
| d2i_ASN1_INTEGER(nullptr, &ptr, invalid.size())); |
| EXPECT_FALSE(integer); |
| } |
| |
| // Callers expect |ASN1_INTEGER_get| and |ASN1_ENUMERATED_get| to return zero |
| // given NULL. |
| EXPECT_EQ(0, ASN1_INTEGER_get(nullptr)); |
| EXPECT_EQ(0, ASN1_ENUMERATED_get(nullptr)); |
| } |
| |
| // Although invalid, a negative zero should encode correctly. |
| TEST(ASN1Test, NegativeZero) { |
| bssl::UniquePtr<ASN1_INTEGER> neg_zero( |
| ASN1_STRING_type_new(V_ASN1_NEG_INTEGER)); |
| ASSERT_TRUE(neg_zero); |
| EXPECT_EQ(0, ASN1_INTEGER_get(neg_zero.get())); |
| |
| static const uint8_t kDER[] = {0x02, 0x01, 0x00}; |
| TestSerialize(neg_zero.get(), i2d_ASN1_INTEGER, kDER); |
| } |
| |
| TEST(ASN1Test, SerializeObject) { |
| static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
| 0xf7, 0x0d, 0x01, 0x01, 0x01}; |
| const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption); |
| TestSerialize(obj, i2d_ASN1_OBJECT, kDER); |
| } |
| |
| TEST(ASN1Test, Boolean) { |
| static const uint8_t kTrue[] = {0x01, 0x01, 0xff}; |
| TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue); |
| // Other constants are also correctly encoded as TRUE. |
| TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue); |
| TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue); |
| |
| const uint8_t *ptr = kTrue; |
| EXPECT_EQ(0xff, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kTrue))); |
| EXPECT_EQ(ptr, kTrue + sizeof(kTrue)); |
| |
| static const uint8_t kFalse[] = {0x01, 0x01, 0x00}; |
| TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse); |
| |
| ptr = kFalse; |
| EXPECT_EQ(0, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kFalse))); |
| EXPECT_EQ(ptr, kFalse + sizeof(kFalse)); |
| |
| const std::vector<uint8_t> kInvalidBooleans[] = { |
| // No tag header. |
| {}, |
| // No length. |
| {0x01}, |
| // Truncated contents. |
| {0x01, 0x01}, |
| // Contents too short or too long. |
| {0x01, 0x00}, |
| {0x01, 0x02, 0x00, 0x00}, |
| // Wrong tag number. |
| {0x02, 0x01, 0x00}, |
| // Wrong tag class. |
| {0x81, 0x01, 0x00}, |
| // Element is constructed. |
| {0x21, 0x01, 0x00}, |
| // Not a DER encoding of TRUE. |
| {0x01, 0x01, 0x01}, |
| // Non-minimal tag length. |
| {0x01, 0x81, 0x01, 0xff}, |
| }; |
| for (const auto &invalid : kInvalidBooleans) { |
| SCOPED_TRACE(Bytes(invalid)); |
| ptr = invalid.data(); |
| EXPECT_EQ(-1, d2i_ASN1_BOOLEAN(nullptr, &ptr, invalid.size())); |
| ERR_clear_error(); |
| } |
| } |
| |
| // The templates go through a different codepath, so test them separately. |
| TEST(ASN1Test, SerializeEmbeddedBoolean) { |
| bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); |
| ASSERT_TRUE(val); |
| |
| // BasicConstraints defaults to FALSE, so the encoding should be empty. |
| static const uint8_t kLeaf[] = {0x30, 0x00}; |
| val->ca = 0; |
| TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf); |
| |
| // TRUE should always be encoded as 0xff, independent of what value the caller |
| // placed in the |ASN1_BOOLEAN|. |
| static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff}; |
| val->ca = 0xff; |
| TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
| val->ca = 1; |
| TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
| val->ca = 0x100; |
| TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); |
| } |
| |
| TEST(ASN1Test, ASN1Type) { |
| const struct { |
| int type; |
| std::vector<uint8_t> der; |
| } kTests[] = { |
| // BOOLEAN { TRUE } |
| {V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}}, |
| // BOOLEAN { FALSE } |
| {V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}}, |
| // OCTET_STRING { "a" } |
| {V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}}, |
| // OCTET_STRING { } |
| {V_ASN1_OCTET_STRING, {0x04, 0x00}}, |
| // BIT_STRING { `01` `00` } |
| {V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}}, |
| // INTEGER { -1 } |
| {V_ASN1_INTEGER, {0x02, 0x01, 0xff}}, |
| // OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 } |
| {V_ASN1_OBJECT, |
| {0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x02}}, |
| // NULL {} |
| {V_ASN1_NULL, {0x05, 0x00}}, |
| // SEQUENCE {} |
| {V_ASN1_SEQUENCE, {0x30, 0x00}}, |
| // SET {} |
| {V_ASN1_SET, {0x31, 0x00}}, |
| // [0] { UTF8String { "a" } } |
| {V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}}, |
| }; |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(Bytes(t.der)); |
| |
| // The input should successfully parse. |
| const uint8_t *ptr = t.der.data(); |
| bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size())); |
| ASSERT_TRUE(val); |
| |
| EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type); |
| EXPECT_EQ(val->type, t.type); |
| TestSerialize(val.get(), i2d_ASN1_TYPE, t.der); |
| } |
| } |
| |
| // Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The |
| // type historically supported this, so maintain the invariant in case external |
| // code relies on it. |
| TEST(ASN1Test, UnusedBooleanBits) { |
| // OCTET_STRING { "a" } |
| static const uint8_t kDER[] = {0x04, 0x01, 0x61}; |
| const uint8_t *ptr = kDER; |
| bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER))); |
| ASSERT_TRUE(val); |
| EXPECT_EQ(V_ASN1_OCTET_STRING, val->type); |
| EXPECT_TRUE(val->value.ptr); |
| |
| // Set |val| to a BOOLEAN containing FALSE. |
| ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL); |
| EXPECT_EQ(V_ASN1_BOOLEAN, val->type); |
| EXPECT_FALSE(val->value.ptr); |
| } |
| |
| TEST(ASN1Test, ParseASN1Object) { |
| // 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID. |
| static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
| 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02}; |
| ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID), |
| "short name", "long name"); |
| ASSERT_TRUE(obj); |
| |
| // OBJECT_IDENTIFIER { 1.3.101.112 } |
| static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70}; |
| const uint8_t *ptr = kDER; |
| // Parse an |ASN1_OBJECT| with object reuse. |
| EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
| EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
| ASN1_OBJECT_free(obj); |
| |
| // Repeat the test, this time overriding a static |ASN1_OBJECT|. It should |
| // detect this and construct a new one. |
| obj = OBJ_nid2obj(NID_rsaEncryption); |
| ptr = kDER; |
| EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); |
| EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); |
| ASN1_OBJECT_free(obj); |
| |
| const std::vector<uint8_t> kInvalidObjects[] = { |
| // No tag header. |
| {}, |
| // No length. |
| {0x06}, |
| // Truncated contents. |
| {0x06, 0x01}, |
| // An OID may not be empty. |
| {0x06, 0x00}, |
| // The last byte may not be a continuation byte (high bit set). |
| {0x06, 0x03, 0x2b, 0x65, 0xf0}, |
| // Each component must be minimally-encoded. |
| {0x06, 0x03, 0x2b, 0x65, 0x80, 0x70}, |
| {0x06, 0x03, 0x80, 0x2b, 0x65, 0x70}, |
| // Wrong tag number. |
| {0x01, 0x03, 0x2b, 0x65, 0x70}, |
| // Wrong tag class. |
| {0x86, 0x03, 0x2b, 0x65, 0x70}, |
| // Element is constructed. |
| {0x26, 0x03, 0x2b, 0x65, 0x70}, |
| // Non-minimal tag length. |
| {0x06, 0x81, 0x03, 0x2b, 0x65, 0x70}, |
| }; |
| for (const auto &invalid : kInvalidObjects) { |
| SCOPED_TRACE(Bytes(invalid)); |
| ptr = invalid.data(); |
| obj = d2i_ASN1_OBJECT(nullptr, &ptr, invalid.size()); |
| EXPECT_FALSE(obj); |
| ASN1_OBJECT_free(obj); |
| ERR_clear_error(); |
| } |
| } |
| |
| TEST(ASN1Test, BitString) { |
| const size_t kNotWholeBytes = static_cast<size_t>(-1); |
| const struct { |
| std::vector<uint8_t> in; |
| size_t num_bytes; |
| } kValidInputs[] = { |
| // Empty bit string |
| {{0x03, 0x01, 0x00}, 0}, |
| // 0b1 |
| {{0x03, 0x02, 0x07, 0x80}, kNotWholeBytes}, |
| // 0b1010 |
| {{0x03, 0x02, 0x04, 0xa0}, kNotWholeBytes}, |
| // 0b1010101 |
| {{0x03, 0x02, 0x01, 0xaa}, kNotWholeBytes}, |
| // 0b10101010 |
| {{0x03, 0x02, 0x00, 0xaa}, 1}, |
| // Bits 0 and 63 are set |
| {{0x03, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 8}, |
| // 64 zero bits |
| {{0x03, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8}, |
| }; |
| for (const auto &test : kValidInputs) { |
| SCOPED_TRACE(Bytes(test.in)); |
| // The input should parse and round-trip correctly. |
| const uint8_t *ptr = test.in.data(); |
| bssl::UniquePtr<ASN1_BIT_STRING> val( |
| d2i_ASN1_BIT_STRING(nullptr, &ptr, test.in.size())); |
| ASSERT_TRUE(val); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, test.in); |
| |
| // Check the byte count. |
| size_t num_bytes; |
| if (test.num_bytes == kNotWholeBytes) { |
| EXPECT_FALSE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
| } else { |
| ASSERT_TRUE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); |
| EXPECT_EQ(num_bytes, test.num_bytes); |
| } |
| } |
| |
| const std::vector<uint8_t> kInvalidInputs[] = { |
| // Wrong tag |
| {0x04, 0x01, 0x00}, |
| // Missing leading byte |
| {0x03, 0x00}, |
| // Leading byte too high |
| {0x03, 0x02, 0x08, 0x00}, |
| {0x03, 0x02, 0xff, 0x00}, |
| // Empty bit strings must have a zero leading byte. |
| {0x03, 0x01, 0x01}, |
| // Unused bits must all be zero. |
| {0x03, 0x02, 0x06, 0xc1 /* 0b11000001 */}, |
| }; |
| for (const auto &test : kInvalidInputs) { |
| SCOPED_TRACE(Bytes(test)); |
| const uint8_t *ptr = test.data(); |
| bssl::UniquePtr<ASN1_BIT_STRING> val( |
| d2i_ASN1_BIT_STRING(nullptr, &ptr, test.size())); |
| EXPECT_FALSE(val); |
| } |
| } |
| |
| TEST(ASN1Test, SetBit) { |
| bssl::UniquePtr<ASN1_BIT_STRING> val(ASN1_BIT_STRING_new()); |
| ASSERT_TRUE(val); |
| static const uint8_t kBitStringEmpty[] = {0x03, 0x01, 0x00}; |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 100)); |
| |
| // Set a few bits via |ASN1_BIT_STRING_set_bit|. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 1)); |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 2, 0)); |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 1)); |
| static const uint8_t kBitString1101[] = {0x03, 0x02, 0x04, 0xd0}; |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1101); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
| |
| // Bits that were set may be cleared. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 0)); |
| static const uint8_t kBitString1001[] = {0x03, 0x02, 0x04, 0x90}; |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
| |
| // Clearing trailing bits truncates the string. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 0)); |
| static const uint8_t kBitString1[] = {0x03, 0x02, 0x07, 0x80}; |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 3)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); |
| |
| // Bits may be set beyond the end of the string. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 1)); |
| static const uint8_t kBitStringLong[] = {0x03, 0x09, 0x00, 0x80, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x01}; |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
| |
| // The string can be truncated back down again. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
| |
| // |ASN1_BIT_STRING_set_bit| also truncates when starting from a parsed |
| // string. |
| const uint8_t *ptr = kBitStringLong; |
| val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitStringLong))); |
| ASSERT_TRUE(val); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
| |
| // A parsed bit string preserves trailing zero bits. |
| static const uint8_t kBitString10010[] = {0x03, 0x02, 0x03, 0x90}; |
| ptr = kBitString10010; |
| val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitString10010))); |
| ASSERT_TRUE(val); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString10010); |
| // But |ASN1_BIT_STRING_set_bit| will truncate it even if otherwise a no-op. |
| ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); |
| EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); |
| EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); |
| |
| // By default, a BIT STRING implicitly truncates trailing zeros. |
| val.reset(ASN1_BIT_STRING_new()); |
| ASSERT_TRUE(val); |
| static const uint8_t kZeros[64] = {0}; |
| ASSERT_TRUE(ASN1_STRING_set(val.get(), kZeros, sizeof(kZeros))); |
| TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); |
| } |
| |
| TEST(ASN1Test, StringToUTF8) { |
| static const struct { |
| std::vector<uint8_t> in; |
| int type; |
| const char *expected; |
| } kTests[] = { |
| // Non-minimal, two-byte UTF-8. |
| {{0xc0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
| // Non-minimal, three-byte UTF-8. |
| {{0xe0, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
| // Non-minimal, four-byte UTF-8. |
| {{0xf0, 0x80, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
| // Truncated, four-byte UTF-8. |
| {{0xf0, 0x80, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
| // Low-surrogate value. |
| {{0xed, 0xa0, 0x80}, V_ASN1_UTF8STRING, nullptr}, |
| // High-surrogate value. |
| {{0xed, 0xb0, 0x81}, V_ASN1_UTF8STRING, nullptr}, |
| // Initial BOMs should be rejected from UCS-2 and UCS-4. |
| {{0xfe, 0xff, 0, 88}, V_ASN1_BMPSTRING, nullptr}, |
| {{0, 0, 0xfe, 0xff, 0, 0, 0, 88}, V_ASN1_UNIVERSALSTRING, nullptr}, |
| // Otherwise, BOMs should pass through. |
| {{0, 88, 0xfe, 0xff}, V_ASN1_BMPSTRING, "X\xef\xbb\xbf"}, |
| {{0, 0, 0, 88, 0, 0, 0xfe, 0xff}, V_ASN1_UNIVERSALSTRING, |
| "X\xef\xbb\xbf"}, |
| // The maximum code-point should pass though. |
| {{0, 16, 0xff, 0xfd}, V_ASN1_UNIVERSALSTRING, "\xf4\x8f\xbf\xbd"}, |
| // Values outside the Unicode space should not. |
| {{0, 17, 0, 0}, V_ASN1_UNIVERSALSTRING, nullptr}, |
| // Non-characters should be rejected. |
| {{0, 1, 0xff, 0xff}, V_ASN1_UNIVERSALSTRING, nullptr}, |
| {{0, 1, 0xff, 0xfe}, V_ASN1_UNIVERSALSTRING, nullptr}, |
| {{0, 0, 0xfd, 0xd5}, V_ASN1_UNIVERSALSTRING, nullptr}, |
| // BMPString is UCS-2, not UTF-16, so surrogate pairs are invalid. |
| {{0xd8, 0, 0xdc, 1}, V_ASN1_BMPSTRING, nullptr}, |
| // INTEGERs are stored as strings, but cannot be converted to UTF-8. |
| {{0x01}, V_ASN1_INTEGER, nullptr}, |
| }; |
| |
| for (const auto &test : kTests) { |
| SCOPED_TRACE(Bytes(test.in)); |
| SCOPED_TRACE(test.type); |
| bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_type_new(test.type)); |
| ASSERT_TRUE(s); |
| ASSERT_TRUE(ASN1_STRING_set(s.get(), test.in.data(), test.in.size())); |
| |
| uint8_t *utf8; |
| const int utf8_len = ASN1_STRING_to_UTF8(&utf8, s.get()); |
| EXPECT_EQ(utf8_len < 0, test.expected == nullptr); |
| if (utf8_len >= 0) { |
| if (test.expected != nullptr) { |
| EXPECT_EQ(Bytes(test.expected), Bytes(utf8, utf8_len)); |
| } |
| OPENSSL_free(utf8); |
| } else { |
| ERR_clear_error(); |
| } |
| } |
| } |
| |
| static std::string ASN1StringToStdString(const ASN1_STRING *str) { |
| return std::string(ASN1_STRING_get0_data(str), |
| ASN1_STRING_get0_data(str) + ASN1_STRING_length(str)); |
| } |
| |
| static bool ASN1Time_check_posix(const ASN1_TIME *s, int64_t t) { |
| struct tm stm, ttm; |
| int day, sec; |
| |
| switch (ASN1_STRING_type(s)) { |
| case V_ASN1_GENERALIZEDTIME: |
| if (!asn1_generalizedtime_to_tm(&stm, s)) { |
| return false; |
| } |
| break; |
| case V_ASN1_UTCTIME: |
| if (!asn1_utctime_to_tm(&stm, s, /*allow_timezone_offset=*/1)) { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| if (!OPENSSL_posix_to_tm(t, &ttm) || |
| !OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) { |
| return false; |
| } |
| return day == 0 && sec ==0; |
| } |
| |
| static std::string PrintStringToBIO(const ASN1_STRING *str, |
| int (*print_func)(BIO *, |
| const ASN1_STRING *)) { |
| const uint8_t *data; |
| size_t len; |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| if (!bio || // |
| !print_func(bio.get(), str) || |
| !BIO_mem_contents(bio.get(), &data, &len)) { |
| ADD_FAILURE() << "Could not print to BIO"; |
| return ""; |
| } |
| return std::string(data, data + len); |
| } |
| |
| TEST(ASN1Test, SetTime) { |
| static const struct { |
| int64_t time; |
| const char *generalized; |
| const char *utc; |
| const char *printed; |
| } kTests[] = { |
| {-631152001, "19491231235959Z", nullptr, "Dec 31 23:59:59 1949 GMT"}, |
| {-631152000, "19500101000000Z", "500101000000Z", |
| "Jan 1 00:00:00 1950 GMT"}, |
| {0, "19700101000000Z", "700101000000Z", "Jan 1 00:00:00 1970 GMT"}, |
| {981173106, "20010203040506Z", "010203040506Z", |
| "Feb 3 04:05:06 2001 GMT"}, |
| {951804000, "20000229060000Z", "000229060000Z", |
| "Feb 29 06:00:00 2000 GMT"}, |
| // NASA says this is the correct time for posterity. |
| {-16751025, "19690621025615Z", "690621025615Z", |
| "Jun 21 02:56:15 1969 GMT"}, |
| // -1 is sometimes used as an error value. Ensure we correctly handle it. |
| {-1, "19691231235959Z", "691231235959Z", "Dec 31 23:59:59 1969 GMT"}, |
| {2524607999, "20491231235959Z", "491231235959Z", |
| "Dec 31 23:59:59 2049 GMT"}, |
| {2524608000, "20500101000000Z", nullptr, "Jan 1 00:00:00 2050 GMT"}, |
| // Test boundary conditions. |
| {-62167219200, "00000101000000Z", nullptr, "Jan 1 00:00:00 0 GMT"}, |
| {-62167219201, nullptr, nullptr, nullptr}, |
| {253402300799, "99991231235959Z", nullptr, "Dec 31 23:59:59 9999 GMT"}, |
| {253402300800, nullptr, nullptr, nullptr}, |
| }; |
| for (const auto &t : kTests) { |
| int64_t tt; |
| SCOPED_TRACE(t.time); |
| |
| bssl::UniquePtr<ASN1_UTCTIME> utc(ASN1_UTCTIME_set(nullptr, t.time)); |
| if (t.utc) { |
| ASSERT_TRUE(utc); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(utc.get())); |
| EXPECT_EQ(t.utc, ASN1StringToStdString(utc.get())); |
| EXPECT_TRUE(ASN1Time_check_posix(utc.get(), t.time)); |
| EXPECT_EQ(ASN1_TIME_to_posix(utc.get(), &tt), 1); |
| EXPECT_EQ(tt, t.time); |
| EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_UTCTIME_print), t.printed); |
| EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_TIME_print), t.printed); |
| } else { |
| EXPECT_FALSE(utc); |
| } |
| |
| bssl::UniquePtr<ASN1_GENERALIZEDTIME> generalized( |
| ASN1_GENERALIZEDTIME_set(nullptr, t.time)); |
| if (t.generalized) { |
| ASSERT_TRUE(generalized); |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(generalized.get())); |
| EXPECT_EQ(t.generalized, ASN1StringToStdString(generalized.get())); |
| EXPECT_TRUE(ASN1Time_check_posix(generalized.get(), t.time)); |
| EXPECT_EQ(ASN1_TIME_to_posix(generalized.get(), &tt), 1); |
| EXPECT_EQ(tt, t.time); |
| EXPECT_EQ( |
| PrintStringToBIO(generalized.get(), &ASN1_GENERALIZEDTIME_print), |
| t.printed); |
| EXPECT_EQ(PrintStringToBIO(generalized.get(), &ASN1_TIME_print), |
| t.printed); |
| } else { |
| EXPECT_FALSE(generalized); |
| } |
| |
| bssl::UniquePtr<ASN1_TIME> choice(ASN1_TIME_set_posix(nullptr, t.time)); |
| if (t.generalized) { |
| ASSERT_TRUE(choice); |
| if (t.utc) { |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(choice.get())); |
| EXPECT_EQ(t.utc, ASN1StringToStdString(choice.get())); |
| } else { |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(choice.get())); |
| EXPECT_EQ(t.generalized, ASN1StringToStdString(choice.get())); |
| } |
| EXPECT_TRUE(ASN1Time_check_posix(choice.get(), t.time)); |
| EXPECT_EQ(ASN1_TIME_to_posix(choice.get(), &tt), 1); |
| EXPECT_EQ(tt, t.time); |
| } else { |
| EXPECT_FALSE(choice); |
| } |
| } |
| } |
| |
| TEST(ASN1Test, TimeSetString) { |
| bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_new()); |
| ASSERT_TRUE(s); |
| |
| ASSERT_TRUE(ASN1_UTCTIME_set_string(s.get(), "700101000000Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_GENERALIZEDTIME_set_string(s.get(), "19700101000000Z")); |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get())); |
| |
| // |ASN1_TIME_set_string| accepts either format. It relies on there being no |
| // overlap between the two. |
| ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "700101000000Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "19700101000000Z")); |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get())); |
| |
| // |ASN1_TIME_set_string_X509| behaves similarly except it additionally |
| // converts GeneralizedTime to UTCTime if it fits. |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "700101000000Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19700101000000Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19500101000000Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("500101000000Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19491231235959Z")); |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("19491231235959Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20491231235959Z")); |
| EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("491231235959Z", ASN1StringToStdString(s.get())); |
| |
| ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20500101000000Z")); |
| EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); |
| EXPECT_EQ("20500101000000Z", ASN1StringToStdString(s.get())); |
| |
| // Invalid inputs are rejected. |
| EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "nope")); |
| EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "19700101000000Z")); |
| EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "nope")); |
| EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "700101000000Z")); |
| EXPECT_FALSE(ASN1_TIME_set_string(s.get(), "nope")); |
| |
| // If passed a null object, the functions validate the input without writing |
| // to anything. |
| EXPECT_TRUE(ASN1_UTCTIME_set_string(nullptr, "700101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "700101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "700101000000Z")); |
| EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "19700101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "19700101000000Z")); |
| // Test an input |ASN1_TIME_set_string_X509| won't convert to UTCTime. |
| EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "20500101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "20500101000000Z")); |
| EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "20500101000000Z")); |
| EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "nope")); |
| EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "nope")); |
| EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "nope")); |
| EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "nope")); |
| |
| // Timezone offsets are not allowed by DER. |
| EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "700101000000-0400")); |
| EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "700101000000-0400")); |
| EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "700101000000-0400")); |
| EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000-0400")); |
| EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "19700101000000-0400")); |
| EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "19700101000000-0400")); |
| } |
| |
| TEST(ASN1Test, AdjTime) { |
| struct tm tm1, tm2; |
| int days, secs; |
| |
| OPENSSL_posix_to_tm(0, &tm1); |
| OPENSSL_posix_to_tm(0, &tm2); |
| // Test values that are too large and should be rejected. |
| EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MIN, INT_MIN)); |
| EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MAX, INT_MAX)); |
| // Basic functionality. |
| EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 1, 1)); |
| EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2)); |
| EXPECT_EQ(days, 1); |
| EXPECT_EQ(secs, 1); |
| EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1)); |
| EXPECT_EQ(days, -1); |
| EXPECT_EQ(secs, -1); |
| // Test a value of days that is very large, but valid. |
| EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 2932800, 0)); |
| EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2)); |
| EXPECT_EQ(days, 2932801); |
| EXPECT_EQ(secs, 1); |
| EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1)); |
| EXPECT_EQ(days, -2932801); |
| EXPECT_EQ(secs, -1); |
| } |
| static std::vector<uint8_t> StringToVector(const std::string &str) { |
| return std::vector<uint8_t>(str.begin(), str.end()); |
| } |
| |
| TEST(ASN1Test, StringPrintEx) { |
| const struct { |
| int type; |
| std::vector<uint8_t> data; |
| int str_flags; |
| unsigned long flags; |
| std::string expected; |
| } kTests[] = { |
| // A string like "hello" is never escaped or quoted. |
| // |ASN1_STRFLGS_ESC_QUOTE| only introduces quotes when needed. Note |
| // OpenSSL interprets T61String as Latin-1. |
| {V_ASN1_T61STRING, StringToVector("hello"), 0, 0, "hello"}, |
| {V_ASN1_T61STRING, StringToVector("hello"), 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, |
| "hello"}, |
| {V_ASN1_T61STRING, StringToVector("hello"), 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
| ASN1_STRFLGS_ESC_QUOTE, |
| "hello"}, |
| |
| // By default, 8-bit characters are printed without escaping. |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| 0, |
| std::string(1, '\0') + "\n\x80\xff,+\"\\<>;"}, |
| |
| // Flags control different escapes. Note that any escape flag will cause |
| // blackslashes to be escaped. |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| ASN1_STRFLGS_ESC_2253, |
| std::string(1, '\0') + "\n\x80\xff\\,\\+\\\"\\\\\\<\\>\\;"}, |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| ASN1_STRFLGS_ESC_CTRL, |
| "\\00\\0A\x80\xff,+\"\\\\<>;"}, |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB, |
| std::string(1, '\0') + "\n\\80\\FF,+\"\\\\<>;"}, |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, |
| "\\00\\0A\\80\\FF\\,\\+\\\"\\\\\\<\\>\\;"}, |
| |
| // When quoted, fewer characters need to be escaped in RFC 2253. |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, |
| 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
| ASN1_STRFLGS_ESC_QUOTE, |
| "\"\\00\\0A\\80\\FF,+\\\"\\\\<>;\""}, |
| |
| // If no characters benefit from quotes, no quotes are added. |
| {V_ASN1_T61STRING, |
| {0, '\n', 0x80, 0xff, '"', '\\'}, |
| 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | |
| ASN1_STRFLGS_ESC_QUOTE, |
| "\\00\\0A\\80\\FF\\\"\\\\"}, |
| |
| // RFC 2253 only escapes spaces at the start and end of a string. |
| {V_ASN1_T61STRING, StringToVector(" "), 0, ASN1_STRFLGS_ESC_2253, |
| "\\ \\ "}, |
| {V_ASN1_T61STRING, StringToVector(" "), 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_UTF8_CONVERT, "\\ \\ "}, |
| {V_ASN1_T61STRING, StringToVector(" "), 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\" \""}, |
| |
| // RFC 2253 only escapes # at the start of a string. |
| {V_ASN1_T61STRING, StringToVector("###"), 0, ASN1_STRFLGS_ESC_2253, |
| "\\###"}, |
| {V_ASN1_T61STRING, StringToVector("###"), 0, |
| ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\"###\""}, |
| |
| // By default, strings are decoded and Unicode code points are |
| // individually escaped. |
| {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
| 0, ASN1_STRFLGS_ESC_MSB, "a\\80\\U0100\\W00010000"}, |
| {V_ASN1_BMPSTRING, |
| {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB, |
| "a\\80\\U0100"}, |
| {V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x00, 0x00, 'a', // |
| 0x00, 0x00, 0x00, 0x80, // |
| 0x00, 0x00, 0x01, 0x00, // |
| 0x00, 0x01, 0x00, 0x00}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB, |
| "a\\80\\U0100\\W00010000"}, |
| |
| // |ASN1_STRFLGS_UTF8_CONVERT| normalizes everything to UTF-8 and then |
| // escapes individual bytes. |
| {V_ASN1_IA5STRING, StringToVector("a\x80"), 0, |
| ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, |
| {V_ASN1_T61STRING, StringToVector("a\x80"), 0, |
| ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, |
| {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
| 0, ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
| "a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, |
| {V_ASN1_BMPSTRING, |
| {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
| "a\\C2\\80\\C4\\80"}, |
| {V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x00, 0x00, 'a', // |
| 0x00, 0x00, 0x00, 0x80, // |
| 0x00, 0x00, 0x01, 0x00, // |
| 0x00, 0x01, 0x00, 0x00}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, |
| "a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, |
| |
| // The same as above, but without escaping the UTF-8 encoding. |
| {V_ASN1_IA5STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, |
| "a\xc2\x80"}, |
| {V_ASN1_T61STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, |
| "a\xc2\x80"}, |
| {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), |
| 0, ASN1_STRFLGS_UTF8_CONVERT, "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, |
| {V_ASN1_BMPSTRING, |
| {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, |
| 0, |
| ASN1_STRFLGS_UTF8_CONVERT, |
| "a\xc2\x80\xc4\x80"}, |
| {V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x00, 0x00, 'a', // |
| 0x00, 0x00, 0x00, 0x80, // |
| 0x00, 0x00, 0x01, 0x00, // |
| 0x00, 0x01, 0x00, 0x00}, |
| 0, |
| ASN1_STRFLGS_UTF8_CONVERT, |
| "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, |
| |
| // Types that cannot be decoded are, by default, treated as a byte string. |
| {V_ASN1_OCTET_STRING, {0xff}, 0, 0, "\xff"}, |
| {-1, {0xff}, 0, 0, "\xff"}, |
| {100, {0xff}, 0, 0, "\xff"}, |
| |
| // |ASN1_STRFLGS_UTF8_CONVERT| still converts these bytes to UTF-8. |
| // |
| // TODO(davidben): This seems like a bug. Although it's unclear because |
| // the non-RFC-2253 options aren't especially sound. Can we just remove |
| // them? |
| {V_ASN1_OCTET_STRING, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
| {-1, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
| {100, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, |
| |
| // |ASN1_STRFLGS_IGNORE_TYPE| causes the string type to be ignored, so it |
| // is always treated as a byte string, even if it is not a valid encoding. |
| {V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
| {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
| {V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, |
| |
| // |ASN1_STRFLGS_SHOW_TYPE| prepends the type name. |
| {V_ASN1_UTF8STRING, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "UTF8STRING:a"}, |
| {-1, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, |
| {100, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, |
| |
| // |ASN1_STRFLGS_DUMP_ALL| and |ASN1_STRFLGS_DUMP_UNKNOWN| cause |
| // non-string types to be printed in hex, though without the DER wrapper |
| // by default. |
| {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_UNKNOWN, "\\U2603"}, |
| {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_ALL, "#E29883"}, |
| {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_UNKNOWN, "#E29883"}, |
| {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_ALL, "#E29883"}, |
| |
| // |ASN1_STRFLGS_DUMP_DER| includes the entire element. |
| {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0C03E29883"}, |
| {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0403E29883"}, |
| {V_ASN1_BIT_STRING, |
| {0x80}, |
| ASN1_STRING_FLAG_BITS_LEFT | 4, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
| "#03020480"}, |
| // INTEGER { 1 } |
| {V_ASN1_INTEGER, |
| {0x01}, |
| 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
| "#020101"}, |
| // INTEGER { -1 } |
| {V_ASN1_NEG_INTEGER, |
| {0x01}, |
| 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
| "#0201FF"}, |
| // ENUMERATED { 1 } |
| {V_ASN1_ENUMERATED, |
| {0x01}, |
| 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
| "#0A0101"}, |
| // ENUMERATED { -1 } |
| {V_ASN1_NEG_ENUMERATED, |
| {0x01}, |
| 0, |
| ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, |
| "#0A01FF"}, |
| }; |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.type); |
| SCOPED_TRACE(Bytes(t.data)); |
| SCOPED_TRACE(t.str_flags); |
| SCOPED_TRACE(t.flags); |
| |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); |
| ASSERT_TRUE(str); |
| ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); |
| str->flags = t.str_flags; |
| |
| // If the |BIO| is null, it should measure the size. |
| int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); |
| EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
| |
| // Measuring the size should also work for the |FILE| version |
| len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); |
| EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
| |
| // Actually print the string. |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); |
| EXPECT_EQ(len, static_cast<int>(t.expected.size())); |
| |
| const uint8_t *bio_contents; |
| size_t bio_len; |
| ASSERT_TRUE(BIO_mem_contents(bio.get(), &bio_contents, &bio_len)); |
| EXPECT_EQ(t.expected, std::string(bio_contents, bio_contents + bio_len)); |
| } |
| |
| const struct { |
| int type; |
| std::vector<uint8_t> data; |
| int str_flags; |
| unsigned long flags; |
| } kUnprintableTests[] = { |
| // It is an error if the string cannot be decoded. |
| {V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
| {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
| {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
| {V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, |
| // Invalid codepoints are errors. |
| {V_ASN1_UTF8STRING, {0xed, 0xa0, 0x80}, 0, ASN1_STRFLGS_ESC_MSB}, |
| {V_ASN1_BMPSTRING, {0xd8, 0x00}, 0, ASN1_STRFLGS_ESC_MSB}, |
| {V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x00, 0xd8, 0x00}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB}, |
| // Even when re-encoding UTF-8 back into UTF-8, we should check validity. |
| {V_ASN1_UTF8STRING, |
| {0xff}, |
| 0, |
| ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT}, |
| }; |
| for (const auto &t : kUnprintableTests) { |
| SCOPED_TRACE(t.type); |
| SCOPED_TRACE(Bytes(t.data)); |
| SCOPED_TRACE(t.str_flags); |
| SCOPED_TRACE(t.flags); |
| |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); |
| ASSERT_TRUE(str); |
| ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); |
| str->flags = t.str_flags; |
| |
| // If the |BIO| is null, it should measure the size. |
| int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); |
| EXPECT_EQ(len, -1); |
| ERR_clear_error(); |
| |
| // Measuring the size should also work for the |FILE| version |
| len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); |
| EXPECT_EQ(len, -1); |
| ERR_clear_error(); |
| |
| // Actually print the string. |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); |
| EXPECT_EQ(len, -1); |
| ERR_clear_error(); |
| } |
| } |
| |
| TEST(ASN1Test, MBString) { |
| const unsigned long kAll = B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | |
| B_ASN1_T61STRING | B_ASN1_BMPSTRING | |
| B_ASN1_UNIVERSALSTRING | B_ASN1_UTF8STRING; |
| |
| const struct { |
| int format; |
| std::vector<uint8_t> in; |
| unsigned long mask; |
| int expected_type; |
| std::vector<uint8_t> expected_data; |
| int num_codepoints; |
| } kTests[] = { |
| // Given a choice of formats, we pick the smallest that fits. |
| {MBSTRING_UTF8, {}, kAll, V_ASN1_PRINTABLESTRING, {}, 0}, |
| {MBSTRING_UTF8, {'a'}, kAll, V_ASN1_PRINTABLESTRING, {'a'}, 1}, |
| {MBSTRING_UTF8, |
| {'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, |
| kAll, |
| V_ASN1_PRINTABLESTRING, |
| {'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, |
| 14}, |
| {MBSTRING_UTF8, {'*'}, kAll, V_ASN1_IA5STRING, {'*'}, 1}, |
| {MBSTRING_UTF8, {'\n'}, kAll, V_ASN1_IA5STRING, {'\n'}, 1}, |
| {MBSTRING_UTF8, |
| {0xc2, 0x80 /* U+0080 */}, |
| kAll, |
| V_ASN1_T61STRING, |
| {0x80}, |
| 1}, |
| {MBSTRING_UTF8, |
| {0xc4, 0x80 /* U+0100 */}, |
| kAll, |
| V_ASN1_BMPSTRING, |
| {0x01, 0x00}, |
| 1}, |
| {MBSTRING_UTF8, |
| {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
| kAll, |
| V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x01, 0x00, 0x00}, |
| 1}, |
| {MBSTRING_UTF8, |
| {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
| kAll & ~B_ASN1_UNIVERSALSTRING, |
| V_ASN1_UTF8STRING, |
| {0xf0, 0x90, 0x80, 0x80}, |
| 1}, |
| |
| // NUL is not printable. It should also not terminate iteration. |
| {MBSTRING_UTF8, {0}, kAll, V_ASN1_IA5STRING, {0}, 1}, |
| {MBSTRING_UTF8, {0, 'a'}, kAll, V_ASN1_IA5STRING, {0, 'a'}, 2}, |
| |
| // When a particular format is specified, we use it. |
| {MBSTRING_UTF8, |
| {'a'}, |
| B_ASN1_PRINTABLESTRING, |
| V_ASN1_PRINTABLESTRING, |
| {'a'}, |
| 1}, |
| {MBSTRING_UTF8, {'a'}, B_ASN1_IA5STRING, V_ASN1_IA5STRING, {'a'}, 1}, |
| {MBSTRING_UTF8, {'a'}, B_ASN1_T61STRING, V_ASN1_T61STRING, {'a'}, 1}, |
| {MBSTRING_UTF8, {'a'}, B_ASN1_UTF8STRING, V_ASN1_UTF8STRING, {'a'}, 1}, |
| {MBSTRING_UTF8, |
| {'a'}, |
| B_ASN1_BMPSTRING, |
| V_ASN1_BMPSTRING, |
| {0x00, 'a'}, |
| 1}, |
| {MBSTRING_UTF8, |
| {'a'}, |
| B_ASN1_UNIVERSALSTRING, |
| V_ASN1_UNIVERSALSTRING, |
| {0x00, 0x00, 0x00, 'a'}, |
| 1}, |
| |
| // A long string with characters of many widths, to test sizes are |
| // measured in code points. |
| {MBSTRING_UTF8, |
| { |
| 'a', // |
| 0xc2, 0x80, // U+0080 |
| 0xc4, 0x80, // U+0100 |
| 0xf0, 0x90, 0x80, 0x80, // U+10000 |
| }, |
| B_ASN1_UNIVERSALSTRING, |
| V_ASN1_UNIVERSALSTRING, |
| { |
| 0x00, 0x00, 0x00, 'a', // |
| 0x00, 0x00, 0x00, 0x80, // |
| 0x00, 0x00, 0x01, 0x00, // |
| 0x00, 0x01, 0x00, 0x00, // |
| }, |
| 4}, |
| }; |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.format); |
| SCOPED_TRACE(Bytes(t.in)); |
| SCOPED_TRACE(t.mask); |
| |
| // Passing in nullptr should do a dry run. |
| EXPECT_EQ(t.expected_type, |
| ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), t.format, |
| t.mask)); |
| |
| // Test allocating a new object. |
| ASN1_STRING *str = nullptr; |
| EXPECT_EQ( |
| t.expected_type, |
| ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
| EXPECT_EQ(Bytes(t.expected_data), |
| Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
| |
| // Test writing into an existing object. |
| ASN1_STRING_free(str); |
| str = ASN1_STRING_new(); |
| ASSERT_TRUE(str); |
| ASN1_STRING *old_str = str; |
| EXPECT_EQ( |
| t.expected_type, |
| ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); |
| ASSERT_EQ(old_str, str); |
| EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
| EXPECT_EQ(Bytes(t.expected_data), |
| Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
| ASN1_STRING_free(str); |
| str = nullptr; |
| |
| // minsize and maxsize should be enforced, even in a dry run. |
| EXPECT_EQ(t.expected_type, |
| ASN1_mbstring_ncopy(nullptr, t.in.data(), t.in.size(), t.format, |
| t.mask, /*minsize=*/t.num_codepoints, |
| /*maxsize=*/t.num_codepoints)); |
| |
| EXPECT_EQ(t.expected_type, |
| ASN1_mbstring_ncopy(&str, t.in.data(), t.in.size(), t.format, |
| t.mask, /*minsize=*/t.num_codepoints, |
| /*maxsize=*/t.num_codepoints)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); |
| EXPECT_EQ(Bytes(t.expected_data), |
| Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); |
| ASN1_STRING_free(str); |
| str = nullptr; |
| |
| EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
| nullptr, t.in.data(), t.in.size(), t.format, t.mask, |
| /*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); |
| ERR_clear_error(); |
| EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
| &str, t.in.data(), t.in.size(), t.format, t.mask, |
| /*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); |
| EXPECT_FALSE(str); |
| ERR_clear_error(); |
| if (t.num_codepoints > 1) { |
| EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
| nullptr, t.in.data(), t.in.size(), t.format, t.mask, |
| /*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); |
| ERR_clear_error(); |
| EXPECT_EQ(-1, ASN1_mbstring_ncopy( |
| &str, t.in.data(), t.in.size(), t.format, t.mask, |
| /*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); |
| EXPECT_FALSE(str); |
| ERR_clear_error(); |
| } |
| } |
| |
| const struct { |
| int format; |
| std::vector<uint8_t> in; |
| unsigned long mask; |
| } kInvalidTests[] = { |
| // Invalid encodings are rejected. |
| {MBSTRING_UTF8, {0xff}, B_ASN1_UTF8STRING}, |
| {MBSTRING_BMP, {0xff}, B_ASN1_UTF8STRING}, |
| {MBSTRING_UNIV, {0xff}, B_ASN1_UTF8STRING}, |
| |
| // Lone surrogates are not code points. |
| {MBSTRING_UTF8, {0xed, 0xa0, 0x80}, B_ASN1_UTF8STRING}, |
| {MBSTRING_BMP, {0xd8, 0x00}, B_ASN1_UTF8STRING}, |
| {MBSTRING_UNIV, {0x00, 0x00, 0xd8, 0x00}, B_ASN1_UTF8STRING}, |
| |
| // The input does not fit in the allowed output types. |
| {MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING}, |
| {MBSTRING_UTF8, |
| {0xc2, 0x80 /* U+0080 */}, |
| B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING}, |
| {MBSTRING_UTF8, |
| {0xc4, 0x80 /* U+0100 */}, |
| B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING}, |
| {MBSTRING_UTF8, |
| {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, |
| B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING | |
| B_ASN1_BMPSTRING}, |
| |
| // Unrecognized bits are ignored. |
| {MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING | B_ASN1_SEQUENCE}, |
| }; |
| for (const auto &t : kInvalidTests) { |
| SCOPED_TRACE(t.format); |
| SCOPED_TRACE(Bytes(t.in)); |
| SCOPED_TRACE(t.mask); |
| |
| EXPECT_EQ(-1, ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), |
| t.format, t.mask)); |
| ERR_clear_error(); |
| |
| ASN1_STRING *str = nullptr; |
| EXPECT_EQ(-1, ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), |
| t.format, t.mask)); |
| ERR_clear_error(); |
| EXPECT_EQ(nullptr, str); |
| } |
| } |
| |
| TEST(ASN1Test, StringByNID) { |
| // |ASN1_mbstring_*| tests above test most of the interactions with |inform|, |
| // so all tests below use UTF-8. |
| const struct { |
| int nid; |
| std::string in; |
| int expected_type; |
| std::string expected; |
| } kTests[] = { |
| // Although DirectoryString and PKCS9String allow many types of strings, |
| // we prefer UTF8String. |
| {NID_commonName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_commonName, "\xe2\x98\x83", V_ASN1_UTF8STRING, "\xe2\x98\x83"}, |
| {NID_localityName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_stateOrProvinceName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_organizationName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_organizationalUnitName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_pkcs9_unstructuredName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_pkcs9_challengePassword, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_pkcs9_unstructuredAddress, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_surname, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_initials, "abc", V_ASN1_UTF8STRING, "abc"}, |
| {NID_name, "abc", V_ASN1_UTF8STRING, "abc"}, |
| |
| // Some attribute types use a particular string type. |
| {NID_countryName, "US", V_ASN1_PRINTABLESTRING, "US"}, |
| {NID_pkcs9_emailAddress, "example@example.com", V_ASN1_IA5STRING, |
| "example@example.com"}, |
| {NID_serialNumber, "1234", V_ASN1_PRINTABLESTRING, "1234"}, |
| {NID_friendlyName, "abc", V_ASN1_BMPSTRING, |
| std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, |
| {NID_dnQualifier, "US", V_ASN1_PRINTABLESTRING, "US"}, |
| {NID_domainComponent, "com", V_ASN1_IA5STRING, "com"}, |
| {NID_ms_csp_name, "abc", V_ASN1_BMPSTRING, |
| std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, |
| |
| // Unknown NIDs default to UTF8String. |
| {NID_rsaEncryption, "abc", V_ASN1_UTF8STRING, "abc"}, |
| }; |
| for (const auto &t : kTests) { |
| SCOPED_TRACE(t.nid); |
| SCOPED_TRACE(t.in); |
| |
| // Test allocating a new object. |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
| MBSTRING_UTF8, t.nid)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| |
| // Test writing into an existing object. |
| str.reset(ASN1_STRING_new()); |
| ASSERT_TRUE(str); |
| ASN1_STRING *old_str = str.get(); |
| ASSERT_TRUE(ASN1_STRING_set_by_NID( |
| &old_str, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
| MBSTRING_UTF8, t.nid)); |
| ASSERT_EQ(old_str, str.get()); |
| EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| } |
| |
| const struct { |
| int nid; |
| std::string in; |
| } kInvalidTests[] = { |
| // DirectoryString forbids empty inputs. |
| {NID_commonName, ""}, |
| {NID_localityName, ""}, |
| {NID_stateOrProvinceName, ""}, |
| {NID_organizationName, ""}, |
| {NID_organizationalUnitName, ""}, |
| {NID_pkcs9_unstructuredName, ""}, |
| {NID_pkcs9_challengePassword, ""}, |
| {NID_pkcs9_unstructuredAddress, ""}, |
| {NID_givenName, ""}, |
| {NID_givenName, ""}, |
| {NID_givenName, ""}, |
| {NID_surname, ""}, |
| {NID_initials, ""}, |
| {NID_name, ""}, |
| |
| // Test upper bounds from RFC 5280. |
| {NID_name, std::string(32769, 'a')}, |
| {NID_commonName, std::string(65, 'a')}, |
| {NID_localityName, std::string(129, 'a')}, |
| {NID_stateOrProvinceName, std::string(129, 'a')}, |
| {NID_organizationName, std::string(65, 'a')}, |
| {NID_organizationalUnitName, std::string(65, 'a')}, |
| {NID_pkcs9_emailAddress, std::string(256, 'a')}, |
| {NID_serialNumber, std::string(65, 'a')}, |
| |
| // X520countryName must be exactly two characters. |
| {NID_countryName, "A"}, |
| {NID_countryName, "AAA"}, |
| |
| // Some string types cannot represent all codepoints. |
| {NID_countryName, "\xe2\x98\x83"}, |
| {NID_pkcs9_emailAddress, "\xe2\x98\x83"}, |
| {NID_serialNumber, "\xe2\x98\x83"}, |
| {NID_dnQualifier, "\xe2\x98\x83"}, |
| {NID_domainComponent, "\xe2\x98\x83"}, |
| }; |
| for (const auto &t : kInvalidTests) { |
| SCOPED_TRACE(t.nid); |
| SCOPED_TRACE(t.in); |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), |
| MBSTRING_UTF8, t.nid)); |
| EXPECT_FALSE(str); |
| ERR_clear_error(); |
| } |
| } |
| |
| TEST(ASN1Test, StringByCustomNID) { |
| // This test affects library-global state. We rely on nothing else in the test |
| // suite using these OIDs. |
| int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1000", "custom OID 1000", |
| "custom OID 1000"); |
| ASSERT_NE(NID_undef, nid1); |
| int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1001", "custom OID 1001", |
| "custom OID 1001"); |
| ASSERT_NE(NID_undef, nid2); |
| |
| // Values registered in the string table should be picked up. |
| ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, |
| STABLE_NO_MASK)); |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
| nid1)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| |
| // Minimum and maximum lengths are enforced. |
| str.reset(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>("1234"), 4, MBSTRING_UTF8, |
| nid1)); |
| EXPECT_FALSE(str); |
| ERR_clear_error(); |
| str.reset(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>("12345678901"), 11, |
| MBSTRING_UTF8, nid1)); |
| EXPECT_FALSE(str); |
| ERR_clear_error(); |
| |
| // Without |STABLE_NO_MASK|, we always pick UTF8String. -1 means there is no |
| // length limit. |
| ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, -1, -1, DIRSTRING_TYPE, 0)); |
| str.reset(ASN1_STRING_set_by_NID(nullptr, |
| reinterpret_cast<const uint8_t *>("12345"), |
| 5, MBSTRING_UTF8, nid2)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(V_ASN1_UTF8STRING, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| |
| // Overriding existing entries, built-in or custom, is an error. |
| EXPECT_FALSE( |
| ASN1_STRING_TABLE_add(NID_countryName, -1, -1, DIRSTRING_TYPE, 0)); |
| EXPECT_FALSE(ASN1_STRING_TABLE_add(nid1, -1, -1, DIRSTRING_TYPE, 0)); |
| } |
| |
| #if defined(OPENSSL_THREADS) |
| TEST(ASN1Test, StringByCustomNIDThreads) { |
| // This test affects library-global state. We rely on nothing else in the test |
| // suite using these OIDs. |
| int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1002", "custom OID 1002", |
| "custom OID 1002"); |
| ASSERT_NE(NID_undef, nid1); |
| int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1003", "custom OID 1003", |
| "custom OID 1003"); |
| ASSERT_NE(NID_undef, nid2); |
| |
| std::vector<std::thread> threads; |
| threads.emplace_back([&] { |
| ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, |
| STABLE_NO_MASK)); |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
| nid1)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| }); |
| threads.emplace_back([&] { |
| ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, 5, 10, V_ASN1_PRINTABLESTRING, |
| STABLE_NO_MASK)); |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( |
| nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, |
| nid2)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); |
| EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), |
| ASN1_STRING_length(str.get()))); |
| }); |
| for (auto &thread : threads) { |
| thread.join(); |
| } |
| } |
| #endif // OPENSSL_THREADS |
| |
| // Test that multi-string types correctly encode negative ENUMERATED. |
| // Multi-string types cannot contain INTEGER, so we only test ENUMERATED. |
| TEST(ASN1Test, NegativeEnumeratedMultistring) { |
| static const uint8_t kMinusOne[] = {0x0a, 0x01, 0xff}; // ENUMERATED { -1 } |
| // |ASN1_PRINTABLE| is a multi-string type that allows ENUMERATED. |
| const uint8_t *p = kMinusOne; |
| bssl::UniquePtr<ASN1_STRING> str( |
| d2i_ASN1_PRINTABLE(nullptr, &p, sizeof(kMinusOne))); |
| ASSERT_TRUE(str); |
| TestSerialize(str.get(), i2d_ASN1_PRINTABLE, kMinusOne); |
| } |
| |
| // Encoding a CHOICE type with an invalid selector should fail. |
| TEST(ASN1Test, InvalidChoice) { |
| bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new()); |
| ASSERT_TRUE(name); |
| // CHOICE types are initialized with an invalid selector. |
| EXPECT_EQ(-1, name->type); |
| // |name| should fail to encode. |
| EXPECT_EQ(-1, i2d_GENERAL_NAME(name.get(), nullptr)); |
| |
| // The error should be propagated through types containing |name|. |
| bssl::UniquePtr<GENERAL_NAMES> names(GENERAL_NAMES_new()); |
| ASSERT_TRUE(names); |
| EXPECT_TRUE(bssl::PushToStack(names.get(), std::move(name))); |
| EXPECT_EQ(-1, i2d_GENERAL_NAMES(names.get(), nullptr)); |
| } |
| |
| // Encoding NID-only |ASN1_OBJECT|s should fail. |
| TEST(ASN1Test, InvalidObject) { |
| EXPECT_EQ(-1, i2d_ASN1_OBJECT(OBJ_nid2obj(NID_kx_ecdhe), nullptr)); |
| |
| bssl::UniquePtr<X509_ALGOR> alg(X509_ALGOR_new()); |
| ASSERT_TRUE(alg); |
| ASSERT_TRUE(X509_ALGOR_set0(alg.get(), OBJ_nid2obj(NID_kx_ecdhe), |
| V_ASN1_UNDEF, nullptr)); |
| EXPECT_EQ(-1, i2d_X509_ALGOR(alg.get(), nullptr)); |
| } |
| |
| // Encoding invalid |ASN1_TYPE|s should fail. |ASN1_TYPE|s are |
| // default-initialized to an invalid type. |
| TEST(ASN1Test, InvalidASN1Type) { |
| bssl::UniquePtr<ASN1_TYPE> obj(ASN1_TYPE_new()); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(-1, obj->type); |
| EXPECT_EQ(-1, i2d_ASN1_TYPE(obj.get(), nullptr)); |
| } |
| |
| // Encoding invalid MSTRING types should fail. An MSTRING is a CHOICE of |
| // string-like types. They are initialized to an invalid type. |
| TEST(ASN1Test, InvalidMSTRING) { |
| bssl::UniquePtr<ASN1_STRING> obj(ASN1_TIME_new()); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(-1, obj->type); |
| EXPECT_EQ(-1, i2d_ASN1_TIME(obj.get(), nullptr)); |
| |
| obj.reset(DIRECTORYSTRING_new()); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(-1, obj->type); |
| EXPECT_EQ(-1, i2d_DIRECTORYSTRING(obj.get(), nullptr)); |
| } |
| |
| TEST(ASN1Test, StringTableSorted) { |
| const ASN1_STRING_TABLE *table; |
| size_t table_len; |
| asn1_get_string_table_for_testing(&table, &table_len); |
| for (size_t i = 1; i < table_len; i++) { |
| EXPECT_LT(table[i-1].nid, table[i].nid); |
| } |
| } |
| |
| TEST(ASN1Test, Null) { |
| // An |ASN1_NULL| is an opaque, non-null pointer. It is an arbitrary signaling |
| // value and does not need to be freed. (If the pointer is null, this is an |
| // omitted OPTIONAL NULL.) |
| EXPECT_NE(nullptr, ASN1_NULL_new()); |
| |
| // It is safe to free either the non-null pointer or the null one. |
| ASN1_NULL_free(ASN1_NULL_new()); |
| ASN1_NULL_free(nullptr); |
| |
| // A NULL may be decoded. |
| static const uint8_t kNull[] = {0x05, 0x00}; |
| const uint8_t *ptr = kNull; |
| EXPECT_NE(nullptr, d2i_ASN1_NULL(nullptr, &ptr, sizeof(kNull))); |
| EXPECT_EQ(ptr, kNull + sizeof(kNull)); |
| |
| // It may also be re-encoded. |
| uint8_t *enc = nullptr; |
| int enc_len = i2d_ASN1_NULL(ASN1_NULL_new(), &enc); |
| ASSERT_GE(enc_len, 0); |
| EXPECT_EQ(Bytes(kNull), Bytes(enc, enc_len)); |
| OPENSSL_free(enc); |
| enc = nullptr; |
| |
| // Although the standalone representation of NULL is a non-null pointer, the |
| // |ASN1_TYPE| representation is a null pointer. |
| ptr = kNull; |
| bssl::UniquePtr<ASN1_TYPE> null_type( |
| d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kNull))); |
| ASSERT_TRUE(null_type); |
| EXPECT_EQ(ptr, kNull + sizeof(kNull)); |
| EXPECT_EQ(V_ASN1_NULL, ASN1_TYPE_get(null_type.get())); |
| EXPECT_EQ(nullptr, null_type->value.ptr); |
| } |
| |
| TEST(ASN1Test, Pack) { |
| bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); |
| ASSERT_TRUE(val); |
| val->ca = 0; |
| |
| // Test all three calling conventions. |
| static const uint8_t kExpected[] = {0x30, 0x00}; |
| bssl::UniquePtr<ASN1_STRING> str( |
| ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), nullptr)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ( |
| Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
| Bytes(kExpected)); |
| |
| ASN1_STRING *raw = nullptr; |
| str.reset(ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); |
| ASSERT_TRUE(str); |
| EXPECT_EQ(raw, str.get()); |
| EXPECT_EQ( |
| Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
| Bytes(kExpected)); |
| |
| str.reset(ASN1_STRING_new()); |
| ASSERT_TRUE(str); |
| raw = str.get(); |
| EXPECT_TRUE( |
| ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); |
| EXPECT_EQ(raw, str.get()); |
| EXPECT_EQ( |
| Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), |
| Bytes(kExpected)); |
| } |
| |
| TEST(ASN1Test, Unpack) { |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_new()); |
| ASSERT_TRUE(str); |
| |
| static const uint8_t kValid[] = {0x30, 0x00}; |
| ASSERT_TRUE( |
| ASN1_STRING_set(str.get(), kValid, sizeof(kValid))); |
| bssl::UniquePtr<BASIC_CONSTRAINTS> val(static_cast<BASIC_CONSTRAINTS *>( |
| ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
| ASSERT_TRUE(val); |
| EXPECT_EQ(val->ca, 0); |
| EXPECT_EQ(val->pathlen, nullptr); |
| |
| static const uint8_t kInvalid[] = {0x31, 0x00}; |
| ASSERT_TRUE(ASN1_STRING_set(str.get(), kInvalid, sizeof(kInvalid))); |
| val.reset(static_cast<BASIC_CONSTRAINTS *>( |
| ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
| EXPECT_FALSE(val); |
| |
| static const uint8_t kTraiilingData[] = {0x30, 0x00, 0x00}; |
| ASSERT_TRUE( |
| ASN1_STRING_set(str.get(), kTraiilingData, sizeof(kTraiilingData))); |
| val.reset(static_cast<BASIC_CONSTRAINTS *>( |
| ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); |
| EXPECT_FALSE(val); |
| } |
| |
| TEST(ASN1Test, StringCmp) { |
| struct Input { |
| int type; |
| std::vector<uint8_t> data; |
| int flags; |
| bool equals_previous; |
| }; |
| // kInputs is a list of |ASN1_STRING| parameters, in sorted order. The input |
| // should be sorted by bit length, then data, then type. |
| const Input kInputs[] = { |
| {V_ASN1_BIT_STRING, {}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_BIT_STRING, {}, 0, true}, |
| // When |ASN1_STRING_FLAG_BITS_LEFT| is unset, BIT STRINGs implicitly |
| // drop trailing zeros. |
| {V_ASN1_BIT_STRING, {0x00, 0x00, 0x00, 0x00}, 0, true}, |
| |
| {V_ASN1_OCTET_STRING, {}, 0, false}, |
| {V_ASN1_UTF8STRING, {}, 0, false}, |
| |
| // BIT STRINGs with padding bits (i.e. not part of the actual value) are |
| // shorter and thus sort earlier: |
| // 1-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, |
| {V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, |
| // 2-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, |
| {V_ASN1_BIT_STRING, {0xc0}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, |
| // 3-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, |
| {V_ASN1_BIT_STRING, {0xe0}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, |
| // 4-bit inputs. |
| {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 4, false}, |
| {V_ASN1_BIT_STRING, {0xf0}, 0, true}, // 4 trailing zeros dropped. |
| {V_ASN1_BIT_STRING, {0xf0, 0x00}, 0, true}, // 12 trailing zeros dropped. |
| // 5-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
| {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
| {V_ASN1_BIT_STRING, {0xf8}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, |
| // 6-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
| {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
| {V_ASN1_BIT_STRING, {0xfc}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, |
| // 7-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
| {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
| {V_ASN1_BIT_STRING, {0xfe}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, |
| |
| // 8-bit inputs. |
| {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_OCTET_STRING, {0x00}, 0, false}, |
| {V_ASN1_UTF8STRING, {0x00}, 0, false}, |
| |
| {V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_OCTET_STRING, {0x80}, 0, false}, |
| {V_ASN1_UTF8STRING, {0x80}, 0, false}, |
| |
| {V_ASN1_BIT_STRING, {0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_BIT_STRING, {0xff}, 0, true}, // No trailing zeros to drop. |
| {V_ASN1_OCTET_STRING, {0xff}, 0, false}, |
| {V_ASN1_UTF8STRING, {0xff}, 0, false}, |
| |
| // Bytes are compared lexicographically. |
| {V_ASN1_BIT_STRING, {0x00, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_OCTET_STRING, {0x00, 0x00}, 0, false}, |
| {V_ASN1_UTF8STRING, {0x00, 0x00}, 0, false}, |
| |
| {V_ASN1_BIT_STRING, {0x00, 0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_OCTET_STRING, {0x00, 0xff}, 0, false}, |
| {V_ASN1_UTF8STRING, {0x00, 0xff}, 0, false}, |
| |
| {V_ASN1_BIT_STRING, {0xff, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, |
| {V_ASN1_OCTET_STRING, {0xff, 0x00}, 0, false}, |
| {V_ASN1_UTF8STRING, {0xff, 0x00}, 0, false}, |
| }; |
| std::vector<bssl::UniquePtr<ASN1_STRING>> strs; |
| strs.reserve(OPENSSL_ARRAY_SIZE(kInputs)); |
| for (const auto &input : kInputs) { |
| strs.emplace_back(ASN1_STRING_type_new(input.type)); |
| ASSERT_TRUE(strs.back()); |
| ASSERT_TRUE(ASN1_STRING_set(strs.back().get(), input.data.data(), |
| input.data.size())); |
| strs.back()->flags = input.flags; |
| } |
| |
| for (size_t i = 0; i < strs.size(); i++) { |
| SCOPED_TRACE(i); |
| bool expect_equal = true; |
| for (size_t j = i; j < strs.size(); j++) { |
| SCOPED_TRACE(j); |
| if (j > i && !kInputs[j].equals_previous) { |
| expect_equal = false; |
| } |
| |
| const int cmp_i_j = ASN1_STRING_cmp(strs[i].get(), strs[j].get()); |
| const int cmp_j_i = ASN1_STRING_cmp(strs[j].get(), strs[i].get()); |
| if (expect_equal) { |
| EXPECT_EQ(cmp_i_j, 0); |
| EXPECT_EQ(cmp_j_i, 0); |
| } else if (i < j) { |
| EXPECT_LT(cmp_i_j, 0); |
| EXPECT_GT(cmp_j_i, 0); |
| } else { |
| EXPECT_GT(cmp_i_j, 0); |
| EXPECT_LT(cmp_j_i, 0); |
| } |
| } |
| } |
| } |
| |
| TEST(ASN1Test, PrintASN1Object) { |
| const struct { |
| std::vector<uint8_t> in; |
| const char *expected; |
| } kDataTests[] = { |
| // Known OIDs print as the name. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01}, "rsaEncryption"}, |
| |
| // Unknown OIDs print in decimal. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x00}, |
| "1.2.840.113554.4.1.72585.0"}, |
| |
| // Inputs which cannot be parsed as OIDs print as "<INVALID>". |
| {{0xff}, "<INVALID>"}, |
| |
| // The function has an internal 80-byte buffer. Test inputs at that |
| // boundary. First, 78 characters. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
| "0.0.0.1"}, |
| // 79 characters. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a}, |
| "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
| "0.0.0.10"}, |
| // 80 characters. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64}, |
| "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
| "0.0.0.100"}, |
| // 81 characters. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87, 0x68}, |
| "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
| "0.0.0.1000"}, |
| // 82 characters. |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, |
| 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xce, 0x10}, |
| "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." |
| "0.0.0.10000"}, |
| }; |
| for (const auto &t : kDataTests) { |
| SCOPED_TRACE(Bytes(t.in)); |
| bssl::UniquePtr<ASN1_OBJECT> obj(ASN1_OBJECT_create( |
| NID_undef, t.in.data(), t.in.size(), /*sn=*/nullptr, /*ln=*/nullptr)); |
| ASSERT_TRUE(obj); |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| |
| int len = i2a_ASN1_OBJECT(bio.get(), obj.get()); |
| EXPECT_EQ(len, static_cast<int>(strlen(t.expected))); |
| |
| const uint8_t *bio_data; |
| size_t bio_len; |
| BIO_mem_contents(bio.get(), &bio_data, &bio_len); |
| EXPECT_EQ(t.expected, |
| std::string(reinterpret_cast<const char *>(bio_data), bio_len)); |
| } |
| |
| // Test writing NULL. |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); |
| ASSERT_TRUE(bio); |
| int len = i2a_ASN1_OBJECT(bio.get(), nullptr); |
| EXPECT_EQ(len, 4); |
| const uint8_t *bio_data; |
| size_t bio_len; |
| BIO_mem_contents(bio.get(), &bio_data, &bio_len); |
| EXPECT_EQ("NULL", |
| std::string(reinterpret_cast<const char *>(bio_data), bio_len)); |
| } |
| |
| TEST(ASN1Test, GetObject) { |
| // The header is valid, but there are not enough bytes for the length. |
| static const uint8_t kTruncated[] = {0x30, 0x01}; |
| const uint8_t *ptr = kTruncated; |
| long length; |
| int tag; |
| int tag_class; |
| EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
| sizeof(kTruncated))); |
| |
| // Indefinite-length encoding is not allowed in DER. |
| static const uint8_t kIndefinite[] = {0x30, 0x80, 0x00, 0x00}; |
| ptr = kIndefinite; |
| EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
| sizeof(kIndefinite))); |
| |
| // DER requires lengths be minimally-encoded. This should be {0x30, 0x00}. |
| static const uint8_t kNonMinimal[] = {0x30, 0x81, 0x00}; |
| ptr = kNonMinimal; |
| EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
| sizeof(kNonMinimal))); |
| |
| // This should be {0x04, 0x81, 0x80, ...}. |
| std::vector<uint8_t> non_minimal = {0x04, 0x82, 0x00, 0x80}; |
| non_minimal.resize(non_minimal.size() + 0x80); |
| ptr = non_minimal.data(); |
| EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, |
| non_minimal.size())); |
| } |
| |
| template <typename T> |
| void ExpectNoParse(T *(*d2i)(T **, const uint8_t **, long), |
| const std::vector<uint8_t> &in) { |
| SCOPED_TRACE(Bytes(in)); |
| const uint8_t *ptr = in.data(); |
| bssl::UniquePtr<T> obj(d2i(nullptr, &ptr, in.size())); |
| EXPECT_FALSE(obj); |
| } |
| |
| // The zero tag, constructed or primitive, is reserved and should rejected by |
| // the parser. |
| TEST(ASN1Test, ZeroTag) { |
| ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x00}); |
| ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x10, 0x00}); |
| ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); |
| ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); |
| ExpectNoParse(d2i_ASN1_SEQUENCE_ANY, {0x30, 0x02, 0x00, 0x00}); |
| ExpectNoParse(d2i_ASN1_SET_ANY, {0x31, 0x02, 0x00, 0x00}); |
| // SEQUENCE { |
| // OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
| // [UNIVERSAL 0 PRIMITIVE] {} |
| // } |
| ExpectNoParse(d2i_X509_ALGOR, |
| {0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
| 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x00}); |
| // SEQUENCE { |
| // OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
| // [UNIVERSAL 0 CONSTRUCTED] {} |
| // } |
| ExpectNoParse(d2i_X509_ALGOR, |
| {0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
| 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x20, 0x00}); |
| // SEQUENCE { |
| // OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } |
| // [UNIVERSAL 0 PRIMITIVE] { "a" } |
| // } |
| ExpectNoParse(d2i_X509_ALGOR, |
| {0x30, 0x11, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, |
| 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x01, 0x61}); |
| } |
| |
| TEST(ASN1Test, StringEncoding) { |
| const struct { |
| ASN1_STRING *(*d2i)(ASN1_STRING **out, const uint8_t **inp, long len); |
| std::vector<uint8_t> in; |
| bool valid; |
| } kTests[] = { |
| // All OCTET STRINGs are valid. |
| {d2i_ASN1_OCTET_STRING, {0x04, 0x00}, true}, |
| {d2i_ASN1_OCTET_STRING, {0x04, 0x01, 0x00}, true}, |
| |
| // UTF8String must be valid UTF-8. |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x00}, true}, |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x01, 'a'}, true}, |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xe2, 0x98, 0x83}, true}, |
| // Non-minimal, two-byte UTF-8. |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x02, 0xc0, 0x81}, false}, |
| // Truncated, four-byte UTF-8. |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xf0, 0x80, 0x80}, false}, |
| // Low-surrogate value. |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xa0, 0x80}, false}, |
| // High-surrogate value. |
| {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xb0, 0x81}, false}, |
| |
| // BMPString must be valid UCS-2. |
| {d2i_ASN1_BMPSTRING, {0x1e, 0x00}, true}, |
| {d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0x00, 'a'}, true}, |
| // Truncated code unit. |
| {d2i_ASN1_BMPSTRING, {0x1e, 0x01, 'a'}, false}, |
| // Lone surrogate. |
| {d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0xd8, 0}, false}, |
| // BMPString is UCS-2, not UTF-16, so surrogate pairs are also invalid. |
| {d2i_ASN1_BMPSTRING, {0x1e, 0x04, 0xd8, 0, 0xdc, 1}, false}, |
| |
| // UniversalString must be valid UTF-32. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x00}, true}, |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0x00, 'a'}, true}, |
| // Maximum code point. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfd}, true}, |
| // Reserved. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfe}, false}, |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xff}, false}, |
| // Too high. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x11, 0x00, 0x00}, false}, |
| // Surrogates are not characters. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0xd8, 0}, false}, |
| // Truncated codepoint. |
| {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x03, 0x00, 0x00, 0x00}, false}, |
| |
| // We interpret T61String as Latin-1, so all inputs are valid. |
| {d2i_ASN1_T61STRING, {0x14, 0x00}, true}, |
| {d2i_ASN1_T61STRING, {0x14, 0x01, 0x00}, true}, |
| }; |
| for (const auto& t : kTests) { |
| SCOPED_TRACE(Bytes(t.in)); |
| const uint8_t *inp; |
| |
| if (t.d2i != nullptr) { |
| inp = t.in.data(); |
| bssl::UniquePtr<ASN1_STRING> str(t.d2i(nullptr, &inp, t.in.size())); |
| EXPECT_EQ(t.valid, str != nullptr); |
| } |
| |
| // Also test with the ANY parser. |
| inp = t.in.data(); |
| bssl::UniquePtr<ASN1_TYPE> any(d2i_ASN1_TYPE(nullptr, &inp, t.in.size())); |
| EXPECT_EQ(t.valid, any != nullptr); |
| } |
| } |
| |
| // Exhaustively test POSIX time conversions for every day across the millenium. |
| TEST(ASN1Test, POSIXTime) { |
| const int kDaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
| |
| // Test the epoch explicitly, to confirm our baseline is correct. |
| struct tm civil_time; |
| ASSERT_TRUE(OPENSSL_posix_to_tm(0, &civil_time)); |
| ASSERT_EQ(civil_time.tm_year + 1900, 1970); |
| ASSERT_EQ(civil_time.tm_mon + 1, 1); |
| ASSERT_EQ(civil_time.tm_mday, 1); |
| ASSERT_EQ(civil_time.tm_hour, 0); |
| ASSERT_EQ(civil_time.tm_min, 0); |
| ASSERT_EQ(civil_time.tm_sec, 0); |
| |
| int64_t posix_time = -11676096000; // Sat, 01 Jan 1600 00:00:00 +0000 |
| for (int year = 1600; year < 3000; year++) { |
| SCOPED_TRACE(year); |
| bool is_leap_year = (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; |
| for (int month = 1; month <= 12; month++) { |
| SCOPED_TRACE(month); |
| int days = kDaysInMonth[month - 1]; |
| if (month == 2 && is_leap_year) { |
| days++; |
| } |
| for (int day = 1; day <= days; day++) { |
| SCOPED_TRACE(day); |
| SCOPED_TRACE(posix_time); |
| |
| ASSERT_TRUE(OPENSSL_posix_to_tm(posix_time, &civil_time)); |
| ASSERT_EQ(civil_time.tm_year + 1900, year); |
| ASSERT_EQ(civil_time.tm_mon + 1, month); |
| ASSERT_EQ(civil_time.tm_mday, day); |
| ASSERT_EQ(civil_time.tm_hour, 0); |
| ASSERT_EQ(civil_time.tm_min, 0); |
| ASSERT_EQ(civil_time.tm_sec, 0); |
| |
| int64_t posix_time_computed; |
| ASSERT_TRUE(OPENSSL_tm_to_posix(&civil_time, &posix_time_computed)); |
| ASSERT_EQ(posix_time_computed, posix_time); |
| |
| // Advance to the next day. |
| posix_time += 24 * 60 * 60; |
| } |
| } |
| } |
| } |
| |
| TEST(ASN1Test, LargeString) { |
| bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(V_ASN1_OCTET_STRING)); |
| ASSERT_TRUE(str); |
| // Very large strings should be rejected by |ASN1_STRING_set|. Strictly |
| // speaking, this is an invalid call because the buffer does not have that |
| // much size available. |ASN1_STRING_set| should cleanly fail before it |
| // crashes, and actually allocating 512 MiB in a test is likely to break. |
| char b = 0; |
| EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, INT_MAX / 4)); |
| |
| #if defined(OPENSSL_64_BIT) |
| // |ASN1_STRING_set| should tolerate lengths that exceed |int| without |
| // overflow. |
| EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, 1 + (ossl_ssize_t{1} << 48))); |
| #endif |
| } |
| |
| // The ASN.1 macros do not work on Windows shared library builds, where usage of |
| // |OPENSSL_EXPORT| is a bit stricter. |
| #if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY) |
| |
| typedef struct asn1_linked_list_st { |
| struct asn1_linked_list_st *next; |
| } ASN1_LINKED_LIST; |
| |
| DECLARE_ASN1_ITEM(ASN1_LINKED_LIST) |
| DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
| |
| ASN1_SEQUENCE(ASN1_LINKED_LIST) = { |
| ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST), |
| } ASN1_SEQUENCE_END(ASN1_LINKED_LIST) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST) |
| |
| static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len, |
| size_t count) { |
| bssl::ScopedCBB cbb; |
| std::vector<CBB> cbbs(count); |
| if (!CBB_init(cbb.get(), 2 * count) || |
| !CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) { |
| return false; |
| } |
| for (size_t i = 1; i < count; i++) { |
| if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) { |
| return false; |
| } |
| } |
| uint8_t *ptr; |
| if (!CBB_finish(cbb.get(), &ptr, out_len)) { |
| return false; |
| } |
| out->reset(ptr); |
| return true; |
| } |
| |
| TEST(ASN1Test, Recursive) { |
| bssl::UniquePtr<uint8_t> data; |
| size_t len; |
| |
| // Sanity-check that MakeLinkedList can be parsed. |
| ASSERT_TRUE(MakeLinkedList(&data, &len, 5)); |
| const uint8_t *ptr = data.get(); |
| ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
| EXPECT_TRUE(list); |
| ASN1_LINKED_LIST_free(list); |
| |
| // Excessively deep structures are rejected. |
| ASSERT_TRUE(MakeLinkedList(&data, &len, 100)); |
| ptr = data.get(); |
| list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); |
| EXPECT_FALSE(list); |
| // Note checking the error queue here does not work. The error "stack trace" |
| // is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue. |
| ASN1_LINKED_LIST_free(list); |
| } |
| |
| struct IMPLICIT_CHOICE { |
| ASN1_STRING *string; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
| |
| ASN1_SEQUENCE(IMPLICIT_CHOICE) = { |
| ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0), |
| } ASN1_SEQUENCE_END(IMPLICIT_CHOICE) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE) |
| |
| // Test that the ASN.1 templates reject types with implicitly-tagged CHOICE |
| // types. |
| TEST(ASN1Test, ImplicitChoice) { |
| // Serializing a type with an implicitly tagged CHOICE should fail. |
| std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj( |
| IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free); |
| EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr)); |
| |
| // An implicitly-tagged CHOICE is an error. Depending on the implementation, |
| // it may be misinterpreted as without the tag, or as clobbering the CHOICE |
| // tag. Test both inputs and ensure they fail. |
| |
| // SEQUENCE { UTF8String {} } |
| static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00}; |
| const uint8_t *ptr = kInput1; |
| EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1))); |
| |
| // SEQUENCE { [0 PRIMITIVE] {} } |
| static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00}; |
| ptr = kInput2; |
| EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2))); |
| } |
| |
| struct REQUIRED_FIELD { |
| ASN1_INTEGER *value; |
| ASN1_INTEGER *value_imp; |
| ASN1_INTEGER *value_exp; |
| STACK_OF(ASN1_INTEGER) *seq; |
| STACK_OF(ASN1_INTEGER) *seq_imp; |
| STACK_OF(ASN1_INTEGER) *seq_exp; |
| ASN1_NULL *null; |
| ASN1_NULL *null_imp; |
| ASN1_NULL *null_exp; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(REQUIRED_FIELD) |
| ASN1_SEQUENCE(REQUIRED_FIELD) = { |
| ASN1_SIMPLE(REQUIRED_FIELD, value, ASN1_INTEGER), |
| ASN1_IMP(REQUIRED_FIELD, value_imp, ASN1_INTEGER, 0), |
| ASN1_EXP(REQUIRED_FIELD, value_exp, ASN1_INTEGER, 1), |
| ASN1_SEQUENCE_OF(REQUIRED_FIELD, seq, ASN1_INTEGER), |
| ASN1_IMP_SEQUENCE_OF(REQUIRED_FIELD, seq_imp, ASN1_INTEGER, 2), |
| ASN1_EXP_SEQUENCE_OF(REQUIRED_FIELD, seq_exp, ASN1_INTEGER, 3), |
| ASN1_SIMPLE(REQUIRED_FIELD, null, ASN1_NULL), |
| ASN1_IMP(REQUIRED_FIELD, null_imp, ASN1_NULL, 4), |
| ASN1_EXP(REQUIRED_FIELD, null_exp, ASN1_NULL, 5), |
| } ASN1_SEQUENCE_END(REQUIRED_FIELD) |
| IMPLEMENT_ASN1_FUNCTIONS(REQUIRED_FIELD) |
| |
| // Test that structures with missing required fields cannot be serialized. Test |
| // the full combination of tagging and SEQUENCE OF. |
| TEST(ASN1Test, MissingRequiredField) { |
| EXPECT_EQ(-1, i2d_REQUIRED_FIELD(nullptr, nullptr)); |
| |
| std::unique_ptr<REQUIRED_FIELD, decltype(&REQUIRED_FIELD_free)> obj( |
| nullptr, REQUIRED_FIELD_free); |
| for (auto field : {&REQUIRED_FIELD::value, &REQUIRED_FIELD::value_imp, |
| &REQUIRED_FIELD::value_exp}) { |
| obj.reset(REQUIRED_FIELD_new()); |
| ASSERT_TRUE(obj); |
| ASN1_INTEGER_free((*obj).*field); |
| (*obj).*field = nullptr; |
| EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
| } |
| |
| for (auto field : {&REQUIRED_FIELD::seq, &REQUIRED_FIELD::seq_imp, |
| &REQUIRED_FIELD::seq_exp}) { |
| obj.reset(REQUIRED_FIELD_new()); |
| ASSERT_TRUE(obj); |
| sk_ASN1_INTEGER_pop_free((*obj).*field, ASN1_INTEGER_free); |
| (*obj).*field = nullptr; |
| EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
| } |
| |
| for (auto field : {&REQUIRED_FIELD::null, &REQUIRED_FIELD::null_imp, |
| &REQUIRED_FIELD::null_exp}) { |
| obj.reset(REQUIRED_FIELD_new()); |
| ASSERT_TRUE(obj); |
| (*obj).*field = nullptr; |
| EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); |
| } |
| } |
| |
| struct BOOLEANS { |
| ASN1_BOOLEAN required; |
| ASN1_BOOLEAN optional; |
| ASN1_BOOLEAN default_true; |
| ASN1_BOOLEAN default_false; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(BOOLEANS) |
| ASN1_SEQUENCE(BOOLEANS) = { |
| ASN1_SIMPLE(BOOLEANS, required, ASN1_BOOLEAN), |
| ASN1_IMP_OPT(BOOLEANS, optional, ASN1_BOOLEAN, 1), |
| // Although not actually optional, |ASN1_TBOOLEAN| and |ASN1_FBOOLEAN| need |
| // to be marked optional in the template. |
| ASN1_IMP_OPT(BOOLEANS, default_true, ASN1_TBOOLEAN, 2), |
| ASN1_IMP_OPT(BOOLEANS, default_false, ASN1_FBOOLEAN, 3), |
| } ASN1_SEQUENCE_END(BOOLEANS) |
| IMPLEMENT_ASN1_FUNCTIONS(BOOLEANS) |
| |
| TEST(ASN1Test, OptionalAndDefaultBooleans) { |
| std::unique_ptr<BOOLEANS, decltype(&BOOLEANS_free)> obj(nullptr, |
| BOOLEANS_free); |
| |
| // A default-constructed object should use, respectively, omitted, omitted, |
| // TRUE, FALSE. |
| // |
| // TODO(davidben): Is the first one a bug? It seems more consistent for a |
| // required BOOLEAN default to FALSE. |FOO_new| typically default-initializes |
| // fields valid states. (Though there are exceptions. CHOICE, ANY, and OBJECT |
| // IDENTIFIER are default-initialized to something invalid.) |
| obj.reset(BOOLEANS_new()); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(obj->required, ASN1_BOOLEAN_NONE); |
| EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE); |
| EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE); |
| EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE); |
| |
| // Trying to serialize this should fail, because |obj->required| is omitted. |
| EXPECT_EQ(-1, i2d_BOOLEANS(obj.get(), nullptr)); |
| |
| // Otherwise, this object is serializable. Most fields are omitted, due to |
| // them being optional or defaulted. |
| static const uint8_t kFieldsOmitted[] = {0x30, 0x03, 0x01, 0x01, 0x00}; |
| obj->required = 0; |
| TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsOmitted); |
| |
| const uint8_t *der = kFieldsOmitted; |
| obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsOmitted))); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(obj->required, ASN1_BOOLEAN_FALSE); |
| EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE); |
| EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE); |
| EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE); |
| |
| // Include the optinonal fields instead. |
| static const uint8_t kFieldsIncluded[] = {0x30, 0x0c, 0x01, 0x01, 0xff, |
| 0x81, 0x01, 0x00, 0x82, 0x01, |
| 0x00, 0x83, 0x01, 0xff}; |
| obj->required = ASN1_BOOLEAN_TRUE; |
| obj->optional = ASN1_BOOLEAN_FALSE; |
| obj->default_true = ASN1_BOOLEAN_FALSE; |
| obj->default_false = ASN1_BOOLEAN_TRUE; |
| TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsIncluded); |
| |
| der = kFieldsIncluded; |
| obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsIncluded))); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(obj->required, ASN1_BOOLEAN_TRUE); |
| EXPECT_EQ(obj->optional, ASN1_BOOLEAN_FALSE); |
| EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_FALSE); |
| EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_TRUE); |
| |
| // TODO(https://crbug.com/boringssl/354): Reject explicit DEFAULTs. |
| } |
| |
| // EXPLICIT_BOOLEAN is a [1] EXPLICIT BOOLEAN. |
| ASN1_ITEM_TEMPLATE(EXPLICIT_BOOLEAN) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPLICIT, |
| 1, |
| EXPLICIT_BOOLEAN, |
| ASN1_BOOLEAN) |
| ASN1_ITEM_TEMPLATE_END(EXPLICIT_BOOLEAN) |
| |
| // EXPLICIT_OCTET_STRING is a [2] EXPLICIT OCTET STRING. |
| ASN1_ITEM_TEMPLATE(EXPLICIT_OCTET_STRING) = ASN1_EX_TEMPLATE_TYPE( |
| ASN1_TFLG_EXPLICIT, 2, EXPLICIT_OCTET_STRING, ASN1_OCTET_STRING) |
| ASN1_ITEM_TEMPLATE_END(EXPLICIT_OCTET_STRING) |
| |
| // DOUBLY_TAGGED is |
| // SEQUENCE { |
| // b [3] EXPLICIT [1] EXPLICIT BOOLEAN OPTIONAL, |
| // oct [4] EXPLICIT [2] EXPLICIT OCTET STRING OPTIONAL } |
| // with explicit tagging. |
| struct DOUBLY_TAGGED { |
| ASN1_BOOLEAN b; |
| ASN1_OCTET_STRING *oct; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(DOUBLY_TAGGED) |
| ASN1_SEQUENCE(DOUBLY_TAGGED) = { |
| ASN1_EXP_OPT(DOUBLY_TAGGED, b, EXPLICIT_BOOLEAN, 3), |
| ASN1_EXP_OPT(DOUBLY_TAGGED, oct, EXPLICIT_OCTET_STRING, 4), |
| } ASN1_SEQUENCE_END(DOUBLY_TAGGED) |
| IMPLEMENT_ASN1_FUNCTIONS(DOUBLY_TAGGED) |
| |
| // Test that optional fields with two layers of explicit tagging are correctly |
| // handled. |
| TEST(ASN1Test, DoublyTagged) { |
| std::unique_ptr<DOUBLY_TAGGED, decltype(&DOUBLY_TAGGED_free)> obj( |
| nullptr, DOUBLY_TAGGED_free); |
| |
| // Both fields missing. |
| static const uint8_t kOmitted[] = {0x30, 0x00}; |
| const uint8_t *inp = kOmitted; |
| obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kOmitted))); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(obj->b, -1); |
| EXPECT_FALSE(obj->oct); |
| TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kOmitted); |
| |
| // Both fields present, true and the empty string. |
| static const uint8_t kTrueEmpty[] = {0x30, 0x0d, 0xa3, 0x05, 0xa1, |
| 0x03, 0x01, 0x01, 0xff, 0xa4, |
| 0x04, 0xa2, 0x02, 0x04, 0x00}; |
| inp = kTrueEmpty; |
| obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kTrueEmpty))); |
| ASSERT_TRUE(obj); |
| EXPECT_EQ(obj->b, 0xff); |
| ASSERT_TRUE(obj->oct); |
| EXPECT_EQ(ASN1_STRING_length(obj->oct), 0); |
| TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kTrueEmpty); |
| } |
| |
| #define CHOICE_TYPE_OCT 0 |
| #define CHOICE_TYPE_BOOL 1 |
| |
| struct CHOICE_TYPE { |
| int type; |
| union { |
| ASN1_OCTET_STRING *oct; |
| ASN1_BOOLEAN b; |
| } value; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(CHOICE_TYPE) |
| ASN1_CHOICE(CHOICE_TYPE) = { |
| ASN1_SIMPLE(CHOICE_TYPE, value.oct, ASN1_OCTET_STRING), |
| ASN1_SIMPLE(CHOICE_TYPE, value.b, ASN1_BOOLEAN), |
| } ASN1_CHOICE_END(CHOICE_TYPE) |
| IMPLEMENT_ASN1_FUNCTIONS(CHOICE_TYPE) |
| |
| struct OPTIONAL_CHOICE { |
| CHOICE_TYPE *choice; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(OPTIONAL_CHOICE) |
| ASN1_SEQUENCE(OPTIONAL_CHOICE) = { |
| ASN1_OPT(OPTIONAL_CHOICE, choice, CHOICE_TYPE), |
| } ASN1_SEQUENCE_END(OPTIONAL_CHOICE) |
| IMPLEMENT_ASN1_FUNCTIONS(OPTIONAL_CHOICE) |
| |
| TEST(ASN1Test, OptionalChoice) { |
| std::unique_ptr<OPTIONAL_CHOICE, decltype(&OPTIONAL_CHOICE_free)> obj( |
| nullptr, OPTIONAL_CHOICE_free); |
| |
| // Value omitted. |
| static const uint8_t kOmitted[] = {0x30, 0x00}; |
| const uint8_t *inp = kOmitted; |
| obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOmitted))); |
| ASSERT_TRUE(obj); |
| EXPECT_FALSE(obj->choice); |
| TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOmitted); |
| |
| // Value is present as an OCTET STRING. |
| static const uint8_t kOct[] = {0x30, 0x02, 0x04, 0x00}; |
| inp = kOct; |
| obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOct))); |
| ASSERT_TRUE(obj); |
| ASSERT_TRUE(obj->choice); |
| ASSERT_EQ(obj->choice->type, CHOICE_TYPE_OCT); |
| ASSERT_TRUE(obj->choice->value.oct); |
| EXPECT_EQ(ASN1_STRING_length(obj->choice->value.oct), 0); |
| TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOct); |
| |
| // Value is present as TRUE. |
| static const uint8_t kTrue[] = {0x30, 0x03, 0x01, 0x01, 0xff}; |
| inp = kTrue; |
| obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kTrue))); |
| ASSERT_TRUE(obj); |
| ASSERT_TRUE(obj->choice); |
| ASSERT_EQ(obj->choice->type, CHOICE_TYPE_BOOL); |
| EXPECT_EQ(obj->choice->value.b, ASN1_BOOLEAN_TRUE); |
| TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kTrue); |
| } |
| |
| struct EMBED_X509_ALGOR { |
| X509_ALGOR *simple; |
| X509_ALGOR *opt; |
| STACK_OF(X509_ALGOR) *seq; |
| }; |
| |
| struct EMBED_X509_NAME { |
| X509_NAME *simple; |
| X509_NAME *opt; |
| STACK_OF(X509_NAME) *seq; |
| }; |
| |
| DECLARE_ASN1_FUNCTIONS(EMBED_X509_ALGOR) |
| ASN1_SEQUENCE(EMBED_X509_ALGOR) = { |
| ASN1_SIMPLE(EMBED_X509_ALGOR, simple, X509_ALGOR), |
| ASN1_EXP_OPT(EMBED_X509_ALGOR, opt, X509_ALGOR, 0), |
| ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_ALGOR, seq, X509_ALGOR, 1), |
| } ASN1_SEQUENCE_END(EMBED_X509_ALGOR) |
| IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_ALGOR) |
| |
| DECLARE_ASN1_FUNCTIONS(EMBED_X509_NAME) |
| ASN1_SEQUENCE(EMBED_X509_NAME) = { |
| ASN1_SIMPLE(EMBED_X509_NAME, simple, X509_NAME), |
| ASN1_EXP_OPT(EMBED_X509_NAME, opt, X509_NAME, 0), |
| ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_NAME, seq, X509_NAME, 1), |
| } ASN1_SEQUENCE_END(EMBED_X509_NAME) |
| IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_NAME) |
| |
| template <typename EmbedT, typename T, typename MaybeConstT, typename StackT> |
| void TestEmbedType(bssl::Span<const uint8_t> inp, |
| int (*i2d)(MaybeConstT *, uint8_t **), |
| EmbedT *(*embed_new)(), void (*embed_free)(EmbedT *), |
| EmbedT *(*d2i_embed)(EmbedT **, const uint8_t **, long), |
| int (*i2d_embed)(EmbedT *, uint8_t **), |
| size_t (*sk_num)(const StackT *), |
| T *(*sk_value)(const StackT *, size_t)) { |
| std::unique_ptr<EmbedT, decltype(embed_free)> obj(nullptr, embed_free); |
| |
| // Test only the first field present. |
| bssl::ScopedCBB cbb; |
| ASSERT_TRUE(CBB_init(cbb.get(), 64)); |
| CBB seq; |
| ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE)); |
| ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size())); |
| ASSERT_TRUE(CBB_flush(cbb.get())); |
| const uint8_t *ptr = CBB_data(cbb.get()); |
| obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get()))); |
| ASSERT_TRUE(obj); |
| ASSERT_TRUE(obj->simple); |
| // Test the field was parsed correctly by reserializing it. |
| TestSerialize(obj->simple, i2d, inp); |
| EXPECT_FALSE(obj->opt); |
| EXPECT_FALSE(obj->seq); |
| TestSerialize(obj.get(), i2d_embed, |
| {CBB_data(cbb.get()), CBB_len(cbb.get())}); |
| |
| // Test all fields present. |
| cbb.Reset(); |
| ASSERT_TRUE(CBB_init(cbb.get(), 64)); |
| ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE)); |
| ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size())); |
| CBB child; |
| ASSERT_TRUE(CBB_add_asn1( |
| &seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); |
| ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); |
| ASSERT_TRUE(CBB_add_asn1( |
| &seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); |
| ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); |
| ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); |
| ASSERT_TRUE(CBB_flush(cbb.get())); |
| ptr = CBB_data(cbb.get()); |
| obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get()))); |
| ASSERT_TRUE(obj); |
| ASSERT_TRUE(obj->simple); |
| TestSerialize(obj->simple, i2d, inp); |
| ASSERT_TRUE(obj->opt); |
| TestSerialize(obj->opt, i2d, inp); |
| ASSERT_EQ(sk_num(obj->seq), 2u); |
| TestSerialize(sk_value(obj->seq, 0), i2d, inp); |
| TestSerialize(sk_value(obj->seq, 1), i2d, inp); |
| TestSerialize(obj.get(), i2d_embed, |
| {CBB_data(cbb.get()), CBB_len(cbb.get())}); |
| } |
| |
| // Test that X.509 types defined in this library can be embedded into other |
| // types, as we rewrite them away from the templating system. |
| TEST(ASN1Test, EmbedTypes) { |
| static const uint8_t kTestAlg[] = {0x30, 0x09, 0x06, 0x07, 0x2a, 0x86, |
| 0x48, 0xce, 0x3d, 0x04, 0x01}; |
| TestEmbedType(kTestAlg, i2d_X509_ALGOR, EMBED_X509_ALGOR_new, |
| EMBED_X509_ALGOR_free, d2i_EMBED_X509_ALGOR, |
| i2d_EMBED_X509_ALGOR, sk_X509_ALGOR_num, sk_X509_ALGOR_value); |
| |
| static const uint8_t kTestName[] = { |
| 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, |
| 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, |
| 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, |
| 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, |
| 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, |
| 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64}; |
| TestEmbedType(kTestName, i2d_X509_NAME, EMBED_X509_NAME_new, |
| EMBED_X509_NAME_free, d2i_EMBED_X509_NAME, i2d_EMBED_X509_NAME, |
| sk_X509_NAME_num, sk_X509_NAME_value); |
| } |
| |
| #endif // !WINDOWS || !SHARED_LIBRARY |