|  | // Copyright 2014 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | void CBB_zero(CBB *cbb) { OPENSSL_memset(cbb, 0, sizeof(CBB)); } | 
|  |  | 
|  | static void cbb_init(CBB *cbb, uint8_t *buf, size_t cap, int can_resize) { | 
|  | cbb->is_child = 0; | 
|  | cbb->child = NULL; | 
|  | cbb->u.base.buf = buf; | 
|  | cbb->u.base.len = 0; | 
|  | cbb->u.base.cap = cap; | 
|  | cbb->u.base.can_resize = can_resize; | 
|  | cbb->u.base.error = 0; | 
|  | } | 
|  |  | 
|  | int CBB_init(CBB *cbb, size_t initial_capacity) { | 
|  | CBB_zero(cbb); | 
|  |  | 
|  | uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(initial_capacity)); | 
|  | if (initial_capacity > 0 && buf == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cbb_init(cbb, buf, initial_capacity, /*can_resize=*/1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { | 
|  | CBB_zero(cbb); | 
|  | cbb_init(cbb, buf, len, /*can_resize=*/0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void CBB_cleanup(CBB *cbb) { | 
|  | // Child |CBB|s are non-owning. They are implicitly discarded and should not | 
|  | // be used with |CBB_cleanup| or |ScopedCBB|. | 
|  | assert(!cbb->is_child); | 
|  | if (cbb->is_child) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cbb->u.base.can_resize) { | 
|  | OPENSSL_free(cbb->u.base.buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out, | 
|  | size_t len) { | 
|  | if (base == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t newlen = base->len + len; | 
|  | if (newlen < base->len) { | 
|  | // Overflow | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (newlen > base->cap) { | 
|  | if (!base->can_resize) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | size_t newcap = base->cap * 2; | 
|  | if (newcap < base->cap || newcap < newlen) { | 
|  | newcap = newlen; | 
|  | } | 
|  | uint8_t *newbuf = | 
|  | reinterpret_cast<uint8_t *>(OPENSSL_realloc(base->buf, newcap)); | 
|  | if (newbuf == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | base->buf = newbuf; | 
|  | base->cap = newcap; | 
|  | } | 
|  |  | 
|  | if (out) { | 
|  | *out = base->buf + base->len; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | base->error = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, | 
|  | size_t len) { | 
|  | if (!cbb_buffer_reserve(base, out, len)) { | 
|  | return 0; | 
|  | } | 
|  | // This will not overflow or |cbb_buffer_reserve| would have failed. | 
|  | base->len += len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { | 
|  | if (cbb->is_child) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cbb->u.base.can_resize && (out_data == NULL || out_len == NULL)) { | 
|  | // |out_data| and |out_len| can only be NULL if the CBB is fixed. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (out_data != NULL) { | 
|  | *out_data = cbb->u.base.buf; | 
|  | } | 
|  | if (out_len != NULL) { | 
|  | *out_len = cbb->u.base.len; | 
|  | } | 
|  | cbb->u.base.buf = NULL; | 
|  | CBB_cleanup(cbb); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct cbb_buffer_st *cbb_get_base(CBB *cbb) { | 
|  | if (cbb->is_child) { | 
|  | return cbb->u.child.base; | 
|  | } | 
|  | return &cbb->u.base; | 
|  | } | 
|  |  | 
|  | static void cbb_on_error(CBB *cbb) { | 
|  | // Due to C's lack of destructors and |CBB|'s auto-flushing API, a failing | 
|  | // |CBB|-taking function may leave a dangling pointer to a child |CBB|. As a | 
|  | // result, the convention is callers may not write to |CBB|s that have failed. | 
|  | // But, as a safety measure, we lock the |CBB| into an error state. Once the | 
|  | // error bit is set, |cbb->child| will not be read. | 
|  | // | 
|  | // TODO(davidben): This still isn't quite ideal. A |CBB| function *outside* | 
|  | // this file may originate an error while the |CBB| points to a local child. | 
|  | // In that case we don't set the error bit and are reliant on the error | 
|  | // convention. Perhaps we allow |CBB_cleanup| on child |CBB|s and make every | 
|  | // child's |CBB_cleanup| set the error bit if unflushed. That will be | 
|  | // convenient for C++ callers, but very tedious for C callers. So C callers | 
|  | // perhaps should get a |CBB_on_error| function that can be, less tediously, | 
|  | // stuck in a |goto err| block. | 
|  | cbb_get_base(cbb)->error = 1; | 
|  |  | 
|  | // Clearing the pointer is not strictly necessary, but GCC's dangling pointer | 
|  | // warning does not know |cbb->child| will not be read once |error| is set | 
|  | // above. | 
|  | cbb->child = NULL; | 
|  | } | 
|  |  | 
|  | // CBB_flush recurses and then writes out any pending length prefix. The | 
|  | // current length of the underlying base is taken to be the length of the | 
|  | // length-prefixed data. | 
|  | int CBB_flush(CBB *cbb) { | 
|  | // If |base| has hit an error, the buffer is in an undefined state, so | 
|  | // fail all following calls. In particular, |cbb->child| may point to invalid | 
|  | // memory. | 
|  | struct cbb_buffer_st *base = cbb_get_base(cbb); | 
|  | if (base == NULL || base->error) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cbb->child == NULL) { | 
|  | // Nothing to flush. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | assert(cbb->child->is_child); | 
|  | struct cbb_child_st *child = &cbb->child->u.child; | 
|  | assert(child->base == base); | 
|  | size_t child_start = child->offset + child->pending_len_len; | 
|  |  | 
|  | size_t len; | 
|  | if (!CBB_flush(cbb->child) || child_start < child->offset || | 
|  | base->len < child_start) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | len = base->len - child_start; | 
|  |  | 
|  | if (child->pending_is_asn1) { | 
|  | // For ASN.1 we assume that we'll only need a single byte for the length. | 
|  | // If that turned out to be incorrect, we have to move the contents along | 
|  | // in order to make space. | 
|  | uint8_t len_len; | 
|  | uint8_t initial_length_byte; | 
|  |  | 
|  | assert(child->pending_len_len == 1); | 
|  |  | 
|  | if (len > 0xfffffffe) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | // Too large. | 
|  | goto err; | 
|  | } else if (len > 0xffffff) { | 
|  | len_len = 5; | 
|  | initial_length_byte = 0x80 | 4; | 
|  | } else if (len > 0xffff) { | 
|  | len_len = 4; | 
|  | initial_length_byte = 0x80 | 3; | 
|  | } else if (len > 0xff) { | 
|  | len_len = 3; | 
|  | initial_length_byte = 0x80 | 2; | 
|  | } else if (len > 0x7f) { | 
|  | len_len = 2; | 
|  | initial_length_byte = 0x80 | 1; | 
|  | } else { | 
|  | len_len = 1; | 
|  | initial_length_byte = (uint8_t)len; | 
|  | len = 0; | 
|  | } | 
|  |  | 
|  | if (len_len != 1) { | 
|  | // We need to move the contents along in order to make space. | 
|  | size_t extra_bytes = len_len - 1; | 
|  | if (!cbb_buffer_add(base, NULL, extra_bytes)) { | 
|  | goto err; | 
|  | } | 
|  | OPENSSL_memmove(base->buf + child_start + extra_bytes, | 
|  | base->buf + child_start, len); | 
|  | } | 
|  | base->buf[child->offset++] = initial_length_byte; | 
|  | child->pending_len_len = len_len - 1; | 
|  | } | 
|  |  | 
|  | for (size_t i = child->pending_len_len - 1; i < child->pending_len_len; i--) { | 
|  | base->buf[child->offset + i] = (uint8_t)len; | 
|  | len >>= 8; | 
|  | } | 
|  | if (len != 0) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | child->base = NULL; | 
|  | cbb->child = NULL; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint8_t *CBB_data(const CBB *cbb) { | 
|  | assert(cbb->child == NULL); | 
|  | if (cbb->is_child) { | 
|  | return cbb->u.child.base->buf + cbb->u.child.offset + | 
|  | cbb->u.child.pending_len_len; | 
|  | } | 
|  | return cbb->u.base.buf; | 
|  | } | 
|  |  | 
|  | size_t CBB_len(const CBB *cbb) { | 
|  | assert(cbb->child == NULL); | 
|  | if (cbb->is_child) { | 
|  | assert(cbb->u.child.offset + cbb->u.child.pending_len_len <= | 
|  | cbb->u.child.base->len); | 
|  | return cbb->u.child.base->len - cbb->u.child.offset - | 
|  | cbb->u.child.pending_len_len; | 
|  | } | 
|  | return cbb->u.base.len; | 
|  | } | 
|  |  | 
|  | static int cbb_add_child(CBB *cbb, CBB *out_child, uint8_t len_len, | 
|  | int is_asn1) { | 
|  | assert(cbb->child == NULL); | 
|  | assert(!is_asn1 || len_len == 1); | 
|  | struct cbb_buffer_st *base = cbb_get_base(cbb); | 
|  | size_t offset = base->len; | 
|  |  | 
|  | // Reserve space for the length prefix. | 
|  | uint8_t *prefix_bytes; | 
|  | if (!cbb_buffer_add(base, &prefix_bytes, len_len)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memset(prefix_bytes, 0, len_len); | 
|  |  | 
|  | CBB_zero(out_child); | 
|  | out_child->is_child = 1; | 
|  | out_child->u.child.base = base; | 
|  | out_child->u.child.offset = offset; | 
|  | out_child->u.child.pending_len_len = len_len; | 
|  | out_child->u.child.pending_is_asn1 = is_asn1; | 
|  | cbb->child = out_child; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, | 
|  | uint8_t len_len) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cbb_add_child(cbb, out_contents, len_len, /*is_asn1=*/0); | 
|  | } | 
|  |  | 
|  | int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 1); | 
|  | } | 
|  |  | 
|  | int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 2); | 
|  | } | 
|  |  | 
|  | int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 3); | 
|  | } | 
|  |  | 
|  | // add_base128_integer encodes |v| as a big-endian base-128 integer where the | 
|  | // high bit of each byte indicates where there is more data. This is the | 
|  | // encoding used in DER for both high tag number form and OID components. | 
|  | static int add_base128_integer(CBB *cbb, uint64_t v) { | 
|  | unsigned len_len = 0; | 
|  | uint64_t copy = v; | 
|  | while (copy > 0) { | 
|  | len_len++; | 
|  | copy >>= 7; | 
|  | } | 
|  | if (len_len == 0) { | 
|  | len_len = 1;  // Zero is encoded with one byte. | 
|  | } | 
|  | for (unsigned i = len_len - 1; i < len_len; i--) { | 
|  | uint8_t byte = (v >> (7 * i)) & 0x7f; | 
|  | if (i != 0) { | 
|  | // The high bit denotes whether there is more data. | 
|  | byte |= 0x80; | 
|  | } | 
|  | if (!CBB_add_u8(cbb, byte)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1(CBB *cbb, CBB *out_contents, CBS_ASN1_TAG tag) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Split the tag into leading bits and tag number. | 
|  | uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0; | 
|  | CBS_ASN1_TAG tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK; | 
|  | if (tag_number >= 0x1f) { | 
|  | // Set all the bits in the tag number to signal high tag number form. | 
|  | if (!CBB_add_u8(cbb, tag_bits | 0x1f) || | 
|  | !add_base128_integer(cbb, tag_number)) { | 
|  | return 0; | 
|  | } | 
|  | } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Reserve one byte of length prefix. |CBB_flush| will finish it later. | 
|  | return cbb_add_child(cbb, out_contents, /*len_len=*/1, /*is_asn1=*/1); | 
|  | } | 
|  |  | 
|  | int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { | 
|  | uint8_t *out; | 
|  | if (!CBB_add_space(cbb, &out, len)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(out, data, len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_zeros(CBB *cbb, size_t len) { | 
|  | uint8_t *out; | 
|  | if (!CBB_add_space(cbb, &out, len)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memset(out, 0, len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { | 
|  | if (!CBB_flush(cbb) || !cbb_buffer_add(cbb_get_base(cbb), out_data, len)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) { | 
|  | if (!CBB_flush(cbb) || | 
|  | !cbb_buffer_reserve(cbb_get_base(cbb), out_data, len)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_did_write(CBB *cbb, size_t len) { | 
|  | struct cbb_buffer_st *base = cbb_get_base(cbb); | 
|  | size_t newlen = base->len + len; | 
|  | if (cbb->child != NULL || newlen < base->len || newlen > base->cap) { | 
|  | return 0; | 
|  | } | 
|  | base->len = newlen; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cbb_add_u(CBB *cbb, uint64_t v, size_t len_len) { | 
|  | uint8_t *buf; | 
|  | if (!CBB_add_space(cbb, &buf, len_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (size_t i = len_len - 1; i < len_len; i--) { | 
|  | buf[i] = v; | 
|  | v >>= 8; | 
|  | } | 
|  |  | 
|  | // |v| must fit in |len_len| bytes. | 
|  | if (v != 0) { | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_u8(CBB *cbb, uint8_t value) { return cbb_add_u(cbb, value, 1); } | 
|  |  | 
|  | int CBB_add_u16(CBB *cbb, uint16_t value) { return cbb_add_u(cbb, value, 2); } | 
|  |  | 
|  | int CBB_add_u16le(CBB *cbb, uint16_t value) { | 
|  | return CBB_add_u16(cbb, CRYPTO_bswap2(value)); | 
|  | } | 
|  |  | 
|  | int CBB_add_u24(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 3); } | 
|  |  | 
|  | int CBB_add_u32(CBB *cbb, uint32_t value) { return cbb_add_u(cbb, value, 4); } | 
|  |  | 
|  | int CBB_add_u32le(CBB *cbb, uint32_t value) { | 
|  | return CBB_add_u32(cbb, CRYPTO_bswap4(value)); | 
|  | } | 
|  |  | 
|  | int CBB_add_u64(CBB *cbb, uint64_t value) { return cbb_add_u(cbb, value, 8); } | 
|  |  | 
|  | int CBB_add_u64le(CBB *cbb, uint64_t value) { | 
|  | return CBB_add_u64(cbb, CRYPTO_bswap8(value)); | 
|  | } | 
|  |  | 
|  | void CBB_discard_child(CBB *cbb) { | 
|  | if (cbb->child == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct cbb_buffer_st *base = cbb_get_base(cbb); | 
|  | assert(cbb->child->is_child); | 
|  | base->len = cbb->child->u.child.offset; | 
|  |  | 
|  | cbb->child->u.child.base = NULL; | 
|  | cbb->child = NULL; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { | 
|  | return CBB_add_asn1_uint64_with_tag(cbb, value, CBS_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_uint64_with_tag(CBB *cbb, uint64_t value, CBS_ASN1_TAG tag) { | 
|  | CBB child; | 
|  | int started = 0; | 
|  | if (!CBB_add_asn1(cbb, &child, tag)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < 8; i++) { | 
|  | uint8_t byte = (value >> 8 * (7 - i)) & 0xff; | 
|  | if (!started) { | 
|  | if (byte == 0) { | 
|  | // Don't encode leading zeros. | 
|  | continue; | 
|  | } | 
|  | // If the high bit is set, add a padding byte to make it | 
|  | // unsigned. | 
|  | if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { | 
|  | goto err; | 
|  | } | 
|  | started = 1; | 
|  | } | 
|  | if (!CBB_add_u8(&child, byte)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 0 is encoded as a single 0, not the empty string. | 
|  | if (!started && !CBB_add_u8(&child, 0)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return CBB_flush(cbb); | 
|  |  | 
|  | err: | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_int64(CBB *cbb, int64_t value) { | 
|  | return CBB_add_asn1_int64_with_tag(cbb, value, CBS_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_int64_with_tag(CBB *cbb, int64_t value, CBS_ASN1_TAG tag) { | 
|  | if (value >= 0) { | 
|  | return CBB_add_asn1_uint64_with_tag(cbb, (uint64_t)value, tag); | 
|  | } | 
|  |  | 
|  | uint8_t bytes[sizeof(int64_t)]; | 
|  | memcpy(bytes, &value, sizeof(value)); | 
|  | int start = 7; | 
|  | // Skip leading sign-extension bytes unless they are necessary. | 
|  | while (start > 0 && (bytes[start] == 0xff && (bytes[start - 1] & 0x80))) { | 
|  | start--; | 
|  | } | 
|  |  | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, tag)) { | 
|  | goto err; | 
|  | } | 
|  | for (int i = start; i >= 0; i--) { | 
|  | if (!CBB_add_u8(&child, bytes[i])) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | return CBB_flush(cbb); | 
|  |  | 
|  | err: | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) || | 
|  | !CBB_add_bytes(&child, data, data_len) || !CBB_flush(cbb)) { | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_bool(CBB *cbb, int value) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) || | 
|  | !CBB_add_u8(&child, value != 0 ? 0xff : 0) || !CBB_flush(cbb)) { | 
|  | cbb_on_error(cbb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is | 
|  | // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the | 
|  | // component and the dot, so |cbs| may be passed into the function again for the | 
|  | // next value. | 
|  | static int parse_dotted_decimal(CBS *cbs, uint64_t *out) { | 
|  | if (!CBS_get_u64_decimal(cbs, out)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The integer must have either ended at the end of the string, or a | 
|  | // non-terminal dot, which should be consumed. If the string ends with a dot, | 
|  | // this is not a valid OID string. | 
|  | uint8_t dot; | 
|  | return !CBS_get_u8(cbs, &dot) || (dot == '.' && CBS_len(cbs) > 0); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, (const uint8_t *)text, len); | 
|  |  | 
|  | // OIDs must have at least two components. | 
|  | uint64_t a, b; | 
|  | if (!parse_dotted_decimal(&cbs, &a) || !parse_dotted_decimal(&cbs, &b)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is | 
|  | // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39. | 
|  | if (a > 2 || (a < 2 && b > 39) || b > UINT64_MAX - 80 || | 
|  | !add_base128_integer(cbb, 40u * a + b)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The remaining components are encoded unmodified. | 
|  | while (CBS_len(&cbs) > 0) { | 
|  | if (!parse_dotted_decimal(&cbs, &a) || !add_base128_integer(cbb, a)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int compare_set_of_element(const void *a_ptr, const void *b_ptr) { | 
|  | // See X.690, section 11.6 for the ordering. They are sorted in ascending | 
|  | // order by their DER encoding. | 
|  | const CBS *a = reinterpret_cast<const CBS *>(a_ptr), | 
|  | *b = reinterpret_cast<const CBS *>(b_ptr); | 
|  | size_t a_len = CBS_len(a), b_len = CBS_len(b); | 
|  | size_t min_len = a_len < b_len ? a_len : b_len; | 
|  | int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  | if (a_len == b_len) { | 
|  | return 0; | 
|  | } | 
|  | // If one is a prefix of the other, the shorter one sorts first. (This is not | 
|  | // actually reachable. No DER encoding is a prefix of another DER encoding.) | 
|  | return a_len < b_len ? -1 : 1; | 
|  | } | 
|  |  | 
|  | int CBB_flush_asn1_set_of(CBB *cbb) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | size_t num_children = 0; | 
|  | CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb)); | 
|  | while (CBS_len(&cbs) != 0) { | 
|  | if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | num_children++; | 
|  | } | 
|  |  | 
|  | if (num_children < 2) { | 
|  | return 1;  // Nothing to do. This is the common case for X.509. | 
|  | } | 
|  |  | 
|  | // Parse out the children and sort. We alias them into a copy of so they | 
|  | // remain valid as we rewrite |cbb|. | 
|  | int ret = 0; | 
|  | size_t buf_len = CBB_len(cbb); | 
|  | uint8_t *buf = | 
|  | reinterpret_cast<uint8_t *>(OPENSSL_memdup(CBB_data(cbb), buf_len)); | 
|  | CBS *children = | 
|  | reinterpret_cast<CBS *>(OPENSSL_calloc(num_children, sizeof(CBS))); | 
|  | uint8_t *out; | 
|  | size_t offset = 0; | 
|  | if (buf == NULL || children == NULL) { | 
|  | goto err; | 
|  | } | 
|  | CBS_init(&cbs, buf, buf_len); | 
|  | for (size_t i = 0; i < num_children; i++) { | 
|  | if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | qsort(children, num_children, sizeof(CBS), compare_set_of_element); | 
|  |  | 
|  | // Write the contents back in the new order. | 
|  | out = (uint8_t *)CBB_data(cbb); | 
|  | for (size_t i = 0; i < num_children; i++) { | 
|  | OPENSSL_memcpy(out + offset, CBS_data(&children[i]), CBS_len(&children[i])); | 
|  | offset += CBS_len(&children[i]); | 
|  | } | 
|  | assert(offset == buf_len); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(buf); | 
|  | OPENSSL_free(children); | 
|  | return ret; | 
|  | } |