|  | // Copyright 2023 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | //! Elliptic Curve Diffie-Hellman operations. | 
|  | //! | 
|  | //! This module implements ECDH over the NIST curves P-256 and P-384. | 
|  | //! | 
|  | //! ``` | 
|  | //! use bssl_crypto::{ecdh, ec::P256}; | 
|  | //! | 
|  | //! let alice_private_key = ecdh::PrivateKey::<P256>::generate(); | 
|  | //! let alice_public_key_serialized = alice_private_key.to_x962_uncompressed(); | 
|  | //! | 
|  | //! // Somehow, Alice's public key is sent to Bob. | 
|  | //! let bob_private_key = ecdh::PrivateKey::<P256>::generate(); | 
|  | //! let alice_public_key = | 
|  | //!     ecdh::PublicKey::<P256>::from_x962_uncompressed( | 
|  | //!         alice_public_key_serialized.as_ref()) | 
|  | //!     .unwrap(); | 
|  | //! let shared_key1 = bob_private_key.compute_shared_key(&alice_public_key); | 
|  | //! | 
|  | //! // Likewise, Alice gets Bob's public key and computes the same shared key. | 
|  | //! let bob_public_key = bob_private_key.to_public_key(); | 
|  | //! let shared_key2 = alice_private_key.compute_shared_key(&bob_public_key); | 
|  | //! assert_eq!(shared_key1, shared_key2); | 
|  | //! ``` | 
|  |  | 
|  | use crate::{ec, sealed, with_output_vec, Buffer}; | 
|  | use alloc::vec::Vec; | 
|  | use core::marker::PhantomData; | 
|  |  | 
|  | /// An ECDH public key over the given curve. | 
|  | pub struct PublicKey<C: ec::Curve> { | 
|  | point: ec::Point, | 
|  | marker: PhantomData<C>, | 
|  | } | 
|  |  | 
|  | impl<C: ec::Curve> PublicKey<C> { | 
|  | /// Parse a public key in uncompressed X9.62 format. (This is the common | 
|  | /// format for elliptic curve points beginning with an 0x04 byte.) | 
|  | pub fn from_x962_uncompressed(x962: &[u8]) -> Option<Self> { | 
|  | let point = ec::Point::from_x962_uncompressed(C::group(sealed::Sealed), x962)?; | 
|  | Some(Self { | 
|  | point, | 
|  | marker: PhantomData, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Serialize this key as uncompressed X9.62 format. | 
|  | pub fn to_x962_uncompressed(&self) -> Buffer { | 
|  | self.point.to_x962_uncompressed() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// An ECDH private key over the given curve. | 
|  | pub struct PrivateKey<C: ec::Curve> { | 
|  | key: ec::Key, | 
|  | marker: PhantomData<C>, | 
|  | } | 
|  |  | 
|  | impl<C: ec::Curve> PrivateKey<C> { | 
|  | /// Generate a random private key. | 
|  | pub fn generate() -> Self { | 
|  | Self { | 
|  | key: ec::Key::generate(C::group(sealed::Sealed)), | 
|  | marker: PhantomData, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Parse a `PrivateKey` from a zero-padded, big-endian representation of the secret scalar. | 
|  | pub fn from_big_endian(scalar: &[u8]) -> Option<Self> { | 
|  | let key = ec::Key::from_big_endian(C::group(sealed::Sealed), scalar)?; | 
|  | Some(Self { | 
|  | key, | 
|  | marker: PhantomData, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Return the private scalar as zero-padded, big-endian bytes. | 
|  | pub fn to_big_endian(&self) -> Buffer { | 
|  | self.key.to_big_endian() | 
|  | } | 
|  |  | 
|  | /// Parse an ECPrivateKey structure (from RFC 5915). The key must be on the | 
|  | /// specified curve. | 
|  | pub fn from_der_ec_private_key(der: &[u8]) -> Option<Self> { | 
|  | let key = ec::Key::from_der_ec_private_key(C::group(sealed::Sealed), der)?; | 
|  | Some(Self { | 
|  | key, | 
|  | marker: PhantomData, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Serialize this private key as an ECPrivateKey structure (from RFC 5915). | 
|  | pub fn to_der_ec_private_key(&self) -> Buffer { | 
|  | self.key.to_der_ec_private_key() | 
|  | } | 
|  |  | 
|  | /// Parse a PrivateKeyInfo structure (from RFC 5208). The key must be on the | 
|  | /// specified curve. | 
|  | pub fn from_der_private_key_info(der: &[u8]) -> Option<Self> { | 
|  | let key = ec::Key::from_der_private_key_info(C::group(sealed::Sealed), der)?; | 
|  | Some(Self { | 
|  | key, | 
|  | marker: PhantomData, | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Serialize this private key as a PrivateKeyInfo structure (from RFC 5208). | 
|  | pub fn to_der_private_key_info(&self) -> Buffer { | 
|  | self.key.to_der_private_key_info() | 
|  | } | 
|  |  | 
|  | /// Serialize the _public_ part of this key in uncompressed X9.62 format. | 
|  | pub fn to_x962_uncompressed(&self) -> Buffer { | 
|  | self.key.to_x962_uncompressed() | 
|  | } | 
|  |  | 
|  | /// Compute the shared key between this private key and the given public key. | 
|  | /// The result should be used with a key derivation function that includes | 
|  | /// the two public keys. | 
|  | pub fn compute_shared_key(&self, other_public_key: &PublicKey<C>) -> Vec<u8> { | 
|  | // 384 bits is the largest curve supported. The buffer is sized to be | 
|  | // larger than this so that truncation of the output can be noticed. | 
|  | let max_output = 384 / 8 + 1; | 
|  | unsafe { | 
|  | with_output_vec(max_output, |out_buf| { | 
|  | // Safety: | 
|  | //   - `out_buf` points to at least `max_output` bytes, as | 
|  | //     required. | 
|  | //   - The `EC_POINT` and `EC_KEY` pointers are valid by construction. | 
|  | let num_out_bytes = bssl_sys::ECDH_compute_key( | 
|  | out_buf as *mut core::ffi::c_void, | 
|  | max_output, | 
|  | other_public_key.point.as_ffi_ptr(), | 
|  | self.key.as_ffi_ptr(), | 
|  | None, | 
|  | ); | 
|  | // Out of memory is not handled by this crate. | 
|  | assert!(num_out_bytes > 0); | 
|  | let num_out_bytes = num_out_bytes as usize; | 
|  | // If the buffer was completely filled then it was probably | 
|  | // truncated, which should never happen. | 
|  | assert!(num_out_bytes < max_output); | 
|  | num_out_bytes | 
|  | }) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the public key corresponding to this private key. | 
|  | pub fn to_public_key(&self) -> PublicKey<C> { | 
|  | PublicKey { | 
|  | point: self.key.to_point(), | 
|  | marker: PhantomData, | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg(test)] | 
|  | mod test { | 
|  | use super::*; | 
|  | use crate::ec::{P256, P384}; | 
|  |  | 
|  | fn check_curve<C: ec::Curve>() { | 
|  | let alice_private_key = PrivateKey::<C>::generate(); | 
|  | let alice_public_key = alice_private_key.to_public_key(); | 
|  | let alice_private_key = | 
|  | PrivateKey::<C>::from_big_endian(alice_private_key.to_big_endian().as_ref()).unwrap(); | 
|  | let alice_private_key = PrivateKey::<C>::from_der_ec_private_key( | 
|  | alice_private_key.to_der_ec_private_key().as_ref(), | 
|  | ) | 
|  | .unwrap(); | 
|  |  | 
|  | let bob_private_key = PrivateKey::<C>::generate(); | 
|  | let bob_public_key = bob_private_key.to_public_key(); | 
|  |  | 
|  | let shared_key1 = alice_private_key.compute_shared_key(&bob_public_key); | 
|  | let shared_key2 = bob_private_key.compute_shared_key(&alice_public_key); | 
|  |  | 
|  | assert_eq!(shared_key1, shared_key2); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn p256() { | 
|  | check_curve::<P256>(); | 
|  | } | 
|  |  | 
|  | #[test] | 
|  | fn p384() { | 
|  | check_curve::<P384>(); | 
|  | } | 
|  | } |