|  | /* ==================================================================== | 
|  | * Copyright (c) 2008 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== */ | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/cpu.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../../internal.h" | 
|  |  | 
|  |  | 
|  | // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four | 
|  | // bits of a |size_t|. | 
|  | static const size_t kSizeTWithoutLower4Bits = (size_t) -16; | 
|  |  | 
|  |  | 
|  | #define GCM_MUL(ctx, Xi) gcm_gmult_nohw((ctx)->Xi.u, (ctx)->gcm_key.Htable) | 
|  | #define GHASH(ctx, in, len) \ | 
|  | gcm_ghash_nohw((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) | 
|  | // GHASH_CHUNK is "stride parameter" missioned to mitigate cache | 
|  | // trashing effect. In other words idea is to hash data while it's | 
|  | // still in L1 cache after encryption pass... | 
|  | #define GHASH_CHUNK (3 * 1024) | 
|  |  | 
|  | #if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) | 
|  | static inline void gcm_reduce_1bit(u128 *V) { | 
|  | if (sizeof(size_t) == 8) { | 
|  | uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V->hi & 1)); | 
|  | V->hi = (V->lo << 63) | (V->hi >> 1); | 
|  | V->lo = (V->lo >> 1) ^ T; | 
|  | } else { | 
|  | uint32_t T = 0xe1000000U & (0 - (uint32_t)(V->hi & 1)); | 
|  | V->hi = (V->lo << 63) | (V->hi >> 1); | 
|  | V->lo = (V->lo >> 1) ^ ((uint64_t)T << 32); | 
|  | } | 
|  | } | 
|  |  | 
|  | void gcm_init_ssse3(u128 Htable[16], const uint64_t H[2]) { | 
|  | Htable[0].hi = 0; | 
|  | Htable[0].lo = 0; | 
|  | u128 V; | 
|  | V.hi = H[1]; | 
|  | V.lo = H[0]; | 
|  |  | 
|  | Htable[8] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[4] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[2] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[1] = V; | 
|  | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; | 
|  | V = Htable[4]; | 
|  | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; | 
|  | V = Htable[8]; | 
|  | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; | 
|  | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; | 
|  | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; | 
|  | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; | 
|  | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; | 
|  |  | 
|  | // Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] | 
|  | // contains the i'th byte of j*H for all j. | 
|  | uint8_t *Hbytes = (uint8_t *)Htable; | 
|  | for (int i = 0; i < 16; i++) { | 
|  | for (int j = 0; j < i; j++) { | 
|  | uint8_t tmp = Hbytes[16*i + j]; | 
|  | Hbytes[16*i + j] = Hbytes[16*j + i]; | 
|  | Hbytes[16*j + i] = tmp; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // GHASH_ASM_X86_64 || GHASH_ASM_X86 | 
|  |  | 
|  | #ifdef GCM_FUNCREF | 
|  | #undef GCM_MUL | 
|  | #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable) | 
|  | #undef GHASH | 
|  | #define GHASH(ctx, in, len) \ | 
|  | (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) | 
|  | #endif  // GCM_FUNCREF | 
|  |  | 
|  | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, | 
|  | u128 *out_key, u128 out_table[16], int *out_is_avx, | 
|  | const uint8_t gcm_key[16]) { | 
|  | *out_is_avx = 0; | 
|  |  | 
|  | union { | 
|  | uint64_t u[2]; | 
|  | uint8_t c[16]; | 
|  | } H; | 
|  |  | 
|  | OPENSSL_memcpy(H.c, gcm_key, 16); | 
|  |  | 
|  | // H is stored in host byte order | 
|  | H.u[0] = CRYPTO_bswap8(H.u[0]); | 
|  | H.u[1] = CRYPTO_bswap8(H.u[1]); | 
|  |  | 
|  | OPENSSL_memcpy(out_key, H.c, 16); | 
|  |  | 
|  | #if defined(GHASH_ASM_X86_64) | 
|  | if (crypto_gcm_clmul_enabled()) { | 
|  | if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) {  // AVX+MOVBE | 
|  | gcm_init_avx(out_table, H.u); | 
|  | *out_mult = gcm_gmult_avx; | 
|  | *out_hash = gcm_ghash_avx; | 
|  | *out_is_avx = 1; | 
|  | return; | 
|  | } | 
|  | gcm_init_clmul(out_table, H.u); | 
|  | *out_mult = gcm_gmult_clmul; | 
|  | *out_hash = gcm_ghash_clmul; | 
|  | return; | 
|  | } | 
|  | if (gcm_ssse3_capable()) { | 
|  | gcm_init_ssse3(out_table, H.u); | 
|  | *out_mult = gcm_gmult_ssse3; | 
|  | *out_hash = gcm_ghash_ssse3; | 
|  | return; | 
|  | } | 
|  | #elif defined(GHASH_ASM_X86) | 
|  | if (crypto_gcm_clmul_enabled()) { | 
|  | gcm_init_clmul(out_table, H.u); | 
|  | *out_mult = gcm_gmult_clmul; | 
|  | *out_hash = gcm_ghash_clmul; | 
|  | return; | 
|  | } | 
|  | if (gcm_ssse3_capable()) { | 
|  | gcm_init_ssse3(out_table, H.u); | 
|  | *out_mult = gcm_gmult_ssse3; | 
|  | *out_hash = gcm_ghash_ssse3; | 
|  | return; | 
|  | } | 
|  | #elif defined(GHASH_ASM_ARM) | 
|  | if (gcm_pmull_capable()) { | 
|  | gcm_init_v8(out_table, H.u); | 
|  | *out_mult = gcm_gmult_v8; | 
|  | *out_hash = gcm_ghash_v8; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (gcm_neon_capable()) { | 
|  | gcm_init_neon(out_table, H.u); | 
|  | *out_mult = gcm_gmult_neon; | 
|  | *out_hash = gcm_ghash_neon; | 
|  | return; | 
|  | } | 
|  | #elif defined(GHASH_ASM_PPC64LE) | 
|  | if (CRYPTO_is_PPC64LE_vcrypto_capable()) { | 
|  | gcm_init_p8(out_table, H.u); | 
|  | *out_mult = gcm_gmult_p8; | 
|  | *out_hash = gcm_ghash_p8; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | gcm_init_nohw(out_table, H.u); | 
|  | *out_mult = gcm_gmult_nohw; | 
|  | *out_hash = gcm_ghash_nohw; | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key, | 
|  | block128_f block, int block_is_hwaes) { | 
|  | OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); | 
|  | gcm_key->block = block; | 
|  |  | 
|  | uint8_t ghash_key[16]; | 
|  | OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); | 
|  | (*block)(ghash_key, ghash_key, aes_key); | 
|  |  | 
|  | int is_avx; | 
|  | CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, &gcm_key->H, | 
|  | gcm_key->Htable, &is_avx, ghash_key); | 
|  |  | 
|  | gcm_key->use_aesni_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, | 
|  | const uint8_t *iv, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | #endif | 
|  |  | 
|  | ctx->Yi.u[0] = 0; | 
|  | ctx->Yi.u[1] = 0; | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  | ctx->len.u[0] = 0;  // AAD length | 
|  | ctx->len.u[1] = 0;  // message length | 
|  | ctx->ares = 0; | 
|  | ctx->mres = 0; | 
|  |  | 
|  | uint32_t ctr; | 
|  | if (len == 12) { | 
|  | OPENSSL_memcpy(ctx->Yi.c, iv, 12); | 
|  | ctx->Yi.c[15] = 1; | 
|  | ctr = 1; | 
|  | } else { | 
|  | uint64_t len0 = len; | 
|  |  | 
|  | while (len >= 16) { | 
|  | for (size_t i = 0; i < 16; ++i) { | 
|  | ctx->Yi.c[i] ^= iv[i]; | 
|  | } | 
|  | GCM_MUL(ctx, Yi); | 
|  | iv += 16; | 
|  | len -= 16; | 
|  | } | 
|  | if (len) { | 
|  | for (size_t i = 0; i < len; ++i) { | 
|  | ctx->Yi.c[i] ^= iv[i]; | 
|  | } | 
|  | GCM_MUL(ctx, Yi); | 
|  | } | 
|  | len0 <<= 3; | 
|  | ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); | 
|  |  | 
|  | GCM_MUL(ctx, Yi); | 
|  | ctr = CRYPTO_bswap4(ctx->Yi.d[3]); | 
|  | } | 
|  |  | 
|  | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EK0.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = ctx->gcm_key.ghash; | 
|  | #endif | 
|  |  | 
|  | if (ctx->len.u[1]) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t alen = ctx->len.u[0] + len; | 
|  | if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.u[0] = alen; | 
|  |  | 
|  | unsigned n = ctx->ares; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(aad++); | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } else { | 
|  | ctx->ares = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process a whole number of blocks. | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | GHASH(ctx, aad, len_blocks); | 
|  | aad += len_blocks; | 
|  | len -= len_blocks; | 
|  | } | 
|  |  | 
|  | // Process the remainder. | 
|  | if (len != 0) { | 
|  | n = (unsigned int)len; | 
|  | for (size_t i = 0; i < len; ++i) { | 
|  | ctx->Xi.c[i] ^= aad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->ares = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, | 
|  | const uint8_t *in, uint8_t *out, size_t len) { | 
|  | block128_f block = ctx->gcm_key.block; | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = ctx->gcm_key.ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.u[1] + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to encrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); | 
|  | while (len >= GHASH_CHUNK) { | 
|  | size_t j = GHASH_CHUNK; | 
|  |  | 
|  | while (j) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | for (size_t i = 0; i < 16; i += sizeof(size_t)) { | 
|  | store_word_le(out + i, | 
|  | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); | 
|  | } | 
|  | out += 16; | 
|  | in += 16; | 
|  | j -= 16; | 
|  | } | 
|  | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | while (len >= 16) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | for (size_t i = 0; i < 16; i += sizeof(size_t)) { | 
|  | store_word_le(out + i, | 
|  | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); | 
|  | } | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | GHASH(ctx, out - len_blocks, len_blocks); | 
|  | } | 
|  | if (len) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | while (len--) { | 
|  | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len) { | 
|  | block128_f block = ctx->gcm_key.block; | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = ctx->gcm_key.ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.u[1] + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to decrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | uint8_t c = *(in++); | 
|  | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); | 
|  | while (len >= GHASH_CHUNK) { | 
|  | size_t j = GHASH_CHUNK; | 
|  |  | 
|  | GHASH(ctx, in, GHASH_CHUNK); | 
|  | while (j) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | for (size_t i = 0; i < 16; i += sizeof(size_t)) { | 
|  | store_word_le(out + i, | 
|  | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); | 
|  | } | 
|  | out += 16; | 
|  | in += 16; | 
|  | j -= 16; | 
|  | } | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | GHASH(ctx, in, len_blocks); | 
|  | while (len >= 16) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | for (size_t i = 0; i < 16; i += sizeof(size_t)) { | 
|  | store_word_le(out + i, | 
|  | load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); | 
|  | } | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | } | 
|  | if (len) { | 
|  | (*block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | while (len--) { | 
|  | uint8_t c = in[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | out[n] = c ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, | 
|  | const uint8_t *in, uint8_t *out, size_t len, | 
|  | ctr128_f stream) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = ctx->gcm_key.ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.u[1] + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to encrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(AESNI_GCM) | 
|  | // Check |len| to work around a C language bug. See https://crbug.com/1019588. | 
|  | if (ctx->gcm_key.use_aesni_gcm_crypt && len > 0) { | 
|  | // |aesni_gcm_encrypt| may not process all the input given to it. It may | 
|  | // not process *any* of its input if it is deemed too small. | 
|  | size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); | 
|  | in += bulk; | 
|  | out += bulk; | 
|  | len -= bulk; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); | 
|  | while (len >= GHASH_CHUNK) { | 
|  | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | GHASH(ctx, out, GHASH_CHUNK); | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | size_t j = len_blocks / 16; | 
|  |  | 
|  | (*stream)(in, out, j, key, ctx->Yi.c); | 
|  | ctr += (unsigned int)j; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | in += len_blocks; | 
|  | len -= len_blocks; | 
|  | GHASH(ctx, out, len_blocks); | 
|  | out += len_blocks; | 
|  | } | 
|  | if (len) { | 
|  | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | while (len--) { | 
|  | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, | 
|  | const uint8_t *in, uint8_t *out, size_t len, | 
|  | ctr128_f stream) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = ctx->gcm_key.ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.u[1] + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to decrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | uint8_t c = *(in++); | 
|  | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(AESNI_GCM) | 
|  | // Check |len| to work around a C language bug. See https://crbug.com/1019588. | 
|  | if (ctx->gcm_key.use_aesni_gcm_crypt && len > 0) { | 
|  | // |aesni_gcm_decrypt| may not process all the input given to it. It may | 
|  | // not process *any* of its input if it is deemed too small. | 
|  | size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); | 
|  | in += bulk; | 
|  | out += bulk; | 
|  | len -= bulk; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); | 
|  | while (len >= GHASH_CHUNK) { | 
|  | GHASH(ctx, in, GHASH_CHUNK); | 
|  | (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | size_t j = len_blocks / 16; | 
|  |  | 
|  | GHASH(ctx, in, len_blocks); | 
|  | (*stream)(in, out, j, key, ctx->Yi.c); | 
|  | ctr += (unsigned int)j; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | out += len_blocks; | 
|  | in += len_blocks; | 
|  | len -= len_blocks; | 
|  | } | 
|  | if (len) { | 
|  | (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | ctx->Yi.d[3] = CRYPTO_bswap4(ctr); | 
|  | while (len--) { | 
|  | uint8_t c = in[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | out[n] = c ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = | 
|  | ctx->gcm_key.gmult; | 
|  | #endif | 
|  |  | 
|  | if (ctx->mres || ctx->ares) { | 
|  | GCM_MUL(ctx, Xi); | 
|  | } | 
|  |  | 
|  | ctx->Xi.u[0] ^= CRYPTO_bswap8(ctx->len.u[0] << 3); | 
|  | ctx->Xi.u[1] ^= CRYPTO_bswap8(ctx->len.u[1] << 3); | 
|  | GCM_MUL(ctx, Xi); | 
|  |  | 
|  | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | 
|  | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | 
|  |  | 
|  | if (tag && len <= sizeof(ctx->Xi)) { | 
|  | return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { | 
|  | CRYPTO_gcm128_finish(ctx, NULL, 0); | 
|  | OPENSSL_memcpy(tag, ctx->Xi.c, | 
|  | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) | 
|  | int crypto_gcm_clmul_enabled(void) { | 
|  | #if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64) | 
|  | const uint32_t *ia32cap = OPENSSL_ia32cap_get(); | 
|  | return (ia32cap[0] & (1 << 24)) &&  // check FXSR bit | 
|  | (ia32cap[1] & (1 << 1));     // check PCLMULQDQ bit | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | #endif |