|  | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * Portions of the attached software ("Contribution") are developed by | 
|  | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
|  | * | 
|  | * The Contribution is licensed pursuant to the Eric Young open source | 
|  | * license provided above. | 
|  | * | 
|  | * The binary polynomial arithmetic software is originally written by | 
|  | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
|  | * Laboratories. */ | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_BN_INTERNAL_H | 
|  | #define OPENSSL_HEADER_BN_INTERNAL_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <intrin.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  | #pragma intrinsic(__umulh, _umul128) | 
|  | #endif | 
|  |  | 
|  | #include "../../internal.h" | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | #if defined(OPENSSL_64_BIT) | 
|  |  | 
|  | #if defined(BORINGSSL_HAS_UINT128) | 
|  | // MSVC doesn't support two-word integers on 64-bit. | 
|  | #define BN_ULLONG uint128_t | 
|  | #if defined(BORINGSSL_CAN_DIVIDE_UINT128) | 
|  | #define BN_CAN_DIVIDE_ULLONG | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #define BN_BITS2 64 | 
|  | #define BN_BYTES 8 | 
|  | #define BN_BITS4 32 | 
|  | #define BN_MASK2 (0xffffffffffffffffUL) | 
|  | #define BN_MASK2l (0xffffffffUL) | 
|  | #define BN_MASK2h (0xffffffff00000000UL) | 
|  | #define BN_MASK2h1 (0xffffffff80000000UL) | 
|  | #define BN_MONT_CTX_N0_LIMBS 1 | 
|  | #define BN_DEC_CONV (10000000000000000000UL) | 
|  | #define BN_DEC_NUM 19 | 
|  | #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo)) | 
|  |  | 
|  | #elif defined(OPENSSL_32_BIT) | 
|  |  | 
|  | #define BN_ULLONG uint64_t | 
|  | #define BN_CAN_DIVIDE_ULLONG | 
|  | #define BN_BITS2 32 | 
|  | #define BN_BYTES 4 | 
|  | #define BN_BITS4 16 | 
|  | #define BN_MASK2 (0xffffffffUL) | 
|  | #define BN_MASK2l (0xffffUL) | 
|  | #define BN_MASK2h1 (0xffff8000UL) | 
|  | #define BN_MASK2h (0xffff0000UL) | 
|  | // On some 32-bit platforms, Montgomery multiplication is done using 64-bit | 
|  | // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0| | 
|  | // needs to be two words long. Only certain 32-bit platforms actually make use | 
|  | // of n0[1] and shorter R value would suffice for the others. However, | 
|  | // currently only the assembly files know which is which. | 
|  | #define BN_MONT_CTX_N0_LIMBS 2 | 
|  | #define BN_DEC_CONV (1000000000UL) | 
|  | #define BN_DEC_NUM 9 | 
|  | #define TOBN(hi, lo) (lo), (hi) | 
|  |  | 
|  | #else | 
|  | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" | 
|  | #endif | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__)) | 
|  | #define BN_CAN_USE_INLINE_ASM | 
|  | #endif | 
|  |  | 
|  | // |BN_mod_exp_mont_consttime| is based on the assumption that the L1 data | 
|  | // cache line width of the target processor is at least the following value. | 
|  | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH 64 | 
|  |  | 
|  | // The number of |BN_ULONG|s needed for the |BN_mod_exp_mont_consttime| stack- | 
|  | // allocated storage buffer. The buffer is just the right size for the RSAZ | 
|  | // and is about ~1KB larger than what's necessary (4480 bytes) for 1024-bit | 
|  | // inputs. | 
|  | #define MOD_EXP_CTIME_STORAGE_LEN \ | 
|  | (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG)) | 
|  |  | 
|  | #define STATIC_BIGNUM(x)                                    \ | 
|  | {                                                         \ | 
|  | (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \ | 
|  | sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \ | 
|  | } | 
|  |  | 
|  | #if defined(BN_ULLONG) | 
|  | #define Lw(t) ((BN_ULONG)(t)) | 
|  | #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2)) | 
|  | #endif | 
|  |  | 
|  | // bn_minimal_width returns the minimal value of |bn->top| which fits the | 
|  | // value of |bn|. | 
|  | int bn_minimal_width(const BIGNUM *bn); | 
|  |  | 
|  | // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is | 
|  | // zero, |bn->neg| is set to zero. | 
|  | void bn_set_minimal_width(BIGNUM *bn); | 
|  |  | 
|  | // bn_wexpand ensures that |bn| has at least |words| works of space without | 
|  | // altering its value. It returns one on success or zero on allocation | 
|  | // failure. | 
|  | int bn_wexpand(BIGNUM *bn, size_t words); | 
|  |  | 
|  | // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather | 
|  | // than a number of words. | 
|  | int bn_expand(BIGNUM *bn, size_t bits); | 
|  |  | 
|  | // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success | 
|  | // and zero on allocation error or if |bn|'s value is too large. | 
|  | OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words); | 
|  |  | 
|  | // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is | 
|  | // all zeros. | 
|  | void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a, | 
|  | const BN_ULONG *b, size_t num); | 
|  |  | 
|  | // bn_set_words sets |bn| to the value encoded in the |num| words in |words|, | 
|  | // least significant word first. | 
|  | int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num); | 
|  |  | 
|  | // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus | 
|  | // a sign bit, and zero otherwise. | 
|  | int bn_fits_in_words(const BIGNUM *bn, size_t num); | 
|  |  | 
|  | // bn_copy_words copies the value of |bn| to |out| and returns one if the value | 
|  | // is representable in |num| words. Otherwise, it returns zero. | 
|  | int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn); | 
|  |  | 
|  | // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places | 
|  | // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns | 
|  | // the carry word of the operation. |ap| and |rp| may be equal but otherwise may | 
|  | // not alias. | 
|  | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, | 
|  | BN_ULONG w); | 
|  |  | 
|  | // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and | 
|  | // |rp| must both be |num| words long. It returns the carry word of the | 
|  | // operation. |ap| and |rp| may be equal but otherwise may not alias. | 
|  | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w); | 
|  |  | 
|  | // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i| | 
|  | // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num| | 
|  | // words. |ap| and |rp| may not alias. | 
|  | // | 
|  | // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|. | 
|  | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num); | 
|  |  | 
|  | // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which | 
|  | // are |num| words long. It returns the carry bit, which is one if the operation | 
|  | // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal | 
|  | // to each other but otherwise may not alias. | 
|  | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | 
|  | size_t num); | 
|  |  | 
|  | // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It | 
|  | // returns the borrow bit, which is one if the computation underflowed and zero | 
|  | // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but | 
|  | // otherwise may not alias. | 
|  | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | 
|  | size_t num); | 
|  |  | 
|  | // bn_mul_comba4 sets |r| to the product of |a| and |b|. | 
|  | void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]); | 
|  |  | 
|  | // bn_mul_comba8 sets |r| to the product of |a| and |b|. | 
|  | void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]); | 
|  |  | 
|  | // bn_sqr_comba8 sets |r| to |a|^2. | 
|  | void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]); | 
|  |  | 
|  | // bn_sqr_comba4 sets |r| to |a|^2. | 
|  | void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]); | 
|  |  | 
|  | // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a| | 
|  | // and |b| both are |len| words long. It runs in constant time. | 
|  | int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len); | 
|  |  | 
|  | // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|, | 
|  | // where |a| and |max_exclusive| both are |len| words long. |a| and | 
|  | // |max_exclusive| are treated as secret. | 
|  | int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive, | 
|  | const BN_ULONG *max_exclusive, size_t len); | 
|  |  | 
|  | // bn_rand_range_words sets |out| to a uniformly distributed random number from | 
|  | // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len| | 
|  | // words long. | 
|  | // | 
|  | // This function runs in time independent of the result, but |min_inclusive| and | 
|  | // |max_exclusive| are public data. (Information about the range is unavoidably | 
|  | // leaked by how many iterations it took to select a number.) | 
|  | int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive, | 
|  | const BN_ULONG *max_exclusive, size_t len, | 
|  | const uint8_t additional_data[32]); | 
|  |  | 
|  | // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats | 
|  | // |max_exclusive| as secret. Because of this constraint, the distribution of | 
|  | // values returned is more complex. | 
|  | // | 
|  | // Rather than repeatedly generating values until one is in range, which would | 
|  | // leak information, it generates one value. If the value is in range, it sets | 
|  | // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero, | 
|  | // fixing up the value to force it in range. | 
|  | // | 
|  | // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to | 
|  | // one are uniformly distributed in the target range. Calls overall are not. | 
|  | // This function is intended for use in situations where the extra values are | 
|  | // still usable and where the number of iterations needed to reach the target | 
|  | // number of uniform outputs may be blinded for negligible probabilities of | 
|  | // timing leaks. | 
|  | // | 
|  | // Although this function treats |max_exclusive| as secret, it treats the number | 
|  | // of bits in |max_exclusive| as public. | 
|  | int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive, | 
|  | const BIGNUM *max_exclusive); | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) &&                         \ | 
|  | (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ | 
|  | defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) | 
|  | #define OPENSSL_BN_ASM_MONT | 
|  | // bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words | 
|  | // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the | 
|  | // corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles | 
|  | // inputs of this size and zero otherwise. | 
|  | // | 
|  | // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks | 
|  | // off upper bits. The aarch64 implementation expects a 64-bit input and does | 
|  | // not. |size_t| is the safer option but not strictly correct for x86_64. But | 
|  | // this function implicitly already has a bound on the size of |num| because it | 
|  | // internally creates |num|-sized stack allocation. | 
|  | // | 
|  | // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word | 
|  | // inputs. | 
|  | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | 
|  | const BN_ULONG *np, const BN_ULONG *n0, size_t num); | 
|  | #endif | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) | 
|  | #define OPENSSL_BN_ASM_MONT5 | 
|  |  | 
|  | // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it | 
|  | // by |ap| modulo |np|, and stores the result in |rp|. The values are |num| | 
|  | // words long and represented in Montgomery form. |n0| is a pointer to the | 
|  | // corresponding field in |BN_MONT_CTX|. | 
|  | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | 
|  | const BN_ULONG *table, const BN_ULONG *np, | 
|  | const BN_ULONG *n0, int num, int power); | 
|  |  | 
|  | // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of | 
|  | // |table| are |num| words long. |power| must be less than 32. |table| must be | 
|  | // 32*|num| words long. | 
|  | void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table, | 
|  | size_t power); | 
|  |  | 
|  | // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and | 
|  | // each entry of |table| are |num| words long. |power| must be less than 32. | 
|  | void bn_gather5(BN_ULONG *out, size_t num, BN_ULONG *table, size_t power); | 
|  |  | 
|  | // bn_power5 squares |ap| five times and multiplies it by the value stored at | 
|  | // index |power| of |table|, modulo |np|. It stores the result in |rp|. The | 
|  | // values are |num| words long and represented in Montgomery form. |n0| is a | 
|  | // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible | 
|  | // by 8. | 
|  | void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table, | 
|  | const BN_ULONG *np, const BN_ULONG *n0, int num, int power); | 
|  |  | 
|  | // bn_from_montgomery converts |ap| from Montgomery form modulo |np| and writes | 
|  | // the result in |rp|, each of which is |num| words long. It returns one on | 
|  | // success and zero if it cannot handle inputs of length |num|. |n0| is a | 
|  | // pointer to the corresponding field in |BN_MONT_CTX|. | 
|  | int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, | 
|  | const BN_ULONG *not_used, const BN_ULONG *np, | 
|  | const BN_ULONG *n0, int num); | 
|  | #endif  // !OPENSSL_NO_ASM && OPENSSL_X86_64 | 
|  |  | 
|  | uint64_t bn_mont_n0(const BIGNUM *n); | 
|  |  | 
|  | // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger | 
|  | // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and | 
|  | // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise | 
|  | // treated as secret. | 
|  | int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | #if defined(OPENSSL_X86_64) && defined(_MSC_VER) | 
|  | #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high))) | 
|  | #endif | 
|  |  | 
|  | #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI) | 
|  | #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform." | 
|  | #endif | 
|  |  | 
|  | // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or | 
|  | // -2 on error. | 
|  | int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | 
|  |  | 
|  | // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero | 
|  | // otherwise. | 
|  | int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit); | 
|  |  | 
|  | // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on | 
|  | // success and zero on error. This function treats the bit width of the modulus | 
|  | // as public. | 
|  | int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R | 
|  | // value for |mont| and zero otherwise. | 
|  | int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont); | 
|  |  | 
|  | // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs | 
|  | // in time independent of the value of |bn|, but it treats |d| as public. | 
|  | OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d); | 
|  |  | 
|  | // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one | 
|  | // of the first several odd primes and zero otherwise. | 
|  | int bn_odd_number_is_obviously_composite(const BIGNUM *bn); | 
|  |  | 
|  | // A BN_MILLER_RABIN stores state common to each Miller-Rabin iteration. It is | 
|  | // initialized within an existing |BN_CTX| scope and may not be used after | 
|  | // that scope is released with |BN_CTX_end|. Field names match those in FIPS | 
|  | // 186-4, section C.3.1. | 
|  | typedef struct { | 
|  | // w1 is w-1. | 
|  | BIGNUM *w1; | 
|  | // m is (w-1)/2^a. | 
|  | BIGNUM *m; | 
|  | // one_mont is 1 (mod w) in Montgomery form. | 
|  | BIGNUM *one_mont; | 
|  | // w1_mont is w-1 (mod w) in Montgomery form. | 
|  | BIGNUM *w1_mont; | 
|  | // w_bits is BN_num_bits(w). | 
|  | int w_bits; | 
|  | // a is the largest integer such that 2^a divides w-1. | 
|  | int a; | 
|  | } BN_MILLER_RABIN; | 
|  |  | 
|  | // bn_miller_rabin_init initializes |miller_rabin| for testing if |mont->N| is | 
|  | // prime. It returns one on success and zero on error. | 
|  | OPENSSL_EXPORT int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // bn_miller_rabin_iteration performs one Miller-Rabin iteration, checking if | 
|  | // |b| is a composite witness for |mont->N|. |miller_rabin| must have been | 
|  | // initialized with |bn_miller_rabin_setup|. On success, it returns one and sets | 
|  | // |*out_is_possibly_prime| to one if |mont->N| may still be prime or zero if | 
|  | // |b| shows it is composite. On allocation or internal failure, it returns | 
|  | // zero. | 
|  | OPENSSL_EXPORT int bn_miller_rabin_iteration( | 
|  | const BN_MILLER_RABIN *miller_rabin, int *out_is_possibly_prime, | 
|  | const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide. | 
|  | void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num); | 
|  |  | 
|  | // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits | 
|  | // wide. | 
|  | void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, | 
|  | size_t num); | 
|  |  | 
|  | // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent | 
|  | // of both |a| and |n|. | 
|  | OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, | 
|  | unsigned n, BN_CTX *ctx); | 
|  |  | 
|  | // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns | 
|  | // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num| | 
|  | // words long, but |a| has an additional word specified by |carry|. |carry| must | 
|  | // be zero or one, as implied by the bounds on |a|. | 
|  | // | 
|  | // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a| | 
|  | // must alias. | 
|  | BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, | 
|  | const BN_ULONG *m, size_t num); | 
|  |  | 
|  | // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on | 
|  | // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias. | 
|  | BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, | 
|  | BN_ULONG *tmp, size_t num); | 
|  |  | 
|  |  | 
|  | // Constant-time non-modular arithmetic. | 
|  | // | 
|  | // The following functions implement non-modular arithmetic in constant-time | 
|  | // and pessimally set |r->width| to the largest possible word size. | 
|  | // | 
|  | // Note this means that, e.g., repeatedly multiplying by one will cause widths | 
|  | // to increase without bound. The corresponding public API functions minimize | 
|  | // their outputs to avoid regressing calculator consumers. | 
|  |  | 
|  | // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets | 
|  | // |r->width| = |a->width| + |b->width| + 1. | 
|  | int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets | 
|  | // |r->width| = |a->width|. | 
|  | int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating | 
|  | // both inputs as secret. It returns one on success and zero on error. | 
|  | OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *ctx); | 
|  |  | 
|  | // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and | 
|  | // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking | 
|  | // information about |a| and |b|. | 
|  | int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | 
|  |  | 
|  | // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width| | 
|  | // to 2*|a->width|, to avoid leaking information about |a| and |b|. | 
|  | int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | 
|  |  | 
|  | // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and | 
|  | // treats both inputs, including their magnitudes, as secret. It is, as a | 
|  | // result, much slower than |BN_div| and should only be used for rare operations | 
|  | // where Montgomery reduction is not available. | 
|  | // | 
|  | // Note that |quotient->width| will be set pessimally to |numerator->width|. | 
|  | OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, | 
|  | const BIGNUM *numerator, | 
|  | const BIGNUM *divisor, BN_CTX *ctx); | 
|  |  | 
|  | // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it | 
|  | // returns one and sets |*out_relatively_prime| to one if the GCD was one and | 
|  | // zero otherwise. On error, it returns zero. | 
|  | OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime, | 
|  | const BIGNUM *x, const BIGNUM *y, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and | 
|  | // zero on error. |a| and |b| are both treated as secret. | 
|  | OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Constant-time modular arithmetic. | 
|  | // | 
|  | // The following functions implement basic constant-time modular arithmetic. | 
|  |  | 
|  | // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch | 
|  | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of | 
|  | // |r|, |a|, and |b| may alias. | 
|  | void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | const BN_ULONG *m, BN_ULONG *tmp, size_t num); | 
|  |  | 
|  | // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|. | 
|  | int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch | 
|  | // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of | 
|  | // |r|, |a|, and |b| may alias. | 
|  | void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | const BN_ULONG *m, BN_ULONG *tmp, size_t num); | 
|  |  | 
|  | // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|. | 
|  | int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a | 
|  | // |BN_CTX|. | 
|  | int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|. | 
|  | int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non- | 
|  | // negative and less than |n|. It returns one on success and zero on error. On | 
|  | // failure, if the failure was caused by |a| having no inverse mod |n| then | 
|  | // |*out_no_inverse| will be set to one; otherwise it will be set to zero. | 
|  | // | 
|  | // This function treats both |a| and |n| as secret, provided they are both non- | 
|  | // zero and the inverse exists. It should only be used for even moduli where | 
|  | // none of the less general implementations are applicable. | 
|  | OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, | 
|  | const BIGNUM *a, const BIGNUM *n, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|, | 
|  | // computed with Fermat's Little Theorem. It returns one on success and zero on | 
|  | // error. If |mont_p| is NULL, one will be computed temporarily. | 
|  | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
|  | BN_CTX *ctx, const BN_MONT_CTX *mont_p); | 
|  |  | 
|  | // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses | 
|  | // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of | 
|  | // protecting the exponent. | 
|  | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
|  | BN_CTX *ctx, const BN_MONT_CTX *mont_p); | 
|  |  | 
|  |  | 
|  | // Low-level operations for small numbers. | 
|  | // | 
|  | // The following functions implement algorithms suitable for use with scalars | 
|  | // and field elements in elliptic curves. They rely on the number being small | 
|  | // both to stack-allocate various temporaries and because they do not implement | 
|  | // optimizations useful for the larger values used in RSA. | 
|  |  | 
|  | // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This | 
|  | // limit allows temporaries to be more easily stack-allocated. This limit is set | 
|  | // to accommodate P-521. | 
|  | #if defined(OPENSSL_32_BIT) | 
|  | #define BN_SMALL_MAX_WORDS 17 | 
|  | #else | 
|  | #define BN_SMALL_MAX_WORDS 9 | 
|  | #endif | 
|  |  | 
|  | // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may | 
|  | // not alias with |a| or |b|. | 
|  | void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a, | 
|  | const BN_ULONG *b, size_t num_b); | 
|  |  | 
|  | // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|. | 
|  | // |num_r| must be |num_a|*2. |r| and |a| may not alias. | 
|  | void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a); | 
|  |  | 
|  | // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS| | 
|  | // words long. | 
|  |  | 
|  | // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain. | 
|  | // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be | 
|  | // fully reduced and may alias |r|. | 
|  | void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  | // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery | 
|  | // domain. |r| and |a| are |num_r| and |num_a| words long, respectively. |num_r| | 
|  | // must be |mont->N.width|. |a| must be at most |mont->N|^2 and may alias |r|. | 
|  | // | 
|  | // Unlike most of these functions, only |num_r| is bounded by | 
|  | // |BN_SMALL_MAX_WORDS|. |num_a| may exceed it, but must be at most 2 * |num_r|. | 
|  | void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, | 
|  | size_t num_a, const BN_MONT_CTX *mont); | 
|  |  | 
|  | // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs | 
|  | // and outputs are in the Montgomery domain. Each array is |num| words long, | 
|  | // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a| | 
|  | // and |b| must be reduced on input. | 
|  | void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a, | 
|  | const BN_ULONG *b, size_t num, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  | // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on | 
|  | // success and zero on programmer or internal error. Both inputs and outputs are | 
|  | // in the Montgomery domain. |r| and |a| are |num| words long, which must be | 
|  | // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced. | 
|  | // This function runs in time independent of |a|, but |p| and |mont->N| are | 
|  | // public values. |a| must be fully-reduced and may alias with |r|. | 
|  | // | 
|  | // Note this function differs from |BN_mod_exp_mont| which uses Montgomery | 
|  | // reduction but takes input and output outside the Montgomery domain. Combine | 
|  | // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small| | 
|  | // if necessary. | 
|  | void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, | 
|  | const BN_ULONG *p, size_t num_p, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  | // bn_mod_inverse0_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. If |a| is | 
|  | // zero, |r| is set to zero. |mont->N| must be a prime. |r| and |a| are |num| | 
|  | // words long, which must be |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. | 
|  | // |a| must be fully-reduced and may alias |r|. This function runs in time | 
|  | // independent of |a|, but |mont->N| is a public value. | 
|  | void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, | 
|  | size_t num, const BN_MONT_CTX *mont); | 
|  |  | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | }  // extern C | 
|  | #endif | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_BN_INTERNAL_H |