|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | #if !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM) | 
|  | // bn_div_words divides a double-width |h|,|l| by |d| and returns the result, | 
|  | // which must fit in a |BN_ULONG|. | 
|  | static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { | 
|  | BN_ULONG dh, dl, q, ret = 0, th, tl, t; | 
|  | int i, count = 2; | 
|  |  | 
|  | if (d == 0) { | 
|  | return BN_MASK2; | 
|  | } | 
|  |  | 
|  | i = BN_num_bits_word(d); | 
|  | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); | 
|  |  | 
|  | i = BN_BITS2 - i; | 
|  | if (h >= d) { | 
|  | h -= d; | 
|  | } | 
|  |  | 
|  | if (i) { | 
|  | d <<= i; | 
|  | h = (h << i) | (l >> (BN_BITS2 - i)); | 
|  | l <<= i; | 
|  | } | 
|  | dh = (d & BN_MASK2h) >> BN_BITS4; | 
|  | dl = (d & BN_MASK2l); | 
|  | for (;;) { | 
|  | if ((h >> BN_BITS4) == dh) { | 
|  | q = BN_MASK2l; | 
|  | } else { | 
|  | q = h / dh; | 
|  | } | 
|  |  | 
|  | th = q * dh; | 
|  | tl = dl * q; | 
|  | for (;;) { | 
|  | t = h - th; | 
|  | if ((t & BN_MASK2h) || | 
|  | ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) { | 
|  | break; | 
|  | } | 
|  | q--; | 
|  | th -= dh; | 
|  | tl -= dl; | 
|  | } | 
|  | t = (tl >> BN_BITS4); | 
|  | tl = (tl << BN_BITS4) & BN_MASK2h; | 
|  | th += t; | 
|  |  | 
|  | if (l < tl) { | 
|  | th++; | 
|  | } | 
|  | l -= tl; | 
|  | if (h < th) { | 
|  | h += d; | 
|  | q--; | 
|  | } | 
|  | h -= th; | 
|  |  | 
|  | if (--count == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = q << BN_BITS4; | 
|  | h = (h << BN_BITS4) | (l >> BN_BITS4); | 
|  | l = (l & BN_MASK2l) << BN_BITS4; | 
|  | } | 
|  |  | 
|  | ret |= q; | 
|  | return ret; | 
|  | } | 
|  | #endif  // !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM) | 
|  |  | 
|  | static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out, | 
|  | BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) { | 
|  | // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when | 
|  | // the |BN_ULLONG|-based C code is used. | 
|  | // | 
|  | // GCC bugs: | 
|  | //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 | 
|  | //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 | 
|  | //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183 | 
|  | //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897 | 
|  | //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668 | 
|  | // | 
|  | // Clang bugs: | 
|  | //   * https://llvm.org/bugs/show_bug.cgi?id=6397 | 
|  | //   * https://llvm.org/bugs/show_bug.cgi?id=12418 | 
|  | // | 
|  | // These issues aren't specific to x86 and x86_64, so it might be worthwhile | 
|  | // to add more assembly language implementations. | 
|  | #if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86) | 
|  | __asm__ volatile("divl %4" | 
|  | : "=a"(*quotient_out), "=d"(*rem_out) | 
|  | : "a"(n1), "d"(n0), "rm"(d0) | 
|  | : "cc"); | 
|  | #elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64) | 
|  | __asm__ volatile("divq %4" | 
|  | : "=a"(*quotient_out), "=d"(*rem_out) | 
|  | : "a"(n1), "d"(n0), "rm"(d0) | 
|  | : "cc"); | 
|  | #else | 
|  | #if defined(BN_CAN_DIVIDE_ULLONG) | 
|  | BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1; | 
|  | *quotient_out = (BN_ULONG)(n / d0); | 
|  | #else | 
|  | *quotient_out = bn_div_words(n0, n1, d0); | 
|  | #endif | 
|  | *rem_out = n1 - (*quotient_out * d0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // BN_div computes "quotient := numerator / divisor", rounding towards zero, | 
|  | // and sets up |rem| such that "quotient * divisor + rem = numerator" holds. | 
|  | // | 
|  | // Thus: | 
|  | // | 
|  | //     quotient->neg == numerator->neg ^ divisor->neg | 
|  | //        (unless the result is zero) | 
|  | //     rem->neg == numerator->neg | 
|  | //        (unless the remainder is zero) | 
|  | // | 
|  | // If |quotient| or |rem| is NULL, the respective value is not returned. | 
|  | // | 
|  | // This was specifically designed to contain fewer branches that may leak | 
|  | // sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL | 
|  | // and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and | 
|  | // Jean-Pierre Seifert. | 
|  | int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator, | 
|  | const BIGNUM *divisor, BN_CTX *ctx) { | 
|  | int norm_shift, loop; | 
|  | BIGNUM wnum; | 
|  | BN_ULONG *resp, *wnump; | 
|  | BN_ULONG d0, d1; | 
|  | int num_n, div_n; | 
|  |  | 
|  | // This function relies on the historical minimal-width |BIGNUM| invariant. | 
|  | // It is already not constant-time (constant-time reductions should use | 
|  | // Montgomery logic), so we shrink all inputs and intermediate values to | 
|  | // retain the previous behavior. | 
|  |  | 
|  | // Invalid zero-padding would have particularly bad consequences. | 
|  | int numerator_width = bn_minimal_width(numerator); | 
|  | int divisor_width = bn_minimal_width(divisor); | 
|  | if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) || | 
|  | (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BN_is_zero(divisor)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | BIGNUM *snum = BN_CTX_get(ctx); | 
|  | BIGNUM *sdiv = BN_CTX_get(ctx); | 
|  | BIGNUM *res = NULL; | 
|  | if (quotient == NULL) { | 
|  | res = BN_CTX_get(ctx); | 
|  | } else { | 
|  | res = quotient; | 
|  | } | 
|  | if (sdiv == NULL || res == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // First we normalise the numbers | 
|  | norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2); | 
|  | if (!BN_lshift(sdiv, divisor, norm_shift)) { | 
|  | goto err; | 
|  | } | 
|  | bn_set_minimal_width(sdiv); | 
|  | sdiv->neg = 0; | 
|  | norm_shift += BN_BITS2; | 
|  | if (!BN_lshift(snum, numerator, norm_shift)) { | 
|  | goto err; | 
|  | } | 
|  | bn_set_minimal_width(snum); | 
|  | snum->neg = 0; | 
|  |  | 
|  | // Since we don't want to have special-case logic for the case where snum is | 
|  | // larger than sdiv, we pad snum with enough zeroes without changing its | 
|  | // value. | 
|  | if (snum->width <= sdiv->width + 1) { | 
|  | if (!bn_wexpand(snum, sdiv->width + 2)) { | 
|  | goto err; | 
|  | } | 
|  | for (int i = snum->width; i < sdiv->width + 2; i++) { | 
|  | snum->d[i] = 0; | 
|  | } | 
|  | snum->width = sdiv->width + 2; | 
|  | } else { | 
|  | if (!bn_wexpand(snum, snum->width + 1)) { | 
|  | goto err; | 
|  | } | 
|  | snum->d[snum->width] = 0; | 
|  | snum->width++; | 
|  | } | 
|  |  | 
|  | div_n = sdiv->width; | 
|  | num_n = snum->width; | 
|  | loop = num_n - div_n; | 
|  | // Lets setup a 'window' into snum | 
|  | // This is the part that corresponds to the current | 
|  | // 'area' being divided | 
|  | wnum.neg = 0; | 
|  | wnum.d = &(snum->d[loop]); | 
|  | wnum.width = div_n; | 
|  | // only needed when BN_ucmp messes up the values between width and max | 
|  | wnum.dmax = snum->dmax - loop;  // so we don't step out of bounds | 
|  |  | 
|  | // Get the top 2 words of sdiv | 
|  | // div_n=sdiv->width; | 
|  | d0 = sdiv->d[div_n - 1]; | 
|  | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | 
|  |  | 
|  | // pointer to the 'top' of snum | 
|  | wnump = &(snum->d[num_n - 1]); | 
|  |  | 
|  | // Setup to 'res' | 
|  | res->neg = (numerator->neg ^ divisor->neg); | 
|  | if (!bn_wexpand(res, loop + 1)) { | 
|  | goto err; | 
|  | } | 
|  | res->width = loop - 1; | 
|  | resp = &(res->d[loop - 1]); | 
|  |  | 
|  | // space for temp | 
|  | if (!bn_wexpand(tmp, div_n + 1)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // if res->width == 0 then clear the neg value otherwise decrease | 
|  | // the resp pointer | 
|  | if (res->width == 0) { | 
|  | res->neg = 0; | 
|  | } else { | 
|  | resp--; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < loop - 1; i++, wnump--, resp--) { | 
|  | BN_ULONG q, l0; | 
|  | // the first part of the loop uses the top two words of snum and sdiv to | 
|  | // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv | 
|  | BN_ULONG n0, n1, rm = 0; | 
|  |  | 
|  | n0 = wnump[0]; | 
|  | n1 = wnump[-1]; | 
|  | if (n0 == d0) { | 
|  | q = BN_MASK2; | 
|  | } else { | 
|  | // n0 < d0 | 
|  | bn_div_rem_words(&q, &rm, n0, n1, d0); | 
|  |  | 
|  | #ifdef BN_ULLONG | 
|  | BN_ULLONG t2 = (BN_ULLONG)d1 * q; | 
|  | for (;;) { | 
|  | if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) { | 
|  | break; | 
|  | } | 
|  | q--; | 
|  | rm += d0; | 
|  | if (rm < d0) { | 
|  | break;  // don't let rm overflow | 
|  | } | 
|  | t2 -= d1; | 
|  | } | 
|  | #else  // !BN_ULLONG | 
|  | BN_ULONG t2l, t2h; | 
|  | BN_UMULT_LOHI(t2l, t2h, d1, q); | 
|  | for (;;) { | 
|  | if (t2h < rm || | 
|  | (t2h == rm && t2l <= wnump[-2])) { | 
|  | break; | 
|  | } | 
|  | q--; | 
|  | rm += d0; | 
|  | if (rm < d0) { | 
|  | break;  // don't let rm overflow | 
|  | } | 
|  | if (t2l < d1) { | 
|  | t2h--; | 
|  | } | 
|  | t2l -= d1; | 
|  | } | 
|  | #endif  // !BN_ULLONG | 
|  | } | 
|  |  | 
|  | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | 
|  | tmp->d[div_n] = l0; | 
|  | wnum.d--; | 
|  | // ingore top values of the bignums just sub the two | 
|  | // BN_ULONG arrays with bn_sub_words | 
|  | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { | 
|  | // Note: As we have considered only the leading | 
|  | // two BN_ULONGs in the calculation of q, sdiv * q | 
|  | // might be greater than wnum (but then (q-1) * sdiv | 
|  | // is less or equal than wnum) | 
|  | q--; | 
|  | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { | 
|  | // we can't have an overflow here (assuming | 
|  | // that q != 0, but if q == 0 then tmp is | 
|  | // zero anyway) | 
|  | (*wnump)++; | 
|  | } | 
|  | } | 
|  | // store part of the result | 
|  | *resp = q; | 
|  | } | 
|  |  | 
|  | bn_set_minimal_width(snum); | 
|  |  | 
|  | if (rem != NULL) { | 
|  | // Keep a copy of the neg flag in numerator because if |rem| == |numerator| | 
|  | // |BN_rshift| will overwrite it. | 
|  | int neg = numerator->neg; | 
|  | if (!BN_rshift(rem, snum, norm_shift)) { | 
|  | goto err; | 
|  | } | 
|  | if (!BN_is_zero(rem)) { | 
|  | rem->neg = neg; | 
|  | } | 
|  | } | 
|  |  | 
|  | bn_set_minimal_width(res); | 
|  | BN_CTX_end(ctx); | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { | 
|  | if (!(BN_mod(r, m, d, ctx))) { | 
|  | return 0; | 
|  | } | 
|  | if (!r->neg) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // now -|d| < r < 0, so we have to set r := r + |d|. | 
|  | return (d->neg ? BN_sub : BN_add)(r, r, d); | 
|  | } | 
|  |  | 
|  | BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, | 
|  | const BN_ULONG *m, size_t num) { | 
|  | assert(r != a); | 
|  | // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and | 
|  | // then we apply the borrow to |carry|. | 
|  | carry -= bn_sub_words(r, a, m, num); | 
|  | // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|. | 
|  | // | 
|  | // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then | 
|  | // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to | 
|  | // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both | 
|  | // cases, |carry| is a suitable input to |bn_select_words|. | 
|  | // | 
|  | // Although |carry| may be one if it was one on input and |bn_sub_words| | 
|  | // returns zero, this would give |r| > |m|, violating our input assumptions. | 
|  | assert(carry == 0 || carry == (BN_ULONG)-1); | 
|  | bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num); | 
|  | return carry; | 
|  | } | 
|  |  | 
|  | BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, | 
|  | BN_ULONG *tmp, size_t num) { | 
|  | // See |bn_reduce_once| for why this logic works. | 
|  | carry -= bn_sub_words(tmp, r, m, num); | 
|  | assert(carry == 0 || carry == (BN_ULONG)-1); | 
|  | bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); | 
|  | return carry; | 
|  | } | 
|  |  | 
|  | void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | const BN_ULONG *m, BN_ULONG *tmp, size_t num) { | 
|  | // r = a - b | 
|  | BN_ULONG borrow = bn_sub_words(r, a, b, num); | 
|  | // tmp = a - b + m | 
|  | bn_add_words(tmp, r, m, num); | 
|  | bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num); | 
|  | } | 
|  |  | 
|  | void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
|  | const BN_ULONG *m, BN_ULONG *tmp, size_t num) { | 
|  | BN_ULONG carry = bn_add_words(r, a, b, num); | 
|  | bn_reduce_once_in_place(r, carry, m, tmp, num); | 
|  | } | 
|  |  | 
|  | int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, | 
|  | const BIGNUM *numerator, const BIGNUM *divisor, | 
|  | BN_CTX *ctx) { | 
|  | if (BN_is_negative(numerator) || BN_is_negative(divisor)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  | if (BN_is_zero(divisor)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function implements long division in binary. It is not very efficient, | 
|  | // but it is simple, easy to make constant-time, and performant enough for RSA | 
|  | // key generation. | 
|  |  | 
|  | int ret = 0; | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *q = quotient, *r = remainder; | 
|  | if (quotient == NULL || quotient == numerator || quotient == divisor) { | 
|  | q = BN_CTX_get(ctx); | 
|  | } | 
|  | if (remainder == NULL || remainder == numerator || remainder == divisor) { | 
|  | r = BN_CTX_get(ctx); | 
|  | } | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | if (q == NULL || r == NULL || tmp == NULL || | 
|  | !bn_wexpand(q, numerator->width) || | 
|  | !bn_wexpand(r, divisor->width) || | 
|  | !bn_wexpand(tmp, divisor->width)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG)); | 
|  | q->width = numerator->width; | 
|  | q->neg = 0; | 
|  |  | 
|  | OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG)); | 
|  | r->width = divisor->width; | 
|  | r->neg = 0; | 
|  |  | 
|  | // Incorporate |numerator| into |r|, one bit at a time, reducing after each | 
|  | // step. At the start of each loop iteration, |r| < |divisor| | 
|  | for (int i = numerator->width - 1; i >= 0; i--) { | 
|  | for (int bit = BN_BITS2 - 1; bit >= 0; bit--) { | 
|  | // Incorporate the next bit of the numerator, by computing | 
|  | // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the | 
|  | // extra word in |carry|. | 
|  | BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width); | 
|  | r->d[0] |= (numerator->d[i] >> bit) & 1; | 
|  | // |r| was previously fully-reduced, so we know: | 
|  | //      2*0 <= r <= 2*(divisor-1) + 1 | 
|  | //        0 <= r <= 2*divisor - 1 < 2*divisor. | 
|  | // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|. | 
|  | BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d, | 
|  | tmp->d, divisor->width); | 
|  | // The corresponding bit of the quotient is set iff we needed to subtract. | 
|  | q->d[i] |= (~subtracted & 1) << bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((quotient != NULL && !BN_copy(quotient, q)) || | 
|  | (remainder != NULL && !BN_copy(remainder, r))) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) { | 
|  | BIGNUM *ret = BN_CTX_get(ctx); | 
|  | if (ret == NULL || | 
|  | !bn_wexpand(ret, width)) { | 
|  | return NULL; | 
|  | } | 
|  | ret->neg = 0; | 
|  | ret->width = width; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // bn_resized_from_ctx returns |bn| with width at least |width| or NULL on | 
|  | // error. This is so it may be used with low-level "words" functions. If | 
|  | // necessary, it allocates a new |BIGNUM| with a lifetime of the current scope | 
|  | // in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in | 
|  | // |width| words. | 
|  | static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width, | 
|  | BN_CTX *ctx) { | 
|  | if ((size_t)bn->width >= width) { | 
|  | // Any excess words must be zero. | 
|  | assert(bn_fits_in_words(bn, width)); | 
|  | return bn; | 
|  | } | 
|  | BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx); | 
|  | if (ret == NULL || | 
|  | !BN_copy(ret, bn) || | 
|  | !bn_resize_words(ret, width)) { | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | if (!BN_add(r, a, b)) { | 
|  | return 0; | 
|  | } | 
|  | return BN_nnmod(r, r, m, ctx); | 
|  | } | 
|  |  | 
|  | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m) { | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | int ok = ctx != NULL && | 
|  | bn_mod_add_consttime(r, a, b, m, ctx); | 
|  | BN_CTX_free(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx) { | 
|  | BN_CTX_start(ctx); | 
|  | a = bn_resized_from_ctx(a, m->width, ctx); | 
|  | b = bn_resized_from_ctx(b, m->width, ctx); | 
|  | BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx); | 
|  | int ok = a != NULL && b != NULL && tmp != NULL && | 
|  | bn_wexpand(r, m->width); | 
|  | if (ok) { | 
|  | bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width); | 
|  | r->width = m->width; | 
|  | r->neg = 0; | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | if (!BN_sub(r, a, b)) { | 
|  | return 0; | 
|  | } | 
|  | return BN_nnmod(r, r, m, ctx); | 
|  | } | 
|  |  | 
|  | int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx) { | 
|  | BN_CTX_start(ctx); | 
|  | a = bn_resized_from_ctx(a, m->width, ctx); | 
|  | b = bn_resized_from_ctx(b, m->width, ctx); | 
|  | BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx); | 
|  | int ok = a != NULL && b != NULL && tmp != NULL && | 
|  | bn_wexpand(r, m->width); | 
|  | if (ok) { | 
|  | bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width); | 
|  | r->width = m->width; | 
|  | r->neg = 0; | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m) { | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | int ok = ctx != NULL && | 
|  | bn_mod_sub_consttime(r, a, b, m, ctx); | 
|  | BN_CTX_free(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | BIGNUM *t; | 
|  | int ret = 0; | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | t = BN_CTX_get(ctx); | 
|  | if (t == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (a == b) { | 
|  | if (!BN_sqr(t, a, ctx)) { | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | if (!BN_mul(t, a, b, ctx)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_nnmod(r, t, m, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
|  | if (!BN_sqr(r, a, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // r->neg == 0,  thus we don't need BN_nnmod | 
|  | return BN_mod(r, r, m, ctx); | 
|  | } | 
|  |  | 
|  | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | BIGNUM *abs_m = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!BN_nnmod(r, a, m, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (m->neg) { | 
|  | abs_m = BN_dup(m); | 
|  | if (abs_m == NULL) { | 
|  | return 0; | 
|  | } | 
|  | abs_m->neg = 0; | 
|  | } | 
|  |  | 
|  | ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx); | 
|  |  | 
|  | BN_free(abs_m); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | if (!BN_copy(r, a)) { | 
|  | return 0; | 
|  | } | 
|  | for (int i = 0; i < n; i++) { | 
|  | if (!bn_mod_lshift1_consttime(r, r, m, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | int ok = ctx != NULL && | 
|  | bn_mod_lshift_consttime(r, a, n, m, ctx); | 
|  | BN_CTX_free(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
|  | if (!BN_lshift1(r, a)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return BN_nnmod(r, r, m, ctx); | 
|  | } | 
|  |  | 
|  | int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, | 
|  | BN_CTX *ctx) { | 
|  | return bn_mod_add_consttime(r, a, a, m, ctx); | 
|  | } | 
|  |  | 
|  | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | int ok = ctx != NULL && | 
|  | bn_mod_lshift1_consttime(r, a, m, ctx); | 
|  | BN_CTX_free(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { | 
|  | BN_ULONG ret = 0; | 
|  | int i, j; | 
|  |  | 
|  | if (!w) { | 
|  | // actually this an error (division by zero) | 
|  | return (BN_ULONG) - 1; | 
|  | } | 
|  |  | 
|  | if (a->width == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // normalize input for |bn_div_rem_words|. | 
|  | j = BN_BITS2 - BN_num_bits_word(w); | 
|  | w <<= j; | 
|  | if (!BN_lshift(a, a, j)) { | 
|  | return (BN_ULONG) - 1; | 
|  | } | 
|  |  | 
|  | for (i = a->width - 1; i >= 0; i--) { | 
|  | BN_ULONG l = a->d[i]; | 
|  | BN_ULONG d; | 
|  | BN_ULONG unused_rem; | 
|  | bn_div_rem_words(&d, &unused_rem, ret, l, w); | 
|  | ret = l - (d * w); | 
|  | a->d[i] = d; | 
|  | } | 
|  |  | 
|  | bn_set_minimal_width(a); | 
|  | ret >>= j; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { | 
|  | #ifndef BN_CAN_DIVIDE_ULLONG | 
|  | BN_ULONG ret = 0; | 
|  | #else | 
|  | BN_ULLONG ret = 0; | 
|  | #endif | 
|  | int i; | 
|  |  | 
|  | if (w == 0) { | 
|  | return (BN_ULONG) -1; | 
|  | } | 
|  |  | 
|  | #ifndef BN_CAN_DIVIDE_ULLONG | 
|  | // If |w| is too long and we don't have |BN_ULLONG| division then we need to | 
|  | // fall back to using |BN_div_word|. | 
|  | if (w > ((BN_ULONG)1 << BN_BITS4)) { | 
|  | BIGNUM *tmp = BN_dup(a); | 
|  | if (tmp == NULL) { | 
|  | return (BN_ULONG)-1; | 
|  | } | 
|  | ret = BN_div_word(tmp, w); | 
|  | BN_free(tmp); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (i = a->width - 1; i >= 0; i--) { | 
|  | #ifndef BN_CAN_DIVIDE_ULLONG | 
|  | ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; | 
|  | ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; | 
|  | #else | 
|  | ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w); | 
|  | #endif | 
|  | } | 
|  | return (BN_ULONG)ret; | 
|  | } | 
|  |  | 
|  | int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { | 
|  | if (e == 0 || a->width == 0) { | 
|  | BN_zero(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t num_words = 1 + ((e - 1) / BN_BITS2); | 
|  |  | 
|  | // If |a| definitely has less than |e| bits, just BN_copy. | 
|  | if ((size_t) a->width < num_words) { | 
|  | return BN_copy(r, a) != NULL; | 
|  | } | 
|  |  | 
|  | // Otherwise, first make sure we have enough space in |r|. | 
|  | // Note that this will fail if num_words > INT_MAX. | 
|  | if (!bn_wexpand(r, num_words)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Copy the content of |a| into |r|. | 
|  | OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG)); | 
|  |  | 
|  | // If |e| isn't word-aligned, we have to mask off some of our bits. | 
|  | size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8); | 
|  | if (top_word_exponent != 0) { | 
|  | r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; | 
|  | } | 
|  |  | 
|  | // Fill in the remaining fields of |r|. | 
|  | r->neg = a->neg; | 
|  | r->width = (int) num_words; | 
|  | bn_set_minimal_width(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { | 
|  | if (!BN_mod_pow2(r, a, e)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the returned value was non-negative, we're done. | 
|  | if (BN_is_zero(r) || !r->neg) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t num_words = 1 + (e - 1) / BN_BITS2; | 
|  |  | 
|  | // Expand |r| to the size of our modulus. | 
|  | if (!bn_wexpand(r, num_words)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Clear the upper words of |r|. | 
|  | OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES); | 
|  |  | 
|  | // Set parameters of |r|. | 
|  | r->neg = 0; | 
|  | r->width = (int) num_words; | 
|  |  | 
|  | // Now, invert every word. The idea here is that we want to compute 2^e-|x|, | 
|  | // which is actually equivalent to the twos-complement representation of |x| | 
|  | // in |e| bits, which is -x = ~x + 1. | 
|  | for (int i = 0; i < r->width; i++) { | 
|  | r->d[i] = ~r->d[i]; | 
|  | } | 
|  |  | 
|  | // If our exponent doesn't span the top word, we have to mask the rest. | 
|  | size_t top_word_exponent = e % BN_BITS2; | 
|  | if (top_word_exponent != 0) { | 
|  | r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; | 
|  | } | 
|  |  | 
|  | // Keep the minimal-width invariant for |BIGNUM|. | 
|  | bn_set_minimal_width(r); | 
|  |  | 
|  | // Finally, add one, for the reason described above. | 
|  | return BN_add(r, r, BN_value_one()); | 
|  | } |