| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/thread.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| // This file implements the wNAF-based interleaving multi-exponentiation method |
| // at: |
| // http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
| // http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
| |
| // Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. |
| // This is an array r[] of values that are either zero or odd with an |
| // absolute value less than 2^w satisfying |
| // scalar = \sum_j r[j]*2^j |
| // where at most one of any w+1 consecutive digits is non-zero |
| // with the exception that the most significant digit may be only |
| // w-1 zeros away from that next non-zero digit. |
| static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) { |
| int window_val; |
| int ok = 0; |
| int8_t *r = NULL; |
| int sign = 1; |
| int bit, next_bit, mask; |
| size_t len = 0, j; |
| |
| if (BN_is_zero(scalar)) { |
| r = OPENSSL_malloc(1); |
| if (!r) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| r[0] = 0; |
| *ret_len = 1; |
| return r; |
| } |
| |
| // 'int8_t' can represent integers with absolute values less than 2^7. |
| if (w <= 0 || w > 7) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| bit = 1 << w; // at most 128 |
| next_bit = bit << 1; // at most 256 |
| mask = next_bit - 1; // at most 255 |
| |
| if (BN_is_negative(scalar)) { |
| sign = -1; |
| } |
| |
| if (scalar->d == NULL || scalar->top == 0) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| len = BN_num_bits(scalar); |
| // The modified wNAF may be one digit longer than binary representation |
| // (*ret_len will be set to the actual length, i.e. at most |
| // BN_num_bits(scalar) + 1). |
| r = OPENSSL_malloc(len + 1); |
| if (r == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| window_val = scalar->d[0] & mask; |
| j = 0; |
| // If j+w+1 >= len, window_val will not increase. |
| while (window_val != 0 || j + w + 1 < len) { |
| int digit = 0; |
| |
| // 0 <= window_val <= 2^(w+1) |
| |
| if (window_val & 1) { |
| // 0 < window_val < 2^(w+1) |
| |
| if (window_val & bit) { |
| digit = window_val - next_bit; // -2^w < digit < 0 |
| |
| #if 1 // modified wNAF |
| if (j + w + 1 >= len) { |
| // special case for generating modified wNAFs: |
| // no new bits will be added into window_val, |
| // so using a positive digit here will decrease |
| // the total length of the representation |
| |
| digit = window_val & (mask >> 1); // 0 < digit < 2^w |
| } |
| #endif |
| } else { |
| digit = window_val; // 0 < digit < 2^w |
| } |
| |
| if (digit <= -bit || digit >= bit || !(digit & 1)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| window_val -= digit; |
| |
| // Now window_val is 0 or 2^(w+1) in standard wNAF generation; |
| // for modified window NAFs, it may also be 2^w. |
| if (window_val != 0 && window_val != next_bit && window_val != bit) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } |
| |
| r[j++] = sign * digit; |
| |
| window_val >>= 1; |
| window_val += bit * BN_is_bit_set(scalar, j + w); |
| |
| if (window_val > next_bit) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } |
| |
| if (j > len + 1) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| len = j; |
| ok = 1; |
| |
| err: |
| if (!ok) { |
| OPENSSL_free(r); |
| r = NULL; |
| } |
| if (ok) { |
| *ret_len = len; |
| } |
| return r; |
| } |
| |
| |
| // TODO: table should be optimised for the wNAF-based implementation, |
| // sometimes smaller windows will give better performance |
| // (thus the boundaries should be increased) |
| static size_t window_bits_for_scalar_size(size_t b) { |
| if (b >= 2000) { |
| return 6; |
| } |
| |
| if (b >= 800) { |
| return 5; |
| } |
| |
| if (b >= 300) { |
| return 4; |
| } |
| |
| if (b >= 70) { |
| return 3; |
| } |
| |
| if (b >= 20) { |
| return 2; |
| } |
| |
| return 1; |
| } |
| |
| int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
| const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { |
| BN_CTX *new_ctx = NULL; |
| const EC_POINT *generator = NULL; |
| EC_POINT *tmp = NULL; |
| size_t total_num = 0; |
| size_t i, j; |
| int k; |
| int r_is_inverted = 0; |
| int r_is_at_infinity = 1; |
| size_t *wsize = NULL; // individual window sizes |
| int8_t **wNAF = NULL; // individual wNAFs |
| size_t *wNAF_len = NULL; |
| size_t max_len = 0; |
| size_t num_val = 0; |
| EC_POINT **val = NULL; // precomputation |
| EC_POINT **v; |
| EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val' |
| int ret = 0; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| goto err; |
| } |
| } |
| |
| // TODO: This function used to take |points| and |scalars| as arrays of |
| // |num| elements. The code below should be simplified to work in terms of |p| |
| // and |p_scalar|. |
| size_t num = p != NULL ? 1 : 0; |
| const EC_POINT **points = p != NULL ? &p : NULL; |
| const BIGNUM **scalars = p != NULL ? &p_scalar : NULL; |
| |
| total_num = num; |
| |
| if (g_scalar != NULL) { |
| generator = EC_GROUP_get0_generator(group); |
| if (generator == NULL) { |
| OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR); |
| goto err; |
| } |
| |
| ++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars' |
| } |
| |
| |
| wsize = OPENSSL_malloc(total_num * sizeof(wsize[0])); |
| wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0])); |
| wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0])); |
| val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0])); |
| |
| // Ensure wNAF is initialised in case we end up going to err. |
| if (wNAF != NULL) { |
| OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0])); |
| } |
| |
| if (!wsize || !wNAF_len || !wNAF || !val_sub) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| // num_val will be the total number of temporarily precomputed points |
| num_val = 0; |
| |
| for (i = 0; i < total_num; i++) { |
| size_t bits; |
| |
| bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar); |
| wsize[i] = window_bits_for_scalar_size(bits); |
| num_val += (size_t)1 << (wsize[i] - 1); |
| wNAF[i] = |
| compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]); |
| if (wNAF[i] == NULL) { |
| goto err; |
| } |
| if (wNAF_len[i] > max_len) { |
| max_len = wNAF_len[i]; |
| } |
| } |
| |
| // All points we precompute now go into a single array 'val'. 'val_sub[i]' is |
| // a pointer to the subarray for the i-th point. |
| val = OPENSSL_malloc(num_val * sizeof(val[0])); |
| if (val == NULL) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| OPENSSL_memset(val, 0, num_val * sizeof(val[0])); |
| |
| // allocate points for precomputation |
| v = val; |
| for (i = 0; i < total_num; i++) { |
| val_sub[i] = v; |
| for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
| *v = EC_POINT_new(group); |
| if (*v == NULL) { |
| goto err; |
| } |
| v++; |
| } |
| } |
| if (!(v == val + num_val)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (!(tmp = EC_POINT_new(group))) { |
| goto err; |
| } |
| |
| // prepare precomputed values: |
| // val_sub[i][0] := points[i] |
| // val_sub[i][1] := 3 * points[i] |
| // val_sub[i][2] := 5 * points[i] |
| // ... |
| for (i = 0; i < total_num; i++) { |
| if (i < num) { |
| if (!EC_POINT_copy(val_sub[i][0], points[i])) { |
| goto err; |
| } |
| } else if (!EC_POINT_copy(val_sub[i][0], generator)) { |
| goto err; |
| } |
| |
| if (wsize[i] > 1) { |
| if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) { |
| goto err; |
| } |
| for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
| if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) { |
| goto err; |
| } |
| } |
| } |
| } |
| |
| #if 1 // optional; window_bits_for_scalar_size assumes we do this step |
| if (!EC_POINTs_make_affine(group, num_val, val, ctx)) { |
| goto err; |
| } |
| #endif |
| |
| r_is_at_infinity = 1; |
| |
| for (k = max_len - 1; k >= 0; k--) { |
| if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) { |
| goto err; |
| } |
| |
| for (i = 0; i < total_num; i++) { |
| if (wNAF_len[i] > (size_t)k) { |
| int digit = wNAF[i][k]; |
| int is_neg; |
| |
| if (digit) { |
| is_neg = digit < 0; |
| |
| if (is_neg) { |
| digit = -digit; |
| } |
| |
| if (is_neg != r_is_inverted) { |
| if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) { |
| goto err; |
| } |
| r_is_inverted = !r_is_inverted; |
| } |
| |
| // digit > 0 |
| |
| if (r_is_at_infinity) { |
| if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) { |
| goto err; |
| } |
| r_is_at_infinity = 0; |
| } else { |
| if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) { |
| goto err; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (r_is_at_infinity) { |
| if (!EC_POINT_set_to_infinity(group, r)) { |
| goto err; |
| } |
| } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_free(new_ctx); |
| EC_POINT_free(tmp); |
| OPENSSL_free(wsize); |
| OPENSSL_free(wNAF_len); |
| if (wNAF != NULL) { |
| for (i = 0; i < total_num; i++) { |
| OPENSSL_free(wNAF[i]); |
| } |
| |
| OPENSSL_free(wNAF); |
| } |
| if (val != NULL) { |
| for (i = 0; i < num_val; i++) { |
| EC_POINT_clear_free(val[i]); |
| } |
| |
| OPENSSL_free(val); |
| } |
| OPENSSL_free(val_sub); |
| return ret; |
| } |