blob: 5190a53e757c7a21a6157c9ae536734aecae1a22 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/lhash.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/x509v3.h>
#include "internal.h"
#include "../crypto/internal.h"
/* |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it
* to avoid downstream churn. */
OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL)
/* Some error codes are special. Ensure the make_errors.go script never
* regresses this. */
OPENSSL_COMPILE_ASSERT(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION ==
SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET,
ssl_alert_reason_code_mismatch);
/* kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. */
static const size_t kMaxHandshakeSize = (1u << 24) - 1;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl =
CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx =
CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
int SSL_library_init(void) {
CRYPTO_library_init();
return 1;
}
static uint32_t ssl_session_hash(const SSL_SESSION *a) {
uint32_t hash =
((uint32_t)a->session_id[0]) ||
((uint32_t)a->session_id[1] << 8) ||
((uint32_t)a->session_id[2] << 16) ||
((uint32_t)a->session_id[3] << 24);
return hash;
}
/* NB: If this function (or indeed the hash function which uses a sort of
* coarser function than this one) is changed, ensure
* SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being
* able to construct an SSL_SESSION that will collide with any existing session
* with a matching session ID. */
static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) {
if (a->ssl_version != b->ssl_version) {
return 1;
}
if (a->session_id_length != b->session_id_length) {
return 1;
}
return memcmp(a->session_id, b->session_id, a->session_id_length);
}
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) {
SSL_CTX *ret = NULL;
if (method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED);
return NULL;
}
if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
goto err;
}
ret = (SSL_CTX *)OPENSSL_malloc(sizeof(SSL_CTX));
if (ret == NULL) {
goto err;
}
memset(ret, 0, sizeof(SSL_CTX));
ret->method = method->method;
CRYPTO_MUTEX_init(&ret->lock);
ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
/* We take the system default */
ret->session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
ret->references = 1;
ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
ret->verify_mode = SSL_VERIFY_NONE;
ret->cert = ssl_cert_new();
if (ret->cert == NULL) {
goto err;
}
ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
if (ret->sessions == NULL) {
goto err;
}
ret->cert_store = X509_STORE_new();
if (ret->cert_store == NULL) {
goto err;
}
ssl_create_cipher_list(ret->method, &ret->cipher_list,
&ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST);
if (ret->cipher_list == NULL ||
sk_SSL_CIPHER_num(ret->cipher_list->ciphers) <= 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS);
goto err2;
}
ret->param = X509_VERIFY_PARAM_new();
if (!ret->param) {
goto err;
}
ret->client_CA = sk_X509_NAME_new_null();
if (ret->client_CA == NULL) {
goto err;
}
CRYPTO_new_ex_data(&g_ex_data_class_ssl_ctx, ret, &ret->ex_data);
ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
/* Setup RFC4507 ticket keys */
if (!RAND_bytes(ret->tlsext_tick_key_name, 16) ||
!RAND_bytes(ret->tlsext_tick_hmac_key, 16) ||
!RAND_bytes(ret->tlsext_tick_aes_key, 16)) {
ret->options |= SSL_OP_NO_TICKET;
}
/* Default is to connect to non-RI servers. When RI is more widely deployed
* might change this. */
ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
/* Lock the SSL_CTX to the specified version, for compatibility with legacy
* uses of SSL_METHOD. */
if (method->version != 0) {
SSL_CTX_set_max_version(ret, method->version);
SSL_CTX_set_min_version(ret, method->version);
}
return ret;
err:
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
err2:
SSL_CTX_free(ret);
return NULL;
}
void SSL_CTX_free(SSL_CTX *ctx) {
if (ctx == NULL ||
!CRYPTO_refcount_dec_and_test_zero(&ctx->references)) {
return;
}
X509_VERIFY_PARAM_free(ctx->param);
/* Free internal session cache. However: the remove_cb() may reference the
* ex_data of SSL_CTX, thus the ex_data store can only be removed after the
* sessions were flushed. As the ex_data handling routines might also touch
* the session cache, the most secure solution seems to be: empty (flush) the
* cache, then free ex_data, then finally free the cache. (See ticket
* [openssl.org #212].) */
SSL_CTX_flush_sessions(ctx, 0);
CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, ctx, &ctx->ex_data);
CRYPTO_MUTEX_cleanup(&ctx->lock);
lh_SSL_SESSION_free(ctx->sessions);
X509_STORE_free(ctx->cert_store);
ssl_cipher_preference_list_free(ctx->cipher_list);
sk_SSL_CIPHER_free(ctx->cipher_list_by_id);
ssl_cipher_preference_list_free(ctx->cipher_list_tls10);
ssl_cipher_preference_list_free(ctx->cipher_list_tls11);
ssl_cert_free(ctx->cert);
sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->client_custom_extensions,
SSL_CUSTOM_EXTENSION_free);
sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->server_custom_extensions,
SSL_CUSTOM_EXTENSION_free);
sk_X509_NAME_pop_free(ctx->client_CA, X509_NAME_free);
sk_SRTP_PROTECTION_PROFILE_free(ctx->srtp_profiles);
OPENSSL_free(ctx->psk_identity_hint);
OPENSSL_free(ctx->tlsext_ellipticcurvelist);
OPENSSL_free(ctx->alpn_client_proto_list);
OPENSSL_free(ctx->ocsp_response);
OPENSSL_free(ctx->signed_cert_timestamp_list);
EVP_PKEY_free(ctx->tlsext_channel_id_private);
BIO_free(ctx->keylog_bio);
OPENSSL_free(ctx);
}
SSL *SSL_new(SSL_CTX *ctx) {
SSL *s;
if (ctx == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX);
return NULL;
}
if (ctx->method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
return NULL;
}
s = (SSL *)OPENSSL_malloc(sizeof(SSL));
if (s == NULL) {
goto err;
}
memset(s, 0, sizeof(SSL));
s->min_version = ctx->min_version;
s->max_version = ctx->max_version;
s->options = ctx->options;
s->mode = ctx->mode;
s->max_cert_list = ctx->max_cert_list;
s->cert = ssl_cert_dup(ctx->cert);
if (s->cert == NULL) {
goto err;
}
s->msg_callback = ctx->msg_callback;
s->msg_callback_arg = ctx->msg_callback_arg;
s->verify_mode = ctx->verify_mode;
s->sid_ctx_length = ctx->sid_ctx_length;
assert(s->sid_ctx_length <= sizeof s->sid_ctx);
memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
s->verify_callback = ctx->default_verify_callback;
s->generate_session_id = ctx->generate_session_id;
s->param = X509_VERIFY_PARAM_new();
if (!s->param) {
goto err;
}
X509_VERIFY_PARAM_inherit(s->param, ctx->param);
s->quiet_shutdown = ctx->quiet_shutdown;
s->max_send_fragment = ctx->max_send_fragment;
CRYPTO_refcount_inc(&ctx->references);
s->ctx = ctx;
CRYPTO_refcount_inc(&ctx->references);
s->initial_ctx = ctx;
if (ctx->tlsext_ellipticcurvelist) {
s->tlsext_ellipticcurvelist =
BUF_memdup(ctx->tlsext_ellipticcurvelist,
ctx->tlsext_ellipticcurvelist_length * 2);
if (!s->tlsext_ellipticcurvelist) {
goto err;
}
s->tlsext_ellipticcurvelist_length = ctx->tlsext_ellipticcurvelist_length;
}
if (s->ctx->alpn_client_proto_list) {
s->alpn_client_proto_list = BUF_memdup(s->ctx->alpn_client_proto_list,
s->ctx->alpn_client_proto_list_len);
if (s->alpn_client_proto_list == NULL) {
goto err;
}
s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
}
s->verify_result = X509_V_OK;
s->method = ctx->method;
if (!s->method->ssl_new(s)) {
goto err;
}
s->enc_method = ssl3_get_enc_method(s->version);
assert(s->enc_method != NULL);
s->rwstate = SSL_NOTHING;
CRYPTO_new_ex_data(&g_ex_data_class_ssl, s, &s->ex_data);
s->psk_identity_hint = NULL;
if (ctx->psk_identity_hint) {
s->psk_identity_hint = BUF_strdup(ctx->psk_identity_hint);
if (s->psk_identity_hint == NULL) {
goto err;
}
}
s->psk_client_callback = ctx->psk_client_callback;
s->psk_server_callback = ctx->psk_server_callback;
s->tlsext_channel_id_enabled = ctx->tlsext_channel_id_enabled;
if (ctx->tlsext_channel_id_private) {
s->tlsext_channel_id_private =
EVP_PKEY_up_ref(ctx->tlsext_channel_id_private);
}
s->signed_cert_timestamps_enabled = s->ctx->signed_cert_timestamps_enabled;
s->ocsp_stapling_enabled = s->ctx->ocsp_stapling_enabled;
return s;
err:
SSL_free(s);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
void SSL_free(SSL *ssl) {
if (ssl == NULL) {
return;
}
X509_VERIFY_PARAM_free(ssl->param);
CRYPTO_free_ex_data(&g_ex_data_class_ssl, ssl, &ssl->ex_data);
if (ssl->bbio != NULL) {
/* If the buffering BIO is in place, pop it off */
if (ssl->bbio == ssl->wbio) {
ssl->wbio = BIO_pop(ssl->wbio);
}
BIO_free(ssl->bbio);
ssl->bbio = NULL;
}
int free_wbio = ssl->wbio != ssl->rbio;
BIO_free_all(ssl->rbio);
if (free_wbio) {
BIO_free_all(ssl->wbio);
}
BUF_MEM_free(ssl->init_buf);
/* add extra stuff */
ssl_cipher_preference_list_free(ssl->cipher_list);
sk_SSL_CIPHER_free(ssl->cipher_list_by_id);
ssl_clear_bad_session(ssl);
SSL_SESSION_free(ssl->session);
ssl_clear_cipher_ctx(ssl);
ssl_cert_free(ssl->cert);
OPENSSL_free(ssl->tlsext_hostname);
SSL_CTX_free(ssl->initial_ctx);
OPENSSL_free(ssl->tlsext_ellipticcurvelist);
OPENSSL_free(ssl->alpn_client_proto_list);
EVP_PKEY_free(ssl->tlsext_channel_id_private);
OPENSSL_free(ssl->psk_identity_hint);
sk_X509_NAME_pop_free(ssl->client_CA, X509_NAME_free);
OPENSSL_free(ssl->next_proto_negotiated);
sk_SRTP_PROTECTION_PROFILE_free(ssl->srtp_profiles);
if (ssl->method != NULL) {
ssl->method->ssl_free(ssl);
}
SSL_CTX_free(ssl->ctx);
OPENSSL_free(ssl);
}
void SSL_set_connect_state(SSL *ssl) {
ssl->server = 0;
ssl->shutdown = 0;
ssl->state = SSL_ST_CONNECT;
ssl->handshake_func = ssl->method->ssl_connect;
/* clear the current cipher */
ssl_clear_cipher_ctx(ssl);
}
void SSL_set_accept_state(SSL *ssl) {
ssl->server = 1;
ssl->shutdown = 0;
ssl->state = SSL_ST_ACCEPT;
ssl->handshake_func = ssl->method->ssl_accept;
/* clear the current cipher */
ssl_clear_cipher_ctx(ssl);
}
void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) {
/* If the output buffering BIO is still in place, remove it. */
if (ssl->bbio != NULL) {
if (ssl->wbio == ssl->bbio) {
ssl->wbio = ssl->wbio->next_bio;
ssl->bbio->next_bio = NULL;
}
}
if (ssl->rbio != rbio) {
BIO_free_all(ssl->rbio);
}
if (ssl->wbio != wbio && ssl->rbio != ssl->wbio) {
BIO_free_all(ssl->wbio);
}
ssl->rbio = rbio;
ssl->wbio = wbio;
}
BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio; }
BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio; }
int SSL_do_handshake(SSL *ssl) {
if (ssl->handshake_func == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
return -1;
}
if (!SSL_in_init(ssl)) {
return 1;
}
return ssl->handshake_func(ssl);
}
int SSL_connect(SSL *ssl) {
if (ssl->handshake_func == 0) {
/* Not properly initialized yet */
SSL_set_connect_state(ssl);
}
if (ssl->handshake_func != ssl->method->ssl_connect) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
return ssl->handshake_func(ssl);
}
int SSL_accept(SSL *ssl) {
if (ssl->handshake_func == 0) {
/* Not properly initialized yet */
SSL_set_accept_state(ssl);
}
if (ssl->handshake_func != ssl->method->ssl_accept) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
return ssl->handshake_func(ssl);
}
int SSL_read(SSL *ssl, void *buf, int num) {
if (ssl->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
if (ssl->shutdown & SSL_RECEIVED_SHUTDOWN) {
ssl->rwstate = SSL_NOTHING;
return 0;
}
ERR_clear_system_error();
return ssl->method->ssl_read_app_data(ssl, buf, num, 0);
}
int SSL_peek(SSL *ssl, void *buf, int num) {
if (ssl->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
if (ssl->shutdown & SSL_RECEIVED_SHUTDOWN) {
return 0;
}
ERR_clear_system_error();
return ssl->method->ssl_read_app_data(ssl, buf, num, 1);
}
int SSL_write(SSL *ssl, const void *buf, int num) {
if (ssl->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
if (ssl->shutdown & SSL_SENT_SHUTDOWN) {
ssl->rwstate = SSL_NOTHING;
OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
return -1;
}
ERR_clear_system_error();
return ssl->method->ssl_write_app_data(ssl, buf, num);
}
int SSL_shutdown(SSL *ssl) {
/* Note that this function behaves differently from what one might expect.
* Return values are 0 for no success (yet), 1 for success; but calling it
* once is usually not enough, even if blocking I/O is used (see
* ssl3_shutdown). */
if (ssl->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
if (SSL_in_init(ssl)) {
return 1;
}
/* Do nothing if configured not to send a close_notify. */
if (ssl->quiet_shutdown) {
ssl->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN;
return 1;
}
if (!(ssl->shutdown & SSL_SENT_SHUTDOWN)) {
ssl->shutdown |= SSL_SENT_SHUTDOWN;
ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY);
/* our shutdown alert has been sent now, and if it still needs to be
* written, ssl->s3->alert_dispatch will be true */
if (ssl->s3->alert_dispatch) {
return -1; /* return WANT_WRITE */
}
} else if (ssl->s3->alert_dispatch) {
/* resend it if not sent */
int ret = ssl->method->ssl_dispatch_alert(ssl);
if (ret == -1) {
/* we only get to return -1 here the 2nd/Nth invocation, we must have
* already signalled return 0 upon a previous invoation, return
* WANT_WRITE */
return ret;
}
} else if (!(ssl->shutdown & SSL_RECEIVED_SHUTDOWN)) {
/* If we are waiting for a close from our peer, we are closed */
ssl->method->ssl_read_close_notify(ssl);
if (!(ssl->shutdown & SSL_RECEIVED_SHUTDOWN)) {
return -1; /* return WANT_READ */
}
}
if (ssl->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) &&
!ssl->s3->alert_dispatch) {
return 1;
} else {
return 0;
}
}
int SSL_get_error(const SSL *ssl, int ret_code) {
int reason;
uint32_t err;
BIO *bio;
if (ret_code > 0) {
return SSL_ERROR_NONE;
}
/* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
* where we do encode the error */
err = ERR_peek_error();
if (err != 0) {
if (ERR_GET_LIB(err) == ERR_LIB_SYS) {
return SSL_ERROR_SYSCALL;
}
return SSL_ERROR_SSL;
}
if (ret_code == 0) {
if ((ssl->shutdown & SSL_RECEIVED_SHUTDOWN) &&
(ssl->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) {
/* The socket was cleanly shut down with a close_notify. */
return SSL_ERROR_ZERO_RETURN;
}
/* An EOF was observed which violates the protocol, and the underlying
* transport does not participate in the error queue. Bubble up to the
* caller. */
return SSL_ERROR_SYSCALL;
}
if (SSL_want_session(ssl)) {
return SSL_ERROR_PENDING_SESSION;
}
if (SSL_want_certificate(ssl)) {
return SSL_ERROR_PENDING_CERTIFICATE;
}
if (SSL_want_read(ssl)) {
bio = SSL_get_rbio(ssl);
if (BIO_should_read(bio)) {
return SSL_ERROR_WANT_READ;
}
if (BIO_should_write(bio)) {
/* This one doesn't make too much sense ... We never try to write to the
* rbio, and an application program where rbio and wbio are separate
* couldn't even know what it should wait for. However if we ever set
* s->rwstate incorrectly (so that we have SSL_want_read(s) instead of
* SSL_want_write(s)) and rbio and wbio *are* the same, this test works
* around that bug; so it might be safer to keep it. */
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT) {
return SSL_ERROR_WANT_CONNECT;
}
if (reason == BIO_RR_ACCEPT) {
return SSL_ERROR_WANT_ACCEPT;
}
return SSL_ERROR_SYSCALL; /* unknown */
}
}
if (SSL_want_write(ssl)) {
bio = SSL_get_wbio(ssl);
if (BIO_should_write(bio)) {
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_read(bio)) {
/* See above (SSL_want_read(ssl) with BIO_should_write(bio)) */
return SSL_ERROR_WANT_READ;
}
if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT) {
return SSL_ERROR_WANT_CONNECT;
}
if (reason == BIO_RR_ACCEPT) {
return SSL_ERROR_WANT_ACCEPT;
}
return SSL_ERROR_SYSCALL;
}
}
if (SSL_want_x509_lookup(ssl)) {
return SSL_ERROR_WANT_X509_LOOKUP;
}
if (SSL_want_channel_id_lookup(ssl)) {
return SSL_ERROR_WANT_CHANNEL_ID_LOOKUP;
}
if (SSL_want_private_key_operation(ssl)) {
return SSL_ERROR_WANT_PRIVATE_KEY_OPERATION;
}
return SSL_ERROR_SYSCALL;
}
void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version) {
ctx->min_version = version;
}
void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version) {
ctx->max_version = version;
}
void SSL_set_min_version(SSL *ssl, uint16_t version) {
ssl->min_version = version;
}
void SSL_set_max_version(SSL *ssl, uint16_t version) {
ssl->max_version = version;
}
uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) {
ctx->options |= options;
return ctx->options;
}
uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) {
ctx->options &= ~options;
return ctx->options;
}
uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; }
uint32_t SSL_set_options(SSL *ssl, uint32_t options) {
ssl->options |= options;
return ssl->options;
}
uint32_t SSL_clear_options(SSL *ssl, uint32_t options) {
ssl->options &= ~options;
return ssl->options;
}
uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; }
uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode |= mode;
return ctx->mode;
}
uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode &= ~mode;
return ctx->mode;
}
uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; }
uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) {
ssl->mode |= mode;
return ssl->mode;
}
uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) {
ssl->mode &= ~mode;
return ssl->mode;
}
uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; }
X509 *SSL_get_peer_certificate(const SSL *ssl) {
if (ssl == NULL || ssl->session == NULL || ssl->session->peer == NULL) {
return NULL;
}
return X509_up_ref(ssl->session->peer);
}
STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) {
if (ssl == NULL || ssl->session == NULL) {
return NULL;
}
return ssl->session->cert_chain;
}
int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out) {
/* The tls-unique value is the first Finished message in the handshake, which
* is the client's in a full handshake and the server's for a resumption. See
* https://tools.ietf.org/html/rfc5929#section-3.1. */
const uint8_t *finished = ssl->s3->previous_client_finished;
size_t finished_len = ssl->s3->previous_client_finished_len;
if (ssl->hit) {
/* tls-unique is broken for resumed sessions unless EMS is used. */
if (!ssl->session->extended_master_secret) {
goto err;
}
finished = ssl->s3->previous_server_finished;
finished_len = ssl->s3->previous_server_finished_len;
}
if (!ssl->s3->initial_handshake_complete ||
ssl->version < TLS1_VERSION) {
goto err;
}
*out_len = finished_len;
if (finished_len > max_out) {
*out_len = max_out;
}
memcpy(out, finished, *out_len);
return 1;
err:
*out_len = 0;
memset(out, 0, max_out);
return 0;
}
int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx,
unsigned sid_ctx_len) {
if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ctx->sid_ctx_length = sid_ctx_len;
memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx,
unsigned sid_ctx_len) {
if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ssl->sid_ctx_length = sid_ctx_len;
memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) {
ctx->generate_session_id = cb;
return 1;
}
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) {
ssl->generate_session_id = cb;
return 1;
}
int SSL_has_matching_session_id(const SSL *ssl, const uint8_t *id,
unsigned id_len) {
/* A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how we
* can "construct" a session to give us the desired check - ie. to find if
* there's a session in the hash table that would conflict with any new
* session built out of this id/id_len and the ssl_version in use by this
* SSL. */
SSL_SESSION r, *p;
if (id_len > sizeof r.session_id) {
return 0;
}
r.ssl_version = ssl->version;
r.session_id_length = id_len;
memcpy(r.session_id, id, id_len);
CRYPTO_MUTEX_lock_read(&ssl->ctx->lock);
p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
CRYPTO_MUTEX_unlock(&ssl->ctx->lock);
return p != NULL;
}
int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) {
return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose);
}
int SSL_set_purpose(SSL *ssl, int purpose) {
return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose);
}
int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) {
return X509_VERIFY_PARAM_set_trust(ctx->param, trust);
}
int SSL_set_trust(SSL *ssl, int trust) {
return X509_VERIFY_PARAM_set_trust(ssl->param, trust);
}
int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) {
return X509_VERIFY_PARAM_set1(ctx->param, param);
}
int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) {
return X509_VERIFY_PARAM_set1(ssl->param, param);
}
void ssl_cipher_preference_list_free(
struct ssl_cipher_preference_list_st *cipher_list) {
if (cipher_list == NULL) {
return;
}
sk_SSL_CIPHER_free(cipher_list->ciphers);
OPENSSL_free(cipher_list->in_group_flags);
OPENSSL_free(cipher_list);
}
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_dup(
struct ssl_cipher_preference_list_st *cipher_list) {
struct ssl_cipher_preference_list_st *ret = NULL;
size_t n = sk_SSL_CIPHER_num(cipher_list->ciphers);
ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
if (!ret) {
goto err;
}
ret->ciphers = NULL;
ret->in_group_flags = NULL;
ret->ciphers = sk_SSL_CIPHER_dup(cipher_list->ciphers);
if (!ret->ciphers) {
goto err;
}
ret->in_group_flags = BUF_memdup(cipher_list->in_group_flags, n);
if (!ret->in_group_flags) {
goto err;
}
return ret;
err:
ssl_cipher_preference_list_free(ret);
return NULL;
}
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_from_ciphers(
STACK_OF(SSL_CIPHER) *ciphers) {
struct ssl_cipher_preference_list_st *ret = NULL;
size_t n = sk_SSL_CIPHER_num(ciphers);
ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
if (!ret) {
goto err;
}
ret->ciphers = NULL;
ret->in_group_flags = NULL;
ret->ciphers = sk_SSL_CIPHER_dup(ciphers);
if (!ret->ciphers) {
goto err;
}
ret->in_group_flags = OPENSSL_malloc(n);
if (!ret->in_group_flags) {
goto err;
}
memset(ret->in_group_flags, 0, n);
return ret;
err:
ssl_cipher_preference_list_free(ret);
return NULL;
}
X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; }
X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; }
void SSL_certs_clear(SSL *ssl) { ssl_cert_clear_certs(ssl->cert); }
int SSL_get_fd(const SSL *s) { return SSL_get_rfd(s); }
int SSL_get_rfd(const SSL *s) {
int ret = -1;
BIO *b, *r;
b = SSL_get_rbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL) {
BIO_get_fd(r, &ret);
}
return ret;
}
int SSL_get_wfd(const SSL *s) {
int ret = -1;
BIO *b, *r;
b = SSL_get_wbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL) {
BIO_get_fd(r, &ret);
}
return ret;
}
int SSL_set_fd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, bio);
ret = 1;
err:
return ret;
}
int SSL_set_wfd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
if (s->rbio == NULL || BIO_method_type(s->rbio) != BIO_TYPE_FD ||
(int)BIO_get_fd(s->rbio, NULL) != fd) {
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, SSL_get_rbio(s), bio);
} else {
SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
}
ret = 1;
err:
return ret;
}
int SSL_set_rfd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
if (s->wbio == NULL || BIO_method_type(s->wbio) != BIO_TYPE_FD ||
(int)BIO_get_fd(s->wbio, NULL) != fd) {
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, SSL_get_wbio(s));
} else {
SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
}
ret = 1;
err:
return ret;
}
/* return length of latest Finished message we sent, copy to 'buf' */
size_t SSL_get_finished(const SSL *s, void *buf, size_t count) {
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.finish_md_len;
if (count > ret) {
count = ret;
}
memcpy(buf, s->s3->tmp.finish_md, count);
}
return ret;
}
/* return length of latest Finished message we expected, copy to 'buf' */
size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) {
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.peer_finish_md_len;
if (count > ret) {
count = ret;
}
memcpy(buf, s->s3->tmp.peer_finish_md, count);
}
return ret;
}
int SSL_get_verify_mode(const SSL *ssl) { return ssl->verify_mode; }
int SSL_get_verify_depth(const SSL *ssl) {
return X509_VERIFY_PARAM_get_depth(ssl->param);
}
int SSL_get_extms_support(const SSL *ssl) {
return ssl->s3->tmp.extended_master_secret == 1;
}
int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) {
return ssl->verify_callback;
}
int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; }
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) {
return X509_VERIFY_PARAM_get_depth(ctx->param);
}
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(
int ok, X509_STORE_CTX *store_ctx) {
return ctx->default_verify_callback;
}
void SSL_set_verify(SSL *ssl, int mode,
int (*callback)(int ok, X509_STORE_CTX *store_ctx)) {
ssl->verify_mode = mode;
if (callback != NULL) {
ssl->verify_callback = callback;
}
}
void SSL_set_verify_depth(SSL *ssl, int depth) {
X509_VERIFY_PARAM_set_depth(ssl->param, depth);
}
int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; }
int SSL_get_read_ahead(const SSL *s) { return 0; }
void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { }
void SSL_set_read_ahead(SSL *s, int yes) { }
int SSL_pending(const SSL *s) {
return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length
: 0;
}
/* Fix this so it checks all the valid key/cert options */
int SSL_CTX_check_private_key(const SSL_CTX *ctx) {
if (ctx->cert->x509 == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
if (ctx->cert->privatekey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return 0;
}
return X509_check_private_key(ctx->cert->x509, ctx->cert->privatekey);
}
/* Fix this function so that it takes an optional type parameter */
int SSL_check_private_key(const SSL *ssl) {
if (ssl->cert->x509 == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
if (ssl->cert->privatekey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return 0;
}
return X509_check_private_key(ssl->cert->x509, ssl->cert->privatekey);
}
long SSL_get_default_timeout(const SSL *ssl) {
return SSL_DEFAULT_SESSION_TIMEOUT;
}
int SSL_renegotiate(SSL *ssl) {
/* Caller-initiated renegotiation is not supported. */
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
int SSL_renegotiate_pending(SSL *ssl) {
return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete;
}
size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) {
return ctx->max_cert_list;
}
void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ctx->max_cert_list = (uint32_t)max_cert_list;
}
size_t SSL_get_max_cert_list(const SSL *ssl) {
return ssl->max_cert_list;
}
void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ssl->max_cert_list = (uint32_t)max_cert_list;
}
void SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ctx->max_send_fragment = (uint16_t)max_send_fragment;
}
void SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ssl->max_send_fragment = (uint16_t)max_send_fragment;
}
int SSL_set_mtu(SSL *ssl, unsigned mtu) {
if (!SSL_IS_DTLS(ssl) || mtu < dtls1_min_mtu()) {
return 0;
}
ssl->d1->mtu = mtu;
return 1;
}
int SSL_get_secure_renegotiation_support(const SSL *ssl) {
return ssl->s3->send_connection_binding;
}
LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; }
size_t SSL_CTX_sess_number(const SSL_CTX *ctx) {
return lh_SSL_SESSION_num_items(ctx->sessions);
}
unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) {
unsigned long ret = ctx->session_cache_size;
ctx->session_cache_size = size;
return ret;
}
unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) {
return ctx->session_cache_size;
}
int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) {
int ret = ctx->session_cache_mode;
ctx->session_cache_mode = mode;
return ret;
}
int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) {
return ctx->session_cache_mode;
}
STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) {
if (ssl == NULL) {
return NULL;
}
if (ssl->cipher_list != NULL) {
return ssl->cipher_list->ciphers;
}
if (ssl->version >= TLS1_1_VERSION && ssl->ctx != NULL &&
ssl->ctx->cipher_list_tls11 != NULL) {
return ssl->ctx->cipher_list_tls11->ciphers;
}
if (ssl->version >= TLS1_VERSION && ssl->ctx != NULL &&
ssl->ctx->cipher_list_tls10 != NULL) {
return ssl->ctx->cipher_list_tls10->ciphers;
}
if (ssl->ctx != NULL && ssl->ctx->cipher_list != NULL) {
return ssl->ctx->cipher_list->ciphers;
}
return NULL;
}
/* return a STACK of the ciphers available for the SSL and in order of
* algorithm id */
STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) {
if (s == NULL) {
return NULL;
}
if (s->cipher_list_by_id != NULL) {
return s->cipher_list_by_id;
}
if (s->ctx != NULL && s->ctx->cipher_list_by_id != NULL) {
return s->ctx->cipher_list_by_id;
}
return NULL;
}
const char *SSL_get_cipher_list(const SSL *ssl, int n) {
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
if (ssl == NULL) {
return NULL;
}
sk = SSL_get_ciphers(ssl);
if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) {
return NULL;
}
c = sk_SSL_CIPHER_value(sk, n);
if (c == NULL) {
return NULL;
}
return c->name;
}
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) {
STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
ctx->method, &ctx->cipher_list, &ctx->cipher_list_by_id, str);
if (cipher_list == NULL) {
return 0;
}
/* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
if (sk_SSL_CIPHER_num(cipher_list) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int SSL_CTX_set_cipher_list_tls10(SSL_CTX *ctx, const char *str) {
STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
ctx->method, &ctx->cipher_list_tls10, NULL, str);
if (cipher_list == NULL) {
return 0;
}
/* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
if (sk_SSL_CIPHER_num(cipher_list) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str) {
STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
ctx->method, &ctx->cipher_list_tls11, NULL, str);
if (cipher_list == NULL) {
return 0;
}
/* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
if (sk_SSL_CIPHER_num(cipher_list) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int SSL_set_cipher_list(SSL *ssl, const char *str) {
STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
ssl->ctx->method, &ssl->cipher_list, &ssl->cipher_list_by_id, str);
if (cipher_list == NULL) {
return 0;
}
/* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
if (sk_SSL_CIPHER_num(cipher_list) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int ssl_cipher_list_to_bytes(SSL *s, STACK_OF(SSL_CIPHER) *sk, uint8_t *p) {
size_t i;
const SSL_CIPHER *c;
CERT *ct = s->cert;
uint8_t *q;
/* Set disabled masks for this session */
ssl_set_client_disabled(s);
if (sk == NULL) {
return 0;
}
q = p;
for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
c = sk_SSL_CIPHER_value(sk, i);
/* Skip disabled ciphers */
if (c->algorithm_ssl & ct->mask_ssl ||
c->algorithm_mkey & ct->mask_k ||
c->algorithm_auth & ct->mask_a) {
continue;
}
s2n(ssl_cipher_get_value(c), p);
}
/* If all ciphers were disabled, return the error to the caller. */
if (p == q) {
return 0;
}
/* For SSLv3, the SCSV is added. Otherwise the renegotiation extension is
* added. */
if (s->client_version == SSL3_VERSION &&
!s->s3->initial_handshake_complete) {
s2n(SSL3_CK_SCSV & 0xffff, p);
/* The renegotiation extension is required to be at index zero. */
s->s3->tmp.extensions.sent |= (1u << 0);
}
if (s->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
s2n(SSL3_CK_FALLBACK_SCSV & 0xffff, p);
}
return p - q;
}
STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s, const CBS *cbs) {
CBS cipher_suites = *cbs;
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
if (s->s3) {
s->s3->send_connection_binding = 0;
}
if (CBS_len(&cipher_suites) % 2 != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
return NULL;
}
sk = sk_SSL_CIPHER_new_null();
if (sk == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
while (CBS_len(&cipher_suites) > 0) {
uint16_t cipher_suite;
if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Check for SCSV. */
if (s->s3 && cipher_suite == (SSL3_CK_SCSV & 0xffff)) {
/* SCSV is fatal if renegotiating. */
if (s->s3->initial_handshake_complete) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
s->s3->send_connection_binding = 1;
continue;
}
/* Check for FALLBACK_SCSV. */
if (s->s3 && cipher_suite == (SSL3_CK_FALLBACK_SCSV & 0xffff)) {
uint16_t max_version = ssl3_get_max_server_version(s);
if (SSL_IS_DTLS(s) ? (uint16_t)s->version > max_version
: (uint16_t)s->version < max_version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_INAPPROPRIATE_FALLBACK);
goto err;
}
continue;
}
c = SSL_get_cipher_by_value(cipher_suite);
if (c != NULL && !sk_SSL_CIPHER_push(sk, c)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
}
return sk;
err:
sk_SSL_CIPHER_free(sk);
return NULL;
}
/* return a servername extension value if provided in Client Hello, or NULL. So
* far, only host_name types are defined (RFC 3546). */
const char *SSL_get_servername(const SSL *s, const int type) {
if (type != TLSEXT_NAMETYPE_host_name) {
return NULL;
}
return s->session && !s->tlsext_hostname ? s->session->tlsext_hostname
: s->tlsext_hostname;
}
int SSL_get_servername_type(const SSL *s) {
if (s->session &&
(!s->tlsext_hostname ? s->session->tlsext_hostname : s->tlsext_hostname)) {
return TLSEXT_NAMETYPE_host_name;
}
return -1;
}
void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) {
ctx->signed_cert_timestamps_enabled = 1;
}
int SSL_enable_signed_cert_timestamps(SSL *ssl) {
ssl->signed_cert_timestamps_enabled = 1;
return 1;
}
void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) {
ctx->ocsp_stapling_enabled = 1;
}
int SSL_enable_ocsp_stapling(SSL *ssl) {
ssl->ocsp_stapling_enabled = 1;
return 1;
}
void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = ssl->session;
*out_len = 0;
*out = NULL;
if (ssl->server || !session || !session->tlsext_signed_cert_timestamp_list) {
return;
}
*out = session->tlsext_signed_cert_timestamp_list;
*out_len = session->tlsext_signed_cert_timestamp_list_length;
}
void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = ssl->session;
*out_len = 0;
*out = NULL;
if (ssl->server || !session || !session->ocsp_response) {
return;
}
*out = session->ocsp_response;
*out_len = session->ocsp_response_length;
}
int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
size_t list_len) {
OPENSSL_free(ctx->signed_cert_timestamp_list);
ctx->signed_cert_timestamp_list_length = 0;
ctx->signed_cert_timestamp_list = BUF_memdup(list, list_len);
if (ctx->signed_cert_timestamp_list == NULL) {
return 0;
}
ctx->signed_cert_timestamp_list_length = list_len;
return 1;
}
int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
size_t response_len) {
OPENSSL_free(ctx->ocsp_response);
ctx->ocsp_response_length = 0;
ctx->ocsp_response = BUF_memdup(response, response_len);
if (ctx->ocsp_response == NULL) {
return 0;
}
ctx->ocsp_response_length = response_len;
return 1;
}
int SSL_select_next_proto(uint8_t **out, uint8_t *out_len,
const uint8_t *server, unsigned server_len,
const uint8_t *client, unsigned client_len) {
unsigned int i, j;
const uint8_t *result;
int status = OPENSSL_NPN_UNSUPPORTED;
/* For each protocol in server preference order, see if we support it. */
for (i = 0; i < server_len;) {
for (j = 0; j < client_len;) {
if (server[i] == client[j] &&
memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
/* We found a match */
result = &server[i];
status = OPENSSL_NPN_NEGOTIATED;
goto found;
}
j += client[j];
j++;
}
i += server[i];
i++;
}
/* There's no overlap between our protocols and the server's list. */
result = client;
status = OPENSSL_NPN_NO_OVERLAP;
found:
*out = (uint8_t *)result + 1;
*out_len = result[0];
return status;
}
void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data,
unsigned *out_len) {
*out_data = ssl->next_proto_negotiated;
if (*out_data == NULL) {
*out_len = 0;
} else {
*out_len = ssl->next_proto_negotiated_len;
}
}
void SSL_CTX_set_next_protos_advertised_cb(
SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg),
void *arg) {
ctx->next_protos_advertised_cb = cb;
ctx->next_protos_advertised_cb_arg = arg;
}
void SSL_CTX_set_next_proto_select_cb(
SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
const uint8_t *in, unsigned in_len, void *arg),
void *arg) {
ctx->next_proto_select_cb = cb;
ctx->next_proto_select_cb_arg = arg;
}
int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos,
unsigned protos_len) {
OPENSSL_free(ctx->alpn_client_proto_list);
ctx->alpn_client_proto_list = BUF_memdup(protos, protos_len);
if (!ctx->alpn_client_proto_list) {
return 1;
}
ctx->alpn_client_proto_list_len = protos_len;
return 0;
}
int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) {
OPENSSL_free(ssl->alpn_client_proto_list);
ssl->alpn_client_proto_list = BUF_memdup(protos, protos_len);
if (!ssl->alpn_client_proto_list) {
return 1;
}
ssl->alpn_client_proto_list_len = protos_len;
return 0;
}
void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out,
uint8_t *out_len, const uint8_t *in,
unsigned in_len, void *arg),
void *arg) {
ctx->alpn_select_cb = cb;
ctx->alpn_select_cb_arg = arg;
}
void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data,
unsigned *out_len) {
*out_data = NULL;
if (ssl->s3) {
*out_data = ssl->s3->alpn_selected;
}
if (*out_data == NULL) {
*out_len = 0;
} else {
*out_len = ssl->s3->alpn_selected_len;
}
}
int SSL_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context) {
if (s->version < TLS1_VERSION) {
return 0;
}
return s->enc_method->export_keying_material(
s, out, out_len, label, label_len, context, context_len, use_context);
}
void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
int (*cb)(X509_STORE_CTX *store_ctx,
void *arg),
void *arg) {
ctx->app_verify_callback = cb;
ctx->app_verify_arg = arg;
}
void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*cb)(int, X509_STORE_CTX *)) {
ctx->verify_mode = mode;
ctx->default_verify_callback = cb;
}
void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) {
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
}
void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
void *arg) {
ssl_cert_set_cert_cb(ctx->cert, cb, arg);
}
void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
ssl_cert_set_cert_cb(ssl->cert, cb, arg);
}
void ssl_get_compatible_server_ciphers(SSL *s, uint32_t *out_mask_k,
uint32_t *out_mask_a) {
CERT *c = s->cert;
int have_rsa_cert = 0, dh_tmp;
uint32_t mask_k, mask_a;
int have_ecc_cert = 0, ecdsa_ok;
X509 *x;
dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL);
if (s->cert->x509 != NULL && ssl_has_private_key(s)) {
if (ssl_private_key_type(s) == EVP_PKEY_RSA) {
have_rsa_cert = 1;
} else if (ssl_private_key_type(s) == EVP_PKEY_EC) {
have_ecc_cert = 1;
}
}
mask_k = 0;
mask_a = 0;
if (dh_tmp) {
mask_k |= SSL_kDHE;
}
if (have_rsa_cert) {
mask_k |= SSL_kRSA;
mask_a |= SSL_aRSA;
}
/* An ECC certificate may be usable for ECDSA cipher suites depending on the
* key usage extension and on the client's curve preferences. */
if (have_ecc_cert) {
x = c->x509;
/* This call populates extension flags (ex_flags). */
X509_check_purpose(x, -1, 0);
ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE)
? (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)
: 1;
if (!tls1_check_ec_cert(s, x)) {
ecdsa_ok = 0;
}
if (ecdsa_ok) {
mask_a |= SSL_aECDSA;
}
}
/* If we are considering an ECC cipher suite that uses an ephemeral EC
* key, check it. */
if (tls1_check_ec_tmp_key(s)) {
mask_k |= SSL_kECDHE;
}
/* PSK requires a server callback. */
if (s->psk_server_callback != NULL) {
mask_k |= SSL_kPSK;
mask_a |= SSL_aPSK;
}
*out_mask_k = mask_k;
*out_mask_a = mask_a;
}
void ssl_update_cache(SSL *s, int mode) {
/* Never cache sessions with empty session IDs. */
if (s->session->session_id_length == 0) {
return;
}
int has_new_session = !s->hit;
if (!s->server && s->tlsext_ticket_expected) {
/* A client may see new sessions on abbreviated handshakes if the server
* decides to renew the ticket. Once the handshake is completed, it should
* be inserted into the cache. */
has_new_session = 1;
}
SSL_CTX *ctx = s->initial_ctx;
if ((ctx->session_cache_mode & mode) == mode && has_new_session &&
((ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) ||
SSL_CTX_add_session(ctx, s->session)) &&
ctx->new_session_cb != NULL) {
/* Note: |new_session_cb| is called whether the internal session cache is
* used or not. */
if (!ctx->new_session_cb(s, SSL_SESSION_up_ref(s->session))) {
SSL_SESSION_free(s->session);
}
}
if (!(ctx->session_cache_mode & SSL_SESS_CACHE_NO_AUTO_CLEAR) &&
!(ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) &&
(ctx->session_cache_mode & mode) == mode) {
/* Automatically flush the internal session cache every 255 connections. */
int flush_cache = 0;
CRYPTO_MUTEX_lock_write(&ctx->lock);
ctx->handshakes_since_cache_flush++;
if (ctx->handshakes_since_cache_flush >= 255) {
flush_cache = 1;
ctx->handshakes_since_cache_flush = 0;
}
CRYPTO_MUTEX_unlock(&ctx->lock);
if (flush_cache) {
SSL_CTX_flush_sessions(ctx, (unsigned long)time(NULL));
}
}
}
static const char *ssl_get_version(int version) {
switch (version) {
case TLS1_2_VERSION:
return "TLSv1.2";
case TLS1_1_VERSION:
return "TLSv1.1";
case TLS1_VERSION:
return "TLSv1";
case SSL3_VERSION:
return "SSLv3";
case DTLS1_VERSION:
return "DTLSv1";
case DTLS1_2_VERSION:
return "DTLSv1.2";
default:
return "unknown";
}
}
const char *SSL_get_version(const SSL *ssl) {
return ssl_get_version(ssl->version);
}
const char *SSL_SESSION_get_version(const SSL_SESSION *session) {
return ssl_get_version(session->ssl_version);
}
const char* SSL_get_curve_name(uint16_t curve_id) {
return tls1_ec_curve_id2name(curve_id);
}
void ssl_clear_cipher_ctx(SSL *s) {
SSL_AEAD_CTX_free(s->aead_read_ctx);
s->aead_read_ctx = NULL;
SSL_AEAD_CTX_free(s->aead_write_ctx);
s->aead_write_ctx = NULL;
}
X509 *SSL_get_certificate(const SSL *s) {
if (s->cert != NULL) {
return s->cert->x509;
}
return NULL;
}
EVP_PKEY *SSL_get_privatekey(const SSL *s) {
if (s->cert != NULL) {
return s->cert->privatekey;
}
return NULL;
}
X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) {
if (ctx->cert != NULL) {
return ctx->cert->x509;
}
return NULL;
}
EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) {
if (ctx->cert != NULL) {
return ctx->cert->privatekey;
}
return NULL;
}
const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) {
if (ssl->aead_write_ctx == NULL) {
return NULL;
}
return ssl->aead_write_ctx->cipher;
}
const COMP_METHOD *SSL_get_current_compression(SSL *s) { return NULL; }
const COMP_METHOD *SSL_get_current_expansion(SSL *s) { return NULL; }
int ssl_init_wbio_buffer(SSL *s, int push) {
BIO *bbio;
if (s->bbio == NULL) {
bbio = BIO_new(BIO_f_buffer());
if (bbio == NULL) {
return 0;
}
s->bbio = bbio;
} else {
bbio = s->bbio;
if (s->bbio == s->wbio) {
s->wbio = BIO_pop(s->wbio);
}
}
BIO_reset(bbio);
if (!BIO_set_read_buffer_size(bbio, 1)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
return 0;
}
if (push) {
if (s->wbio != bbio) {
s->wbio = BIO_push(bbio, s->wbio);
}
} else {
if (s->wbio == bbio) {
s->wbio = BIO_pop(bbio);
}
}
return 1;
}
void ssl_free_wbio_buffer(SSL *s) {
if (s->bbio == NULL) {
return;
}
if (s->bbio == s->wbio) {
/* remove buffering */
s->wbio = BIO_pop(s->wbio);
}
BIO_free(s->bbio);
s->bbio = NULL;
}
void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) {
ctx->quiet_shutdown = mode;
}
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) {
return ctx->quiet_shutdown;
}
void SSL_set_quiet_shutdown(SSL *s, int mode) { s->quiet_shutdown = mode; }
int SSL_get_quiet_shutdown(const SSL *s) { return s->quiet_shutdown; }
void SSL_set_shutdown(SSL *s, int mode) { s->shutdown = mode; }
int SSL_get_shutdown(const SSL *s) { return s->shutdown; }
int SSL_version(const SSL *s) { return s->version; }
SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; }
SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) {
if (ssl->ctx == ctx) {
return ssl->ctx;
}
if (ctx == NULL) {
ctx = ssl->initial_ctx;
}
ssl_cert_free(ssl->cert);
ssl->cert = ssl_cert_dup(ctx->cert);
CRYPTO_refcount_inc(&ctx->references);
SSL_CTX_free(ssl->ctx); /* decrement reference count */
ssl->ctx = ctx;
ssl->sid_ctx_length = ctx->sid_ctx_length;
assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
memcpy(ssl->sid_ctx, ctx->sid_ctx, sizeof(ssl->sid_ctx));
return ssl->ctx;
}
int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) {
return X509_STORE_set_default_paths(ctx->cert_store);
}
int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file,
const char *ca_dir) {
return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir);
}
void SSL_set_info_callback(SSL *ssl,
void (*cb)(const SSL *ssl, int type, int val)) {
ssl->info_callback = cb;
}
void (*SSL_get_info_callback(const SSL *ssl))(const SSL * /*ssl*/, int /*type*/,
int /*val*/) {
return ssl->info_callback;
}
int SSL_state(const SSL *ssl) { return ssl->state; }
void SSL_set_state(SSL *ssl, int state) { }
void SSL_set_verify_result(SSL *ssl, long result) {
ssl->verify_result = result;
}
long SSL_get_verify_result(const SSL *ssl) { return ssl->verify_result; }
int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
int index;
if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp,
new_func, dup_func, free_func)) {
return -1;
}
return index;
}
int SSL_set_ex_data(SSL *ssl, int idx, void *arg) {
return CRYPTO_set_ex_data(&ssl->ex_data, idx, arg);
}
void *SSL_get_ex_data(const SSL *ssl, int idx) {
return CRYPTO_get_ex_data(&ssl->ex_data, idx);
}
int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func) {
int index;
if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp,
new_func, dup_func, free_func)) {
return -1;
}
return index;
}
int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg) {
return CRYPTO_set_ex_data(&ctx->ex_data, idx, arg);
}
void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) {
return CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) {
return ctx->cert_store;
}
void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) {
X509_STORE_free(ctx->cert_store);
ctx->cert_store = store;
}
int SSL_want(const SSL *s) { return s->rwstate; }
void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {
}
void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {
}
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ctx->cert->dh_tmp_cb = callback;
}
void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ssl->cert->dh_tmp_cb = callback;
}
void SSL_CTX_set_tmp_ecdh_callback(SSL_CTX *ctx,
EC_KEY *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ctx->cert->ecdh_tmp_cb = callback;
}
void SSL_set_tmp_ecdh_callback(SSL *ssl,
EC_KEY *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ssl->cert->ecdh_tmp_cb = callback;
}
int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) {
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
OPENSSL_free(ctx->psk_identity_hint);
if (identity_hint != NULL) {
ctx->psk_identity_hint = BUF_strdup(identity_hint);
if (ctx->psk_identity_hint == NULL) {
return 0;
}
} else {
ctx->psk_identity_hint = NULL;
}
return 1;
}
int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) {
if (ssl == NULL) {
return 0;
}
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
/* Clear currently configured hint, if any. */
OPENSSL_free(ssl->psk_identity_hint);
ssl->psk_identity_hint = NULL;
if (identity_hint != NULL) {
ssl->psk_identity_hint = BUF_strdup(identity_hint);
if (ssl->psk_identity_hint == NULL) {
return 0;
}
}
return 1;
}
const char *SSL_get_psk_identity_hint(const SSL *ssl) {
if (ssl == NULL) {
return NULL;
}
return ssl->psk_identity_hint;
}
const char *SSL_get_psk_identity(const SSL *ssl) {
if (ssl == NULL || ssl->session == NULL) {
return NULL;
}
return ssl->session->psk_identity;
}
void SSL_set_psk_client_callback(
SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned max_identity_len, uint8_t *psk,
unsigned max_psk_len)) {
ssl->psk_client_callback = cb;
}
void SSL_CTX_set_psk_client_callback(
SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned max_identity_len, uint8_t *psk,
unsigned max_psk_len)) {
ctx->psk_client_callback = cb;
}
void SSL_set_psk_server_callback(
SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk,
unsigned max_psk_len)) {
ssl->psk_server_callback = cb;
}
void SSL_CTX_set_psk_server_callback(
SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity,
uint8_t *psk, unsigned max_psk_len)) {
ctx->psk_server_callback = cb;
}
void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
void (*cb)(int write_p, int version,
int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)) {
ctx->msg_callback = cb;
}
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) {
ctx->msg_callback_arg = arg;
}
void SSL_set_msg_callback(SSL *ssl,
void (*cb)(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl,
void *arg)) {
ssl->msg_callback = cb;
}
void SSL_set_msg_callback_arg(SSL *ssl, void *arg) {
ssl->msg_callback_arg = arg;
}
void SSL_CTX_set_keylog_bio(SSL_CTX *ctx, BIO *keylog_bio) {
BIO_free(ctx->keylog_bio);
ctx->keylog_bio = keylog_bio;
}
static int cbb_add_hex(CBB *cbb, const uint8_t *in, size_t in_len) {
static const char hextable[] = "0123456789abcdef";
uint8_t *out;
size_t i;
if (!CBB_add_space(cbb, &out, in_len * 2)) {
return 0;
}
for (i = 0; i < in_len; i++) {
*(out++) = (uint8_t)hextable[in[i] >> 4];
*(out++) = (uint8_t)hextable[in[i] & 0xf];
}
return 1;
}
int ssl_ctx_log_rsa_client_key_exchange(SSL_CTX *ctx,
const uint8_t *encrypted_premaster,
size_t encrypted_premaster_len,
const uint8_t *premaster,
size_t premaster_len) {
BIO *bio = ctx->keylog_bio;
CBB cbb;
uint8_t *out;
size_t out_len;
int ret;
if (bio == NULL) {
return 1;
}
if (encrypted_premaster_len < 8) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
CBB_zero(&cbb);
if (!CBB_init(&cbb, 4 + 16 + 1 + premaster_len * 2 + 1) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"RSA ", 4) ||
/* Only the first 8 bytes of the encrypted premaster secret are
* logged. */
!cbb_add_hex(&cbb, encrypted_premaster, 8) ||
!CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
!cbb_add_hex(&cbb, premaster, premaster_len) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) ||
!CBB_finish(&cbb, &out, &out_len)) {
CBB_cleanup(&cbb);
return 0;
}
CRYPTO_MUTEX_lock_write(&ctx->lock);
ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio);
CRYPTO_MUTEX_unlock(&ctx->lock);
OPENSSL_free(out);
return ret;
}
int ssl_ctx_log_master_secret(SSL_CTX *ctx, const uint8_t *client_random,
size_t client_random_len, const uint8_t *master,
size_t master_len) {
BIO *bio = ctx->keylog_bio;
CBB cbb;
uint8_t *out;
size_t out_len;
int ret;
if (bio == NULL) {
return 1;
}
if (client_random_len != 32) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
CBB_zero(&cbb);
if (!CBB_init(&cbb, 14 + 64 + 1 + master_len * 2 + 1) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"CLIENT_RANDOM ", 14) ||
!cbb_add_hex(&cbb, client_random, 32) ||
!CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
!cbb_add_hex(&cbb, master, master_len) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) ||
!CBB_finish(&cbb, &out, &out_len)) {
CBB_cleanup(&cbb);
return 0;
}
CRYPTO_MUTEX_lock_write(&ctx->lock);
ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio);
CRYPTO_MUTEX_unlock(&ctx->lock);
OPENSSL_free(out);
return ret;
}
int SSL_in_false_start(const SSL *s) {
return s->s3->tmp.in_false_start;
}
int SSL_cutthrough_complete(const SSL *s) {
return SSL_in_false_start(s);
}
void SSL_get_structure_sizes(size_t *ssl_size, size_t *ssl_ctx_size,
size_t *ssl_session_size) {
*ssl_size = sizeof(SSL);
*ssl_ctx_size = sizeof(SSL_CTX);
*ssl_session_size = sizeof(SSL_SESSION);
}
int ssl3_can_false_start(const SSL *s) {
const SSL_CIPHER *const cipher = SSL_get_current_cipher(s);
/* False Start only for TLS 1.2 with an ECDHE+AEAD cipher and ALPN or NPN. */
return !SSL_IS_DTLS(s) &&
SSL_version(s) >= TLS1_2_VERSION &&
(s->s3->alpn_selected || s->s3->next_proto_neg_seen) &&
cipher != NULL &&
cipher->algorithm_mkey == SSL_kECDHE &&
(cipher->algorithm_enc == SSL_AES128GCM ||
cipher->algorithm_enc == SSL_AES256GCM ||
cipher->algorithm_enc == SSL_CHACHA20POLY1305);
}
const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version) {
switch (version) {
case SSL3_VERSION:
return &SSLv3_enc_data;
case TLS1_VERSION:
return &TLSv1_enc_data;
case DTLS1_VERSION:
case TLS1_1_VERSION:
return &TLSv1_1_enc_data;
case DTLS1_2_VERSION:
case TLS1_2_VERSION:
return &TLSv1_2_enc_data;
default:
return NULL;
}
}
uint16_t ssl3_get_max_server_version(const SSL *s) {
uint16_t max_version;
if (SSL_IS_DTLS(s)) {
max_version = (s->max_version != 0) ? s->max_version : DTLS1_2_VERSION;
if (!(s->options & SSL_OP_NO_DTLSv1_2) && DTLS1_2_VERSION >= max_version) {
return DTLS1_2_VERSION;
}
if (!(s->options & SSL_OP_NO_DTLSv1) && DTLS1_VERSION >= max_version) {
return DTLS1_VERSION;
}
return 0;
}
max_version = (s->max_version != 0) ? s->max_version : TLS1_2_VERSION;
if (!(s->options & SSL_OP_NO_TLSv1_2) && TLS1_2_VERSION <= max_version) {
return TLS1_2_VERSION;
}
if (!(s->options & SSL_OP_NO_TLSv1_1) && TLS1_1_VERSION <= max_version) {
return TLS1_1_VERSION;
}
if (!(s->options & SSL_OP_NO_TLSv1) && TLS1_VERSION <= max_version) {
return TLS1_VERSION;
}
if (!(s->options & SSL_OP_NO_SSLv3) && SSL3_VERSION <= max_version) {
return SSL3_VERSION;
}
return 0;
}
uint16_t ssl3_get_mutual_version(SSL *s, uint16_t client_version) {
uint16_t version = 0;
if (SSL_IS_DTLS(s)) {
/* Clamp client_version to max_version. */
if (s->max_version != 0 && client_version < s->max_version) {
client_version = s->max_version;
}
if (client_version <= DTLS1_2_VERSION && !(s->options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_2_VERSION;
} else if (client_version <= DTLS1_VERSION &&
!(s->options & SSL_OP_NO_DTLSv1)) {
version = DTLS1_VERSION;
}
/* Check against min_version. */
if (version != 0 && s->min_version != 0 && version > s->min_version) {
return 0;
}
return version;
} else {
/* Clamp client_version to max_version. */
if (s->max_version != 0 && client_version > s->max_version) {
client_version = s->max_version;
}
if (client_version >= TLS1_2_VERSION && !(s->options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_2_VERSION;
} else if (client_version >= TLS1_1_VERSION &&
!(s->options & SSL_OP_NO_TLSv1_1)) {
version = TLS1_1_VERSION;
} else if (client_version >= TLS1_VERSION && !(s->options & SSL_OP_NO_TLSv1)) {
version = TLS1_VERSION;
} else if (client_version >= SSL3_VERSION && !(s->options & SSL_OP_NO_SSLv3)) {
version = SSL3_VERSION;
}
/* Check against min_version. */
if (version != 0 && s->min_version != 0 && version < s->min_version) {
return 0;
}
return version;
}
}
uint16_t ssl3_get_max_client_version(SSL *s) {
uint32_t options = s->options;
uint16_t version = 0;
/* OpenSSL's API for controlling versions entails blacklisting individual
* protocols. This has two problems. First, on the client, the protocol can
* only express a contiguous range of versions. Second, a library consumer
* trying to set a maximum version cannot disable protocol versions that get
* added in a future version of the library.
*
* To account for both of these, OpenSSL interprets the client-side bitmask
* as a min/max range by picking the lowest contiguous non-empty range of
* enabled protocols. Note that this means it is impossible to set a maximum
* version of TLS 1.2 in a future-proof way.
*
* By this scheme, the maximum version is the lowest version V such that V is
* enabled and V+1 is disabled or unimplemented. */
if (SSL_IS_DTLS(s)) {
if (!(options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_2_VERSION;
}
if (!(options & SSL_OP_NO_DTLSv1) && (options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_VERSION;
}
if (s->max_version != 0 && version < s->max_version) {
version = s->max_version;
}
} else {
if (!(options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_2_VERSION;
}
if (!(options & SSL_OP_NO_TLSv1_1) && (options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_1_VERSION;
}
if (!(options & SSL_OP_NO_TLSv1) && (options & SSL_OP_NO_TLSv1_1)) {
version = TLS1_VERSION;
}
if (!(options & SSL_OP_NO_SSLv3) && (options & SSL_OP_NO_TLSv1)) {
version = SSL3_VERSION;
}
if (s->max_version != 0 && version > s->max_version) {
version = s->max_version;
}
}
return version;
}
int ssl3_is_version_enabled(SSL *s, uint16_t version) {
if (SSL_IS_DTLS(s)) {
if (s->max_version != 0 && version < s->max_version) {
return 0;
}
if (s->min_version != 0 && version > s->min_version) {
return 0;
}
switch (version) {
case DTLS1_VERSION:
return !(s->options & SSL_OP_NO_DTLSv1);
case DTLS1_2_VERSION:
return !(s->options & SSL_OP_NO_DTLSv1_2);
default:
return 0;
}
} else {
if (s->max_version != 0 && version > s->max_version) {
return 0;
}
if (s->min_version != 0 && version < s->min_version) {
return 0;
}
switch (version) {
case SSL3_VERSION:
return !(s->options & SSL_OP_NO_SSLv3);
case TLS1_VERSION:
return !(s->options & SSL_OP_NO_TLSv1);
case TLS1_1_VERSION:
return !(s->options & SSL_OP_NO_TLSv1_1);
case TLS1_2_VERSION:
return !(s->options & SSL_OP_NO_TLSv1_2);
default:
return 0;
}
}
}
uint16_t ssl3_version_from_wire(SSL *s, uint16_t wire_version) {
if (!SSL_IS_DTLS(s)) {
return wire_version;
}
uint16_t tls_version = ~wire_version;
uint16_t version = tls_version + 0x0201;
/* If either component overflowed, clamp it so comparisons still work. */
if ((version >> 8) < (tls_version >> 8)) {
version = 0xff00 | (version & 0xff);
}
if ((version & 0xff) < (tls_version & 0xff)) {
version = (version & 0xff00) | 0xff;
}
/* DTLS 1.0 maps to TLS 1.1, not TLS 1.0. */
if (version == TLS1_VERSION) {
version = TLS1_1_VERSION;
}
return version;
}
int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); }
int SSL_is_server(SSL *ssl) { return ssl->server; }
void SSL_CTX_set_dos_protection_cb(
SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) {
ctx->dos_protection_cb = cb;
}
void SSL_set_reject_peer_renegotiations(SSL *s, int reject) {
s->accept_peer_renegotiations = !reject;
}
int SSL_get_rc4_state(const SSL *ssl, const RC4_KEY **read_key,
const RC4_KEY **write_key) {
if (ssl->aead_read_ctx == NULL || ssl->aead_write_ctx == NULL) {
return 0;
}
return EVP_AEAD_CTX_get_rc4_state(&ssl->aead_read_ctx->ctx, read_key) &&
EVP_AEAD_CTX_get_rc4_state(&ssl->aead_write_ctx->ctx, write_key);
}
int SSL_clear(SSL *ssl) {
if (ssl->method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_METHOD_SPECIFIED);
return 0;
}
if (ssl_clear_bad_session(ssl)) {
SSL_SESSION_free(ssl->session);
ssl->session = NULL;
}
ssl->hit = 0;
ssl->shutdown = 0;
/* SSL_clear may be called before or after the |ssl| is initialized in either
* accept or connect state. In the latter case, SSL_clear should preserve the
* half and reset |ssl->state| accordingly. */
if (ssl->handshake_func != NULL) {
if (ssl->server) {
SSL_set_accept_state(ssl);
} else {
SSL_set_connect_state(ssl);
}
} else {
assert(ssl->state == 0);
}
/* TODO(davidben): Some state on |ssl| is reset both in |SSL_new| and
* |SSL_clear| because it is per-connection state rather than configuration
* state. Per-connection state should be on |ssl->s3| and |ssl->d1| so it is
* naturally reset at the right points between |SSL_new|, |SSL_clear|, and
* |ssl3_new|. */
ssl->rwstate = SSL_NOTHING;
BUF_MEM_free(ssl->init_buf);
ssl->init_buf = NULL;
ssl_clear_cipher_ctx(ssl);
OPENSSL_free(ssl->next_proto_negotiated);
ssl->next_proto_negotiated = NULL;
ssl->next_proto_negotiated_len = 0;
/* The ssl->d1->mtu is simultaneously configuration (preserved across
* clear) and connection-specific state (gets reset).
*
* TODO(davidben): Avoid this. */
unsigned mtu = 0;
if (ssl->d1 != NULL) {
mtu = ssl->d1->mtu;
}
ssl->method->ssl_free(ssl);
if (!ssl->method->ssl_new(ssl)) {
return 0;
}
ssl->enc_method = ssl3_get_enc_method(ssl->version);
assert(ssl->enc_method != NULL);
if (SSL_IS_DTLS(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
ssl->d1->mtu = mtu;
}
ssl->client_version = ssl->version;
return 1;
}
int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; }
void ERR_load_SSL_strings(void) {}
void SSL_load_error_strings(void) {}