blob: f4d1441098c6589d1b05d1a09988984842c88d59 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/base.h>
#include <stdio.h>
#if !defined(OPENSSL_WINDOWS)
#include <sys/select.h>
#else
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/ssl.h>
#include "../crypto/internal.h"
#include "internal.h"
#include "transport_common.h"
static const struct argument kArguments[] = {
{
"-connect", kRequiredArgument,
"The hostname and port of the server to connect to, e.g. foo.com:443",
},
{
"-cipher", kOptionalArgument,
"An OpenSSL-style cipher suite string that configures the offered "
"ciphers",
},
{
"-curves", kOptionalArgument,
"An OpenSSL-style ECDH curves list that configures the offered curves",
},
{
"-max-version", kOptionalArgument,
"The maximum acceptable protocol version",
},
{
"-min-version", kOptionalArgument,
"The minimum acceptable protocol version",
},
{
"-server-name", kOptionalArgument, "The server name to advertise",
},
{
"-select-next-proto", kOptionalArgument,
"An NPN protocol to select if the server supports NPN",
},
{
"-alpn-protos", kOptionalArgument,
"A comma-separated list of ALPN protocols to advertise",
},
{
"-fallback-scsv", kBooleanArgument, "Enable FALLBACK_SCSV",
},
{
"-ocsp-stapling", kBooleanArgument,
"Advertise support for OCSP stabling",
},
{
"-signed-certificate-timestamps", kBooleanArgument,
"Advertise support for signed certificate timestamps",
},
{
"-channel-id-key", kOptionalArgument,
"The key to use for signing a channel ID",
},
{
"-false-start", kBooleanArgument, "Enable False Start",
},
{
"-session-in", kOptionalArgument,
"A file containing a session to resume.",
},
{
"-session-out", kOptionalArgument,
"A file to write the negotiated session to.",
},
{
"-key", kOptionalArgument,
"PEM-encoded file containing the private key.",
},
{
"-cert", kOptionalArgument,
"PEM-encoded file containing the leaf certificate and optional "
"certificate chain. This is taken from the -key argument if this "
"argument is not provided.",
},
{
"-starttls", kOptionalArgument,
"A STARTTLS mini-protocol to run before the TLS handshake. Supported"
" values: 'smtp'",
},
{
"-grease", kBooleanArgument, "Enable GREASE",
},
{
"-test-resumption", kBooleanArgument,
"Connect to the server twice. The first connection is closed once a "
"session is established. The second connection offers it.",
},
{
"-root-certs", kOptionalArgument,
"A filename containing one of more PEM root certificates. Implies that "
"verification is required.",
},
{
"-early-data", kOptionalArgument, "Enable early data. The argument to "
"this flag is the early data to send or if it starts with '@', the "
"file to read from for early data.",
},
{
"-ed25519", kBooleanArgument, "Advertise Ed25519 support",
},
{
"-http-tunnel", kOptionalArgument,
"An HTTP proxy server to tunnel the TCP connection through",
},
{
"-renegotiate-freely", kBooleanArgument,
"Allow renegotiations from the peer.",
},
{
"-debug", kBooleanArgument,
"Print debug information about the handshake",
},
{
"", kOptionalArgument, "",
},
};
static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> pkey(PEM_read_bio_PrivateKey(bio.get(), nullptr,
nullptr, nullptr));
return pkey;
}
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
*out = reinterpret_cast<uint8_t *>(arg);
*outlen = strlen(reinterpret_cast<const char *>(arg));
return SSL_TLSEXT_ERR_OK;
}
static FILE *g_keylog_file = nullptr;
static void KeyLogCallback(const SSL *ssl, const char *line) {
fprintf(g_keylog_file, "%s\n", line);
fflush(g_keylog_file);
}
static bssl::UniquePtr<BIO> session_out;
static bssl::UniquePtr<SSL_SESSION> resume_session;
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
if (session_out) {
if (!PEM_write_bio_SSL_SESSION(session_out.get(), session) ||
BIO_flush(session_out.get()) <= 0) {
fprintf(stderr, "Error while saving session:\n");
ERR_print_errors_fp(stderr);
return 0;
}
}
resume_session = bssl::UniquePtr<SSL_SESSION>(session);
return 1;
}
static bool WaitForSession(SSL *ssl, int sock) {
fd_set read_fds;
FD_ZERO(&read_fds);
if (!SocketSetNonBlocking(sock, true)) {
return false;
}
while (!resume_session) {
#if defined(OPENSSL_WINDOWS)
// Windows sockets are really of type SOCKET, not int, but everything here
// casts them to ints. Clang gets unhappy about signed values as a result.
//
// TODO(davidben): Keep everything as the appropriate platform type.
FD_SET(static_cast<SOCKET>(sock), &read_fds);
#else
FD_SET(sock, &read_fds);
#endif
int ret = select(sock + 1, &read_fds, NULL, NULL, NULL);
if (ret <= 0) {
perror("select");
return false;
}
uint8_t buffer[512];
int ssl_ret = SSL_read(ssl, buffer, sizeof(buffer));
if (ssl_ret <= 0) {
int ssl_err = SSL_get_error(ssl, ssl_ret);
if (ssl_err == SSL_ERROR_WANT_READ) {
continue;
}
PrintSSLError(stderr, "Error while reading", ssl_err, ssl_ret);
return false;
}
}
return true;
}
static bool DoConnection(SSL_CTX *ctx,
std::map<std::string, std::string> args_map,
bool (*cb)(SSL *ssl, int sock)) {
int sock = -1;
if (args_map.count("-http-tunnel") != 0) {
if (!Connect(&sock, args_map["-http-tunnel"]) ||
!DoHTTPTunnel(sock, args_map["-connect"])) {
return false;
}
} else if (!Connect(&sock, args_map["-connect"])) {
return false;
}
if (args_map.count("-starttls") != 0) {
const std::string& starttls = args_map["-starttls"];
if (starttls == "smtp") {
if (!DoSMTPStartTLS(sock)) {
return false;
}
} else {
fprintf(stderr, "Unknown value for -starttls: %s\n", starttls.c_str());
return false;
}
}
bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_CLOSE));
bssl::UniquePtr<SSL> ssl(SSL_new(ctx));
if (args_map.count("-server-name") != 0) {
SSL_set_tlsext_host_name(ssl.get(), args_map["-server-name"].c_str());
}
if (args_map.count("-session-in") != 0) {
bssl::UniquePtr<BIO> in(BIO_new_file(args_map["-session-in"].c_str(),
"rb"));
if (!in) {
fprintf(stderr, "Error reading session\n");
ERR_print_errors_fp(stderr);
return false;
}
bssl::UniquePtr<SSL_SESSION> session(PEM_read_bio_SSL_SESSION(in.get(),
nullptr, nullptr, nullptr));
if (!session) {
fprintf(stderr, "Error reading session\n");
ERR_print_errors_fp(stderr);
return false;
}
SSL_set_session(ssl.get(), session.get());
}
if (args_map.count("-renegotiate-freely") != 0) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
}
if (resume_session) {
SSL_set_session(ssl.get(), resume_session.get());
}
SSL_set_bio(ssl.get(), bio.get(), bio.get());
bio.release();
int ret = SSL_connect(ssl.get());
if (ret != 1) {
int ssl_err = SSL_get_error(ssl.get(), ret);
PrintSSLError(stderr, "Error while connecting", ssl_err, ret);
return false;
}
if (args_map.count("-early-data") != 0 && SSL_in_early_data(ssl.get())) {
std::string early_data = args_map["-early-data"];
if (early_data.size() > 0 && early_data[0] == '@') {
const char *filename = early_data.c_str() + 1;
std::vector<uint8_t> data;
ScopedFILE f(fopen(filename, "rb"));
if (f == nullptr || !ReadAll(&data, f.get())) {
fprintf(stderr, "Error reading %s.\n", filename);
return false;
}
early_data = std::string(data.begin(), data.end());
}
int ed_size = early_data.size();
int ssl_ret = SSL_write(ssl.get(), early_data.data(), ed_size);
if (ssl_ret <= 0) {
int ssl_err = SSL_get_error(ssl.get(), ssl_ret);
PrintSSLError(stderr, "Error while writing", ssl_err, ssl_ret);
return false;
} else if (ssl_ret != ed_size) {
fprintf(stderr, "Short write from SSL_write.\n");
return false;
}
}
fprintf(stderr, "Connected.\n");
bssl::UniquePtr<BIO> bio_stderr(BIO_new_fp(stderr, BIO_NOCLOSE));
PrintConnectionInfo(bio_stderr.get(), ssl.get());
return cb(ssl.get(), sock);
}
static void InfoCallback(const SSL *ssl, int type, int value) {
switch (type) {
case SSL_CB_HANDSHAKE_START:
fprintf(stderr, "Handshake started.\n");
break;
case SSL_CB_HANDSHAKE_DONE:
fprintf(stderr, "Handshake done.\n");
break;
case SSL_CB_CONNECT_LOOP:
fprintf(stderr, "Handshake progress: %s\n", SSL_state_string_long(ssl));
break;
}
}
bool Client(const std::vector<std::string> &args) {
if (!InitSocketLibrary()) {
return false;
}
std::map<std::string, std::string> args_map;
if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
PrintUsage(kArguments);
return false;
}
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
const char *keylog_file = getenv("SSLKEYLOGFILE");
if (keylog_file) {
g_keylog_file = fopen(keylog_file, "a");
if (g_keylog_file == nullptr) {
perror("fopen");
return false;
}
SSL_CTX_set_keylog_callback(ctx.get(), KeyLogCallback);
}
if (args_map.count("-cipher") != 0 &&
!SSL_CTX_set_strict_cipher_list(ctx.get(), args_map["-cipher"].c_str())) {
fprintf(stderr, "Failed setting cipher list\n");
return false;
}
if (args_map.count("-curves") != 0 &&
!SSL_CTX_set1_curves_list(ctx.get(), args_map["-curves"].c_str())) {
fprintf(stderr, "Failed setting curves list\n");
return false;
}
uint16_t max_version = TLS1_3_VERSION;
if (args_map.count("-max-version") != 0 &&
!VersionFromString(&max_version, args_map["-max-version"])) {
fprintf(stderr, "Unknown protocol version: '%s'\n",
args_map["-max-version"].c_str());
return false;
}
if (!SSL_CTX_set_max_proto_version(ctx.get(), max_version)) {
return false;
}
if (args_map.count("-min-version") != 0) {
uint16_t version;
if (!VersionFromString(&version, args_map["-min-version"])) {
fprintf(stderr, "Unknown protocol version: '%s'\n",
args_map["-min-version"].c_str());
return false;
}
if (!SSL_CTX_set_min_proto_version(ctx.get(), version)) {
return false;
}
}
if (args_map.count("-select-next-proto") != 0) {
const std::string &proto = args_map["-select-next-proto"];
if (proto.size() > 255) {
fprintf(stderr, "Bad NPN protocol: '%s'\n", proto.c_str());
return false;
}
// |SSL_CTX_set_next_proto_select_cb| is not const-correct.
SSL_CTX_set_next_proto_select_cb(ctx.get(), NextProtoSelectCallback,
const_cast<char *>(proto.c_str()));
}
if (args_map.count("-alpn-protos") != 0) {
const std::string &alpn_protos = args_map["-alpn-protos"];
std::vector<uint8_t> wire;
size_t i = 0;
while (i <= alpn_protos.size()) {
size_t j = alpn_protos.find(',', i);
if (j == std::string::npos) {
j = alpn_protos.size();
}
size_t len = j - i;
if (len > 255) {
fprintf(stderr, "Invalid ALPN protocols: '%s'\n", alpn_protos.c_str());
return false;
}
wire.push_back(static_cast<uint8_t>(len));
wire.resize(wire.size() + len);
OPENSSL_memcpy(wire.data() + wire.size() - len, alpn_protos.data() + i,
len);
i = j + 1;
}
if (SSL_CTX_set_alpn_protos(ctx.get(), wire.data(), wire.size()) != 0) {
return false;
}
}
if (args_map.count("-fallback-scsv") != 0) {
SSL_CTX_set_mode(ctx.get(), SSL_MODE_SEND_FALLBACK_SCSV);
}
if (args_map.count("-ocsp-stapling") != 0) {
SSL_CTX_enable_ocsp_stapling(ctx.get());
}
if (args_map.count("-signed-certificate-timestamps") != 0) {
SSL_CTX_enable_signed_cert_timestamps(ctx.get());
}
if (args_map.count("-channel-id-key") != 0) {
bssl::UniquePtr<EVP_PKEY> pkey =
LoadPrivateKey(args_map["-channel-id-key"]);
if (!pkey || !SSL_CTX_set1_tls_channel_id(ctx.get(), pkey.get())) {
return false;
}
}
if (args_map.count("-false-start") != 0) {
SSL_CTX_set_mode(ctx.get(), SSL_MODE_ENABLE_FALSE_START);
}
if (args_map.count("-key") != 0) {
const std::string &key = args_map["-key"];
if (!SSL_CTX_use_PrivateKey_file(ctx.get(), key.c_str(),
SSL_FILETYPE_PEM)) {
fprintf(stderr, "Failed to load private key: %s\n", key.c_str());
return false;
}
const std::string &cert =
args_map.count("-cert") != 0 ? args_map["-cert"] : key;
if (!SSL_CTX_use_certificate_chain_file(ctx.get(), cert.c_str())) {
fprintf(stderr, "Failed to load cert chain: %s\n", cert.c_str());
return false;
}
}
SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_CLIENT);
SSL_CTX_sess_set_new_cb(ctx.get(), NewSessionCallback);
if (args_map.count("-session-out") != 0) {
session_out.reset(BIO_new_file(args_map["-session-out"].c_str(), "wb"));
if (!session_out) {
fprintf(stderr, "Error while opening %s:\n",
args_map["-session-out"].c_str());
ERR_print_errors_fp(stderr);
return false;
}
}
if (args_map.count("-grease") != 0) {
SSL_CTX_set_grease_enabled(ctx.get(), 1);
}
if (args_map.count("-root-certs") != 0) {
if (!SSL_CTX_load_verify_locations(
ctx.get(), args_map["-root-certs"].c_str(), nullptr)) {
fprintf(stderr, "Failed to load root certificates.\n");
ERR_print_errors_fp(stderr);
return false;
}
SSL_CTX_set_verify(ctx.get(), SSL_VERIFY_PEER, nullptr);
}
if (args_map.count("-early-data") != 0) {
SSL_CTX_set_early_data_enabled(ctx.get(), 1);
}
if (args_map.count("-ed25519") != 0) {
SSL_CTX_set_ed25519_enabled(ctx.get(), 1);
}
if (args_map.count("-debug") != 0) {
SSL_CTX_set_info_callback(ctx.get(), InfoCallback);
}
if (args_map.count("-test-resumption") != 0) {
if (args_map.count("-session-in") != 0) {
fprintf(stderr,
"Flags -session-in and -test-resumption are incompatible.\n");
return false;
}
if (!DoConnection(ctx.get(), args_map, &WaitForSession)) {
return false;
}
}
return DoConnection(ctx.get(), args_map, &TransferData);
}