| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package runner | 
 |  | 
 | import ( | 
 | 	"crypto" | 
 | 	"crypto/hmac" | 
 | 	"crypto/md5" | 
 | 	"crypto/sha1" | 
 | 	"crypto/sha256" | 
 | 	"encoding" | 
 | 	"hash" | 
 |  | 
 | 	"golang.org/x/crypto/cryptobyte" | 
 | 	"golang.org/x/crypto/hkdf" | 
 | ) | 
 |  | 
 | // copyHash returns a copy of |h|, which must be an instance of |hashType|. | 
 | func copyHash(h hash.Hash, hash crypto.Hash) hash.Hash { | 
 | 	// While hash.Hash is not copyable, the documentation says all standard | 
 | 	// library hash.Hash implementations implement BinaryMarshaler and | 
 | 	// BinaryUnmarshaler interfaces. | 
 | 	m, ok := h.(encoding.BinaryMarshaler) | 
 | 	if !ok { | 
 | 		panic("hash did not implement encoding.BinaryMarshaler") | 
 | 	} | 
 | 	data, err := m.MarshalBinary() | 
 | 	if err != nil { | 
 | 		panic(err) | 
 | 	} | 
 | 	ret := hash.New() | 
 | 	u, ok := ret.(encoding.BinaryUnmarshaler) | 
 | 	if !ok { | 
 | 		panic("hash did not implement BinaryUnmarshaler") | 
 | 	} | 
 | 	if err := u.UnmarshalBinary(data); err != nil { | 
 | 		panic(err) | 
 | 	} | 
 | 	return ret | 
 | } | 
 |  | 
 | // Split a premaster secret in two as specified in RFC 4346, section 5. | 
 | func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { | 
 | 	s1 = secret[0 : (len(secret)+1)/2] | 
 | 	s2 = secret[len(secret)/2:] | 
 | 	return | 
 | } | 
 |  | 
 | // pHash implements the P_hash function, as defined in RFC 4346, section 5. | 
 | func pHash(result, secret, seed []byte, hash func() hash.Hash) { | 
 | 	h := hmac.New(hash, secret) | 
 | 	h.Write(seed) | 
 | 	a := h.Sum(nil) | 
 |  | 
 | 	j := 0 | 
 | 	for j < len(result) { | 
 | 		h.Reset() | 
 | 		h.Write(a) | 
 | 		h.Write(seed) | 
 | 		b := h.Sum(nil) | 
 | 		todo := len(b) | 
 | 		if j+todo > len(result) { | 
 | 			todo = len(result) - j | 
 | 		} | 
 | 		copy(result[j:j+todo], b) | 
 | 		j += todo | 
 |  | 
 | 		h.Reset() | 
 | 		h.Write(a) | 
 | 		a = h.Sum(nil) | 
 | 	} | 
 | } | 
 |  | 
 | // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. | 
 | func prf10(result, secret, label, seed []byte) { | 
 | 	hashSHA1 := sha1.New | 
 | 	hashMD5 := md5.New | 
 |  | 
 | 	labelAndSeed := make([]byte, len(label)+len(seed)) | 
 | 	copy(labelAndSeed, label) | 
 | 	copy(labelAndSeed[len(label):], seed) | 
 |  | 
 | 	s1, s2 := splitPreMasterSecret(secret) | 
 | 	pHash(result, s1, labelAndSeed, hashMD5) | 
 | 	result2 := make([]byte, len(result)) | 
 | 	pHash(result2, s2, labelAndSeed, hashSHA1) | 
 |  | 
 | 	for i, b := range result2 { | 
 | 		result[i] ^= b | 
 | 	} | 
 | } | 
 |  | 
 | // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. | 
 | func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { | 
 | 	return func(result, secret, label, seed []byte) { | 
 | 		labelAndSeed := make([]byte, len(label)+len(seed)) | 
 | 		copy(labelAndSeed, label) | 
 | 		copy(labelAndSeed[len(label):], seed) | 
 |  | 
 | 		pHash(result, secret, labelAndSeed, hashFunc) | 
 | 	} | 
 | } | 
 |  | 
 | const ( | 
 | 	tlsRandomLength      = 32 // Length of a random nonce in TLS 1.1. | 
 | 	masterSecretLength   = 48 // Length of a master secret in TLS 1.1. | 
 | 	finishedVerifyLength = 12 // Length of verify_data in a Finished message. | 
 | ) | 
 |  | 
 | var masterSecretLabel = []byte("master secret") | 
 | var extendedMasterSecretLabel = []byte("extended master secret") | 
 | var keyExpansionLabel = []byte("key expansion") | 
 | var clientFinishedLabel = []byte("client finished") | 
 | var serverFinishedLabel = []byte("server finished") | 
 | var finishedLabel = []byte("finished") | 
 | var channelIDLabel = []byte("TLS Channel ID signature\x00") | 
 | var channelIDResumeLabel = []byte("Resumption\x00") | 
 |  | 
 | func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { | 
 | 	switch version { | 
 | 	case VersionTLS10, VersionTLS11: | 
 | 		return prf10 | 
 | 	case VersionTLS12: | 
 | 		return prf12(suite.hash().New) | 
 | 	} | 
 | 	panic("unknown version") | 
 | } | 
 |  | 
 | // masterFromPreMasterSecret generates the master secret from the pre-master | 
 | // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 | 
 | func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { | 
 | 	var seed [tlsRandomLength * 2]byte | 
 | 	copy(seed[0:len(clientRandom)], clientRandom) | 
 | 	copy(seed[len(clientRandom):], serverRandom) | 
 | 	masterSecret := make([]byte, masterSecretLength) | 
 | 	prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) | 
 | 	return masterSecret | 
 | } | 
 |  | 
 | // extendedMasterFromPreMasterSecret generates the master secret from the | 
 | // pre-master secret when the Triple Handshake fix is in effect. See | 
 | // https://tools.ietf.org/html/rfc7627 | 
 | func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { | 
 | 	masterSecret := make([]byte, masterSecretLength) | 
 | 	prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) | 
 | 	return masterSecret | 
 | } | 
 |  | 
 | // keysFromMasterSecret generates the connection keys from the master | 
 | // secret, given the lengths of the MAC key, cipher key and IV, as defined in | 
 | // RFC 2246, section 6.3. | 
 | func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { | 
 | 	var seed [tlsRandomLength * 2]byte | 
 | 	copy(seed[0:len(clientRandom)], serverRandom) | 
 | 	copy(seed[len(serverRandom):], clientRandom) | 
 |  | 
 | 	n := 2*macLen + 2*keyLen + 2*ivLen | 
 | 	keyMaterial := make([]byte, n) | 
 | 	prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) | 
 | 	clientMAC = keyMaterial[:macLen] | 
 | 	keyMaterial = keyMaterial[macLen:] | 
 | 	serverMAC = keyMaterial[:macLen] | 
 | 	keyMaterial = keyMaterial[macLen:] | 
 | 	clientKey = keyMaterial[:keyLen] | 
 | 	keyMaterial = keyMaterial[keyLen:] | 
 | 	serverKey = keyMaterial[:keyLen] | 
 | 	keyMaterial = keyMaterial[keyLen:] | 
 | 	clientIV = keyMaterial[:ivLen] | 
 | 	keyMaterial = keyMaterial[ivLen:] | 
 | 	serverIV = keyMaterial[:ivLen] | 
 | 	return | 
 | } | 
 |  | 
 | func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { | 
 | 	version, ok := wireToVersion(wireVersion, isDTLS) | 
 | 	if !ok { | 
 | 		panic("unknown version") | 
 | 	} | 
 |  | 
 | 	var ret finishedHash | 
 | 	if version >= VersionTLS12 { | 
 | 		ret.hash = cipherSuite.hash().New() | 
 |  | 
 | 		if version == VersionTLS12 { | 
 | 			ret.prf = prf12(cipherSuite.hash().New) | 
 | 		} else { | 
 | 			ret.secret = make([]byte, ret.hash.Size()) | 
 | 		} | 
 | 	} else { | 
 | 		ret.hash = sha1.New() | 
 | 		ret.md5 = md5.New() | 
 |  | 
 | 		ret.prf = prf10 | 
 | 	} | 
 |  | 
 | 	ret.suite = cipherSuite | 
 | 	ret.buffer = []byte{} | 
 | 	ret.version = version | 
 | 	ret.wireVersion = wireVersion | 
 | 	ret.isDTLS = isDTLS | 
 | 	return ret | 
 | } | 
 |  | 
 | // A finishedHash calculates the hash of a set of handshake messages suitable | 
 | // for including in a Finished message. | 
 | type finishedHash struct { | 
 | 	suite *cipherSuite | 
 |  | 
 | 	// hash maintains a running hash of handshake messages. In TLS 1.2 and up, | 
 | 	// the hash is determined from suite.hash(). In TLS 1.0 and 1.1, this is the | 
 | 	// SHA-1 half of the MD5/SHA-1 concatenation. | 
 | 	hash hash.Hash | 
 |  | 
 | 	// md5 is the MD5 half of the TLS 1.0 and 1.1 MD5/SHA1 concatenation. | 
 | 	md5 hash.Hash | 
 |  | 
 | 	// In TLS 1.2, a full buffer is required. | 
 | 	buffer []byte | 
 |  | 
 | 	version     uint16 | 
 | 	wireVersion uint16 | 
 | 	isDTLS      bool | 
 | 	prf         func(result, secret, label, seed []byte) | 
 |  | 
 | 	// secret, in TLS 1.3, is the running input secret. | 
 | 	secret []byte | 
 | } | 
 |  | 
 | func (h *finishedHash) UpdateForHelloRetryRequest() { | 
 | 	data := cryptobyte.NewBuilder(nil) | 
 | 	data.AddUint8(typeMessageHash) | 
 | 	data.AddUint24(uint32(h.hash.Size())) | 
 | 	data.AddBytes(h.Sum()) | 
 | 	h.hash = h.suite.hash().New() | 
 | 	if h.buffer != nil { | 
 | 		h.buffer = []byte{} | 
 | 	} | 
 | 	h.Write(data.BytesOrPanic()) | 
 | } | 
 |  | 
 | func (h *finishedHash) Write(msg []byte) (n int, err error) { | 
 | 	h.hash.Write(msg) | 
 |  | 
 | 	if h.version < VersionTLS12 { | 
 | 		h.md5.Write(msg) | 
 | 	} | 
 |  | 
 | 	if h.buffer != nil { | 
 | 		h.buffer = append(h.buffer, msg...) | 
 | 	} | 
 |  | 
 | 	return len(msg), nil | 
 | } | 
 |  | 
 | // WriteHandshake appends |msg| to the hash, which must be a serialized | 
 | // handshake message with a TLS header. In DTLS, the header is rewritten to a | 
 | // DTLS header with |seqno| as the sequence number. | 
 | func (h *finishedHash) WriteHandshake(msg []byte, seqno uint16) { | 
 | 	if h.isDTLS { | 
 | 		// This is somewhat hacky. DTLS hashes a slightly different format. | 
 | 		// First, the TLS header. | 
 | 		h.Write(msg[:4]) | 
 | 		// Then the sequence number and reassembled fragment offset (always 0). | 
 | 		h.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0}) | 
 | 		// Then the reassembled fragment (always equal to the message length). | 
 | 		h.Write(msg[1:4]) | 
 | 		// And then the message body. | 
 | 		h.Write(msg[4:]) | 
 | 	} else { | 
 | 		h.Write(msg) | 
 | 	} | 
 | } | 
 |  | 
 | func (h finishedHash) Sum() []byte { | 
 | 	if h.version >= VersionTLS12 { | 
 | 		return h.hash.Sum(nil) | 
 | 	} | 
 |  | 
 | 	out := make([]byte, 0, md5.Size+sha1.Size) | 
 | 	out = h.md5.Sum(out) | 
 | 	return h.hash.Sum(out) | 
 | } | 
 |  | 
 | // clientSum returns the contents of the verify_data member of a client's | 
 | // Finished message. | 
 | func (h finishedHash) clientSum(baseKey []byte) []byte { | 
 | 	if h.version < VersionTLS13 { | 
 | 		out := make([]byte, finishedVerifyLength) | 
 | 		h.prf(out, baseKey, clientFinishedLabel, h.Sum()) | 
 | 		return out | 
 | 	} | 
 |  | 
 | 	clientFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) | 
 | 	finishedHMAC := hmac.New(h.suite.hash().New, clientFinishedKey) | 
 | 	finishedHMAC.Write(h.appendContextHashes(nil)) | 
 | 	return finishedHMAC.Sum(nil) | 
 | } | 
 |  | 
 | // serverSum returns the contents of the verify_data member of a server's | 
 | // Finished message. | 
 | func (h finishedHash) serverSum(baseKey []byte) []byte { | 
 | 	if h.version < VersionTLS13 { | 
 | 		out := make([]byte, finishedVerifyLength) | 
 | 		h.prf(out, baseKey, serverFinishedLabel, h.Sum()) | 
 | 		return out | 
 | 	} | 
 |  | 
 | 	serverFinishedKey := hkdfExpandLabel(h.suite.hash(), baseKey, finishedLabel, nil, h.hash.Size(), h.isDTLS) | 
 | 	finishedHMAC := hmac.New(h.suite.hash().New, serverFinishedKey) | 
 | 	finishedHMAC.Write(h.appendContextHashes(nil)) | 
 | 	return finishedHMAC.Sum(nil) | 
 | } | 
 |  | 
 | // hashForChannelID returns the hash to be signed for TLS Channel | 
 | // ID. If a resumption, resumeHash has the previous handshake | 
 | // hash. Otherwise, it is nil. | 
 | func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { | 
 | 	hash := sha256.New() | 
 | 	hash.Write(channelIDLabel) | 
 | 	if resumeHash != nil { | 
 | 		hash.Write(channelIDResumeLabel) | 
 | 		hash.Write(resumeHash) | 
 | 	} | 
 | 	hash.Write(h.Sum()) | 
 | 	return hash.Sum(nil) | 
 | } | 
 |  | 
 | // discardHandshakeBuffer is called when there is no more need to | 
 | // buffer the entirety of the handshake messages. | 
 | func (h *finishedHash) discardHandshakeBuffer() { | 
 | 	h.buffer = nil | 
 | } | 
 |  | 
 | // zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a | 
 | // given secret is not available in the handshake. See RFC 8446, section 7.1. | 
 | func (h *finishedHash) zeroSecret() []byte { | 
 | 	return make([]byte, h.hash.Size()) | 
 | } | 
 |  | 
 | // addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. | 
 | func (h *finishedHash) addEntropy(ikm []byte) { | 
 | 	h.secret = hkdf.Extract(h.suite.hash().New, ikm, h.secret) | 
 | } | 
 |  | 
 | func (h *finishedHash) nextSecret() { | 
 | 	h.secret = hkdfExpandLabel(h.suite.hash(), h.secret, []byte("derived"), h.suite.hash().New().Sum(nil), h.hash.Size(), h.isDTLS) | 
 | } | 
 |  | 
 | // hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined | 
 | // in section 7.1 of RFC 8446. | 
 | func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int, isDTLS bool) []byte { | 
 | 	if len(label) > 255 || len(hashValue) > 255 { | 
 | 		panic("hkdfExpandLabel: label or hashValue too long") | 
 | 	} | 
 |  | 
 | 	versionLabel := []byte("tls13 ") | 
 | 	if isDTLS { | 
 | 		versionLabel = []byte("dtls13") | 
 | 	} | 
 | 	hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) | 
 | 	x := hkdfLabel | 
 | 	x[0] = byte(length >> 8) | 
 | 	x[1] = byte(length) | 
 | 	x[2] = byte(len(versionLabel) + len(label)) | 
 | 	x = x[3:] | 
 | 	copy(x, versionLabel) | 
 | 	x = x[len(versionLabel):] | 
 | 	copy(x, label) | 
 | 	x = x[len(label):] | 
 | 	x[0] = byte(len(hashValue)) | 
 | 	copy(x[1:], hashValue) | 
 | 	ret := make([]byte, length) | 
 | 	if n, err := hkdf.Expand(hash.New, secret, hkdfLabel).Read(ret); err != nil || n != length { | 
 | 		panic("hkdfExpandLabel: hkdf.Expand unexpectedly failed") | 
 | 	} | 
 | 	return ret | 
 | } | 
 |  | 
 | // appendContextHashes returns the concatenation of the handshake hash and the | 
 | // resumption context hash, as used in TLS 1.3. | 
 | func (h *finishedHash) appendContextHashes(b []byte) []byte { | 
 | 	b = h.hash.Sum(b) | 
 | 	return b | 
 | } | 
 |  | 
 | var ( | 
 | 	externalPSKBinderLabel        = []byte("ext binder") | 
 | 	resumptionPSKBinderLabel      = []byte("res binder") | 
 | 	earlyTrafficLabel             = []byte("c e traffic") | 
 | 	clientHandshakeTrafficLabel   = []byte("c hs traffic") | 
 | 	serverHandshakeTrafficLabel   = []byte("s hs traffic") | 
 | 	clientApplicationTrafficLabel = []byte("c ap traffic") | 
 | 	serverApplicationTrafficLabel = []byte("s ap traffic") | 
 | 	applicationTrafficLabel       = []byte("traffic upd") | 
 | 	earlyExporterLabel            = []byte("e exp master") | 
 | 	exporterLabel                 = []byte("exp master") | 
 | 	resumptionLabel               = []byte("res master") | 
 |  | 
 | 	resumptionPSKLabel = []byte("resumption") | 
 |  | 
 | 	echAcceptConfirmationLabel    = []byte("ech accept confirmation") | 
 | 	echAcceptConfirmationHRRLabel = []byte("hrr ech accept confirmation") | 
 | ) | 
 |  | 
 | // deriveSecret implements TLS 1.3's Derive-Secret function, as defined in | 
 | // section 7.1 of RFC8446. | 
 | func (h *finishedHash) deriveSecret(label []byte) []byte { | 
 | 	return hkdfExpandLabel(h.suite.hash(), h.secret, label, h.appendContextHashes(nil), h.hash.Size(), h.isDTLS) | 
 | } | 
 |  | 
 | // echConfirmation computes the ECH accept confirmation signal, as defined in | 
 | // sections 7.2 and 7.2.1 of draft-ietf-tls-esni-13. The transcript hash is | 
 | // computed by concatenating |h| with |extraMessages|. | 
 | func (h *finishedHash) echAcceptConfirmation(clientRandom, label, extraMessages []byte) []byte { | 
 | 	secret := hkdf.Extract(h.suite.hash().New, clientRandom, h.zeroSecret()) | 
 | 	hashCopy := copyHash(h.hash, h.suite.hash()) | 
 | 	hashCopy.Write(extraMessages) | 
 | 	return hkdfExpandLabel(h.suite.hash(), secret, label, hashCopy.Sum(nil), echAcceptConfirmationLength, h.isDTLS) | 
 | } | 
 |  | 
 | // The following are context strings for CertificateVerify in TLS 1.3. | 
 | var ( | 
 | 	clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") | 
 | 	serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") | 
 | 	channelIDContextTLS13               = []byte("TLS 1.3, Channel ID") | 
 | ) | 
 |  | 
 | // certificateVerifyMessage returns the input to be signed for CertificateVerify | 
 | // in TLS 1.3. | 
 | func (h *finishedHash) certificateVerifyInput(context []byte) []byte { | 
 | 	const paddingLen = 64 | 
 | 	b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) | 
 | 	for i := 0; i < paddingLen; i++ { | 
 | 		b[i] = 32 | 
 | 	} | 
 | 	b = append(b, context...) | 
 | 	b = append(b, 0) | 
 | 	b = h.appendContextHashes(b) | 
 | 	return b | 
 | } | 
 |  | 
 | type trafficDirection int | 
 |  | 
 | const ( | 
 | 	clientWrite trafficDirection = iota | 
 | 	serverWrite | 
 | ) | 
 |  | 
 | var ( | 
 | 	keyTLS13 = []byte("key") | 
 | 	ivTLS13  = []byte("iv") | 
 | ) | 
 |  | 
 | // deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic | 
 | // secret. | 
 | func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection, isDTLS bool) any { | 
 | 	key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen, isDTLS) | 
 | 	iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version), isDTLS) | 
 |  | 
 | 	return suite.aead(version, key, iv) | 
 | } | 
 |  | 
 | func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte, isDTLS bool) []byte { | 
 | 	return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size(), isDTLS) | 
 | } | 
 |  | 
 | func computePSKBinder(psk []byte, version uint16, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { | 
 | 	finishedHash := newFinishedHash(version, false, cipherSuite) | 
 | 	finishedHash.addEntropy(psk) | 
 | 	binderKey := finishedHash.deriveSecret(label) | 
 | 	finishedHash.Write(clientHello) | 
 | 	if len(helloRetryRequest) != 0 { | 
 | 		finishedHash.UpdateForHelloRetryRequest() | 
 | 	} | 
 | 	finishedHash.Write(helloRetryRequest) | 
 | 	finishedHash.Write(truncatedHello) | 
 | 	return finishedHash.clientSum(binderKey) | 
 | } | 
 |  | 
 | func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte, isDTLS bool) []byte { | 
 | 	hash := suite.hash() | 
 | 	return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size(), isDTLS) | 
 | } |