|  | // Copyright 2018 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <signal.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include "handshake_util.h" | 
|  | #include "test_config.h" | 
|  | #include "test_state.h" | 
|  |  | 
|  | using namespace bssl; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | ssize_t read_eintr(int fd, void *out, size_t len) { | 
|  | ssize_t ret; | 
|  | do { | 
|  | ret = read(fd, out, len); | 
|  | } while (ret < 0 && errno == EINTR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssize_t write_eintr(int fd, const void *in, size_t len) { | 
|  | ssize_t ret; | 
|  | do { | 
|  | ret = write(fd, in, len); | 
|  | } while (ret < 0 && errno == EINTR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool HandbackReady(SSL *ssl, int ret) { | 
|  | return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDBACK; | 
|  | } | 
|  |  | 
|  | bool Handshaker(const TestConfig *config, int rfd, int wfd, | 
|  | Span<const uint8_t> input, int control) { | 
|  | UniquePtr<SSL_CTX> ctx = config->SetupCtx(/*old_ctx=*/nullptr); | 
|  | if (!ctx) { | 
|  | return false; | 
|  | } | 
|  | UniquePtr<SSL> ssl = | 
|  | config->NewSSL(ctx.get(), /*session=*/nullptr, /*test_state=*/nullptr); | 
|  | if (!ssl) { | 
|  | fprintf(stderr, "Error creating SSL object in handshaker.\n"); | 
|  | ERR_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set |O_NONBLOCK| in order to break out of the loop when we hit | 
|  | // |SSL_ERROR_WANT_READ|, so that we can send |kControlMsgWantRead| to the | 
|  | // proxy. | 
|  | if (fcntl(rfd, F_SETFL, O_NONBLOCK) != 0) { | 
|  | perror("fcntl"); | 
|  | return false; | 
|  | } | 
|  | SSL_set_rfd(ssl.get(), rfd); | 
|  | SSL_set_wfd(ssl.get(), wfd); | 
|  |  | 
|  | CBS cbs, handoff; | 
|  | CBS_init(&cbs, input.data(), input.size()); | 
|  | if (!CBS_get_asn1_element(&cbs, &handoff, CBS_ASN1_SEQUENCE) || | 
|  | !DeserializeContextState(&cbs, ctx.get()) || | 
|  | !SetTestState(ssl.get(), TestState::Deserialize(&cbs, ctx.get())) || | 
|  | !GetTestState(ssl.get()) || | 
|  | !SSL_apply_handoff(ssl.get(), handoff)) { | 
|  | fprintf(stderr, "Handoff application failed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | for (;;) { | 
|  | ret = CheckIdempotentError( | 
|  | "SSL_do_handshake", ssl.get(), | 
|  | [&]() -> int { return SSL_do_handshake(ssl.get()); }); | 
|  | if (SSL_get_error(ssl.get(), ret) == SSL_ERROR_WANT_READ) { | 
|  | // Synchronize with the proxy, i.e. don't let the handshake continue until | 
|  | // the proxy has sent more data. | 
|  | char msg = kControlMsgWantRead; | 
|  | if (write_eintr(control, &msg, 1) != 1 || | 
|  | read_eintr(control, &msg, 1) != 1 || | 
|  | msg != kControlMsgWriteCompleted) { | 
|  | fprintf(stderr, "read via proxy failed\n"); | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (!RetryAsync(ssl.get(), ret)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HandbackReady(ssl.get(), ret)) { | 
|  | fprintf(stderr, "Handshaker: %s\n", | 
|  | SSL_error_description(SSL_get_error(ssl.get(), ret))); | 
|  | ERR_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ScopedCBB output; | 
|  | CBB handback; | 
|  | if (!CBB_init(output.get(), 1024) || | 
|  | !CBB_add_u24_length_prefixed(output.get(), &handback) || | 
|  | !SSL_serialize_handback(ssl.get(), &handback) || | 
|  | !SerializeContextState(ctx.get(), output.get()) || | 
|  | !GetTestState(ssl.get())->Serialize(output.get())) { | 
|  | fprintf(stderr, "Handback serialisation failed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char msg = kControlMsgDone; | 
|  | if (write_eintr(control, &msg, 1) == -1 || | 
|  | write_eintr(control, CBB_data(output.get()), CBB_len(output.get())) == | 
|  | -1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GenerateHandshakeHint(const TestConfig *config, | 
|  | bssl::Span<const uint8_t> request, int control) { | 
|  | // The handshake hint contains the ClientHello and the capabilities string. | 
|  | CBS cbs = request; | 
|  | CBS client_hello, capabilities; | 
|  | if (!CBS_get_u24_length_prefixed(&cbs, &client_hello) || | 
|  | !CBS_get_u24_length_prefixed(&cbs, &capabilities) ||  // | 
|  | CBS_len(&cbs) != 0) { | 
|  | fprintf(stderr, "Handshaker: Could not parse hint request\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL_CTX> ctx = config->SetupCtx(/*old_ctx=*/nullptr); | 
|  | if (!ctx) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL> ssl = config->NewSSL(ctx.get(), /*session=*/nullptr, | 
|  | std::make_unique<TestState>()); | 
|  | if (!ssl) { | 
|  | fprintf(stderr, "Error creating SSL object in handshaker.\n"); | 
|  | ERR_print_errors_fp(stderr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(davidben): When split handshakes is replaced, move this into |NewSSL|. | 
|  | assert(config->is_server); | 
|  | SSL_set_accept_state(ssl.get()); | 
|  |  | 
|  | if (!SSL_request_handshake_hints( | 
|  | ssl.get(), CBS_data(&client_hello), CBS_len(&client_hello), | 
|  | CBS_data(&capabilities), CBS_len(&capabilities))) { | 
|  | fprintf(stderr, "Handshaker: SSL_request_handshake_hints failed\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | do { | 
|  | ret = CheckIdempotentError("SSL_do_handshake", ssl.get(), | 
|  | [&] { return SSL_do_handshake(ssl.get()); }); | 
|  | } while (RetryAsync(ssl.get(), ret)); | 
|  |  | 
|  | if (ret > 0) { | 
|  | fprintf(stderr, "Handshaker: handshake unexpectedly succeeded.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SSL_get_error(ssl.get(), ret) != SSL_ERROR_HANDSHAKE_HINTS_READY) { | 
|  | // Errors here may be expected if the test is testing a failing case. The | 
|  | // shim should continue executing without a hint, so we report an error | 
|  | // "successfully". This allows the shim to distinguish this from the other | 
|  | // unexpected error cases. | 
|  | // | 
|  | // We intentionally avoid printing the error in this case, to avoid mixing | 
|  | // up test expectations with errors from the shim. | 
|  | char msg = kControlMsgError; | 
|  | if (write_eintr(control, &msg, 1) == -1) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bssl::ScopedCBB hints; | 
|  | if (!CBB_init(hints.get(), 256) || | 
|  | !SSL_serialize_handshake_hints(ssl.get(), hints.get())) { | 
|  | fprintf(stderr, "Handshaker: failed to serialize handshake hints\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char msg = kControlMsgDone; | 
|  | if (write_eintr(control, &msg, 1) == -1 || | 
|  | write_eintr(control, CBB_data(hints.get()), CBB_len(hints.get())) == -1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SignalError() { | 
|  | const char msg = kControlMsgError; | 
|  | if (write_eintr(kFdControl, &msg, 1) != 1) { | 
|  | return 2; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | int main(int argc, char **argv) { | 
|  | TestConfig initial_config, resume_config, retry_config; | 
|  | if (!ParseConfig(argc - 1, argv + 1, /*is_shim=*/false, &initial_config, | 
|  | &resume_config, &retry_config)) { | 
|  | return SignalError(); | 
|  | } | 
|  | const TestConfig *config = | 
|  | initial_config.handshaker_resume ? &resume_config : &initial_config; | 
|  | #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) | 
|  | if (initial_config.fuzzer_mode) { | 
|  | CRYPTO_set_fuzzer_mode(1); | 
|  | } | 
|  | if (initial_config.handshaker_resume) { | 
|  | // If the PRNG returns exactly the same values when trying to resume then a | 
|  | // "random" session ID will happen to exactly match the session ID | 
|  | // "randomly" generated on the initial connection. The client will thus | 
|  | // incorrectly believe that the server is resuming. | 
|  | uint8_t byte; | 
|  | RAND_bytes(&byte, 1); | 
|  | } | 
|  | #endif  // FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION | 
|  |  | 
|  | // read() will return the entire message in one go, because it's a datagram | 
|  | // socket. | 
|  | constexpr size_t kBufSize = 1024 * 1024; | 
|  | std::vector<uint8_t> request(kBufSize); | 
|  | ssize_t len = read_eintr(kFdControl, request.data(), request.size()); | 
|  | if (len == -1) { | 
|  | perror("read"); | 
|  | return 2; | 
|  | } | 
|  | request.resize(static_cast<size_t>(len)); | 
|  |  | 
|  | if (config->handshake_hints) { | 
|  | if (!GenerateHandshakeHint(config, request, kFdControl)) { | 
|  | return SignalError(); | 
|  | } | 
|  | } else { | 
|  | if (!Handshaker(config, kFdProxyToHandshaker, kFdHandshakerToProxy, | 
|  | request, kFdControl)) { | 
|  | return SignalError(); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } |