blob: 10eac69c9ec5cdb15762d1363f7d2bad74f06380 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(__STDC_CONSTANT_MACROS)
#define __STDC_CONSTANT_MACROS
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include "internal.h"
#include "../internal.h"
#include "../test/test_util.h"
TEST(CBSTest, Skip) {
static const uint8_t kData[] = {1, 2, 3};
CBS data;
CBS_init(&data, kData, sizeof(kData));
EXPECT_EQ(3u, CBS_len(&data));
EXPECT_TRUE(CBS_skip(&data, 1));
EXPECT_EQ(2u, CBS_len(&data));
EXPECT_TRUE(CBS_skip(&data, 2));
EXPECT_EQ(0u, CBS_len(&data));
EXPECT_FALSE(CBS_skip(&data, 1));
}
TEST(CBSTest, GetUint) {
static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
uint8_t u8;
uint16_t u16;
uint32_t u32;
CBS data;
CBS_init(&data, kData, sizeof(kData));
ASSERT_TRUE(CBS_get_u8(&data, &u8));
EXPECT_EQ(1u, u8);
ASSERT_TRUE(CBS_get_u16(&data, &u16));
EXPECT_EQ(0x203u, u16);
ASSERT_TRUE(CBS_get_u24(&data, &u32));
EXPECT_EQ(0x40506u, u32);
ASSERT_TRUE(CBS_get_u32(&data, &u32));
EXPECT_EQ(0x708090au, u32);
ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
EXPECT_EQ(0xcu, u8);
ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
EXPECT_EQ(0xbu, u8);
EXPECT_FALSE(CBS_get_u8(&data, &u8));
EXPECT_FALSE(CBS_get_last_u8(&data, &u8));
}
TEST(CBSTest, GetPrefixed) {
static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1};
uint8_t u8;
uint16_t u16;
uint32_t u32;
CBS data, prefixed;
CBS_init(&data, kData, sizeof(kData));
ASSERT_TRUE(CBS_get_u8_length_prefixed(&data, &prefixed));
EXPECT_EQ(1u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u8(&prefixed, &u8));
EXPECT_EQ(2u, u8);
ASSERT_TRUE(CBS_get_u16_length_prefixed(&data, &prefixed));
EXPECT_EQ(2u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u16(&prefixed, &u16));
EXPECT_EQ(0x304u, u16);
ASSERT_TRUE(CBS_get_u24_length_prefixed(&data, &prefixed));
EXPECT_EQ(3u, CBS_len(&prefixed));
ASSERT_TRUE(CBS_get_u24(&prefixed, &u32));
EXPECT_EQ(0x30201u, u32);
}
TEST(CBSTest, GetPrefixedBad) {
static const uint8_t kData1[] = {2, 1};
static const uint8_t kData2[] = {0, 2, 1};
static const uint8_t kData3[] = {0, 0, 2, 1};
CBS data, prefixed;
CBS_init(&data, kData1, sizeof(kData1));
EXPECT_FALSE(CBS_get_u8_length_prefixed(&data, &prefixed));
CBS_init(&data, kData2, sizeof(kData2));
EXPECT_FALSE(CBS_get_u16_length_prefixed(&data, &prefixed));
CBS_init(&data, kData3, sizeof(kData3));
EXPECT_FALSE(CBS_get_u24_length_prefixed(&data, &prefixed));
}
TEST(CBSTest, GetASN1) {
static const uint8_t kData1[] = {0x30, 2, 1, 2};
static const uint8_t kData2[] = {0x30, 3, 1, 2};
static const uint8_t kData3[] = {0x30, 0x80};
static const uint8_t kData4[] = {0x30, 0x81, 1, 1};
static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80};
static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1};
static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1};
static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1};
static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff};
CBS data, contents;
int present;
uint64_t value;
CBS_init(&data, kData1, sizeof(kData1));
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_BOOLEAN));
EXPECT_TRUE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData2, sizeof(kData2));
// data is truncated
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData3, sizeof(kData3));
// zero byte length of length
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData4, sizeof(kData4));
// long form mistakenly used.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData5, sizeof(kData5));
// length takes too many bytes.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
CBS_init(&data, kData1, sizeof(kData1));
// wrong tag.
EXPECT_FALSE(CBS_get_asn1(&data, &contents, 0x31));
CBS_init(&data, NULL, 0);
// peek at empty data.
EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
CBS_init(&data, NULL, 0);
// optional elements at empty data.
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, NULL,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
EXPECT_EQ(42u, value);
CBS_init(&data, kData6, sizeof(kData6));
// optional element.
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
ASSERT_TRUE(CBS_get_optional_asn1(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
EXPECT_TRUE(present);
EXPECT_EQ(Bytes("\x04\x01\x01"),
Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData6, sizeof(kData6));
// optional octet string.
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
EXPECT_FALSE(present);
EXPECT_EQ(0u, CBS_len(&contents));
ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
EXPECT_TRUE(present);
EXPECT_EQ(Bytes("\x01"), Bytes(CBS_data(&contents), CBS_len(&contents)));
CBS_init(&data, kData7, sizeof(kData7));
// invalid optional octet string.
EXPECT_FALSE(CBS_get_optional_asn1_octet_string(
&data, &contents, &present,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
CBS_init(&data, kData8, sizeof(kData8));
// optional integer.
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
EXPECT_EQ(42u, value);
ASSERT_TRUE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
EXPECT_EQ(1u, value);
CBS_init(&data, kData9, sizeof(kData9));
// invalid optional integer.
EXPECT_FALSE(CBS_get_optional_asn1_uint64(
&data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
unsigned tag;
CBS_init(&data, kData1, sizeof(kData1));
ASSERT_TRUE(CBS_get_any_asn1(&data, &contents, &tag));
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
size_t header_len;
CBS_init(&data, kData1, sizeof(kData1));
ASSERT_TRUE(CBS_get_any_asn1_element(&data, &contents, &tag, &header_len));
EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
EXPECT_EQ(2u, header_len);
EXPECT_EQ(Bytes("\x30\x02\x01\x02"),
Bytes(CBS_data(&contents), CBS_len(&contents)));
}
TEST(CBSTest, ParseASN1Tag) {
const struct {
bool ok;
unsigned tag;
std::vector<uint8_t> in;
} kTests[] = {
{true, CBS_ASN1_SEQUENCE, {0x30, 0}},
{true, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4, {0xa4, 0}},
{true, CBS_ASN1_APPLICATION | 30, {0x5e, 0}},
{true, CBS_ASN1_APPLICATION | 31, {0x5f, 0x1f, 0}},
{true, CBS_ASN1_APPLICATION | 32, {0x5f, 0x20, 0}},
{true,
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff,
{0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 0}},
// Tag number fits in unsigned but not |CBS_ASN1_TAG_NUMBER_MASK|.
{false, 0, {0xff, 0x82, 0xff, 0xff, 0xff, 0x7f, 0}},
// Tag number does not fit in unsigned.
{false, 0, {0xff, 0x90, 0x80, 0x80, 0x80, 0, 0}},
// Tag number is not minimally-encoded
{false, 0, {0x5f, 0x80, 0x1f, 0}},
// Tag number should have used short form.
{false, 0, {0x5f, 0x80, 0x1e, 0}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.in));
unsigned tag;
CBS cbs, child;
CBS_init(&cbs, t.in.data(), t.in.size());
ASSERT_EQ(t.ok, !!CBS_get_any_asn1(&cbs, &child, &tag));
if (t.ok) {
EXPECT_EQ(t.tag, tag);
EXPECT_EQ(0u, CBS_len(&child));
EXPECT_EQ(0u, CBS_len(&cbs));
CBS_init(&cbs, t.in.data(), t.in.size());
EXPECT_TRUE(CBS_peek_asn1_tag(&cbs, t.tag));
EXPECT_FALSE(CBS_peek_asn1_tag(&cbs, t.tag + 1));
EXPECT_TRUE(CBS_get_asn1(&cbs, &child, t.tag));
EXPECT_EQ(0u, CBS_len(&child));
EXPECT_EQ(0u, CBS_len(&cbs));
CBS_init(&cbs, t.in.data(), t.in.size());
EXPECT_FALSE(CBS_get_asn1(&cbs, &child, t.tag + 1));
}
}
}
TEST(CBSTest, GetOptionalASN1Bool) {
static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff};
static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00};
static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01};
CBS data;
CBS_init(&data, NULL, 0);
int val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
EXPECT_EQ(0, val);
CBS_init(&data, kTrue, sizeof(kTrue));
val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
EXPECT_EQ(1, val);
CBS_init(&data, kFalse, sizeof(kFalse));
val = 2;
ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
EXPECT_EQ(0, val);
CBS_init(&data, kInvalid, sizeof(kInvalid));
EXPECT_FALSE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
}
// Test that CBB_init may be used on an uninitialized input.
TEST(CBBTest, InitUninitialized) {
CBB cbb;
ASSERT_TRUE(CBB_init(&cbb, 100));
CBB_cleanup(&cbb);
}
TEST(CBBTest, Basic) {
static const uint8_t kExpected[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 100));
cbb.Reset();
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
ASSERT_TRUE(CBB_add_u16(cbb.get(), 0x203));
ASSERT_TRUE(CBB_add_u24(cbb.get(), 0x40506));
ASSERT_TRUE(CBB_add_u32(cbb.get(), 0x708090a));
ASSERT_TRUE(CBB_add_bytes(cbb.get(), (const uint8_t *)"\x0b\x0c", 2));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, Fixed) {
bssl::ScopedCBB cbb;
uint8_t buf[1];
uint8_t *out_buf;
size_t out_size;
ASSERT_TRUE(CBB_init_fixed(cbb.get(), NULL, 0));
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
EXPECT_EQ(NULL, out_buf);
EXPECT_EQ(0u, out_size);
cbb.Reset();
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
EXPECT_EQ(buf, out_buf);
EXPECT_EQ(1u, out_size);
EXPECT_EQ(1u, buf[0]);
cbb.Reset();
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
EXPECT_FALSE(CBB_add_u8(cbb.get(), 2));
}
// Test that calling CBB_finish on a child does nothing.
TEST(CBBTest, FinishChild) {
CBB child;
uint8_t *out_buf;
size_t out_size;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 16));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
EXPECT_FALSE(CBB_finish(&child, &out_buf, &out_size));
ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
bssl::UniquePtr<uint8_t> scoper(out_buf);
ASSERT_EQ(1u, out_size);
EXPECT_EQ(0u, out_buf[0]);
}
TEST(CBBTest, Prefixed) {
static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3,
4, 5, 6, 5, 4, 1, 0, 1, 2};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
CBB contents, inner_contents, inner_inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
EXPECT_EQ(0u, CBB_len(cbb.get()));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 1));
EXPECT_EQ(1u, CBB_len(&contents));
ASSERT_TRUE(CBB_flush(cbb.get()));
EXPECT_EQ(3u, CBB_len(cbb.get()));
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u16(&contents, 0x203));
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u24(&contents, 0x40506));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_contents, 1));
ASSERT_TRUE(
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 2));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, DiscardChild) {
bssl::ScopedCBB cbb;
CBB contents, inner_contents, inner_inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 0xaa));
// Discarding |cbb|'s children preserves the byte written.
CBB_discard_child(cbb.get());
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 0xbb));
ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u16(&contents, 0xcccc));
ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u24(&contents, 0xdddddd));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
ASSERT_TRUE(CBB_add_u8(&contents, 0xff));
ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_contents, 0x42));
ASSERT_TRUE(
CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 0x99));
// Discard everything from |inner_contents| down.
CBB_discard_child(&contents);
uint8_t *buf;
size_t buf_len;
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
static const uint8_t kExpected[] = {
0xaa,
0,
1, 0xbb,
0, 2, 0xcc, 0xcc,
0, 0, 3, 0xdd, 0xdd, 0xdd,
1, 0xff,
};
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
}
TEST(CBBTest, Misuse) {
bssl::ScopedCBB cbb;
CBB child, contents;
uint8_t *buf;
size_t buf_len;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
ASSERT_TRUE(CBB_add_u8(&child, 1));
ASSERT_TRUE(CBB_add_u8(cbb.get(), 2));
// Since we wrote to |cbb|, |child| is now invalid and attempts to write to
// it should fail.
EXPECT_FALSE(CBB_add_u8(&child, 1));
EXPECT_FALSE(CBB_add_u16(&child, 1));
EXPECT_FALSE(CBB_add_u24(&child, 1));
EXPECT_FALSE(CBB_add_u8_length_prefixed(&child, &contents));
EXPECT_FALSE(CBB_add_u16_length_prefixed(&child, &contents));
EXPECT_FALSE(CBB_add_asn1(&child, &contents, 1));
EXPECT_FALSE(CBB_add_bytes(&child, (const uint8_t*) "a", 1));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes("\x01\x01\x02"), Bytes(buf, buf_len));
}
TEST(CBBTest, ASN1) {
static const uint8_t kExpected[] = {
// SEQUENCE { 1 2 3 }
0x30, 3, 1, 2, 3,
// [4 CONSTRUCTED] { 4 5 6 }
0xa4, 3, 4, 5, 6,
// [APPLICATION 30 PRIMITIVE] { 7 8 9 }
0x5e, 3, 7, 8, 9,
// [APPLICATION 31 PRIMITIVE] { 10 11 12 }
0x5f, 0x1f, 3, 10, 11, 12,
// [PRIVATE 2^29-1 CONSTRUCTED] { 13 14 15 }
0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 3, 13, 14, 15,
};
uint8_t *buf;
size_t buf_len;
bssl::ScopedCBB cbb;
CBB contents, inner_contents;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x01\x02\x03", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x04\x05\x06", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_APPLICATION | 30));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x07\x08\x09", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_APPLICATION | 31));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0a\x0b\x0c", 3));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &contents,
CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff));
ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0d\x0e\x0f", 3));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
bssl::UniquePtr<uint8_t> scoper(buf);
EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
std::vector<uint8_t> test_data(100000, 0x42);
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 130));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(3u + 130u, buf_len);
EXPECT_EQ(Bytes("\x30\x81\x82"), Bytes(buf, 3));
EXPECT_EQ(Bytes(test_data.data(), 130), Bytes(buf + 3, 130));
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 1000));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(4u + 1000u, buf_len);
EXPECT_EQ(Bytes("\x30\x82\x03\xe8"), Bytes(buf, 4));
EXPECT_EQ(Bytes(test_data.data(), 1000), Bytes(buf + 4, 1000));
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&contents, &inner_contents, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&inner_contents, test_data.data(), 100000));
ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
scoper.reset(buf);
ASSERT_EQ(5u + 5u + 100000u, buf_len);
EXPECT_EQ(Bytes("\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0"), Bytes(buf, 10));
EXPECT_EQ(Bytes(test_data.data(), test_data.size()), Bytes(buf + 10, 100000));
}
static void ExpectBerConvert(const char *name, const uint8_t *der_expected,
size_t der_len, const uint8_t *ber,
size_t ber_len) {
SCOPED_TRACE(name);
CBS in;
uint8_t *out;
size_t out_len;
CBS_init(&in, ber, ber_len);
ASSERT_TRUE(CBS_asn1_ber_to_der(&in, &out, &out_len));
bssl::UniquePtr<uint8_t> scoper(out);
if (out == NULL) {
EXPECT_EQ(Bytes(der_expected, der_len), Bytes(ber, ber_len));
} else {
EXPECT_NE(Bytes(der_expected, der_len), Bytes(ber, ber_len));
EXPECT_EQ(Bytes(der_expected, der_len), Bytes(out, out_len));
}
}
TEST(CBSTest, BerConvert) {
static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00};
// kIndefBER contains a SEQUENCE with an indefinite length.
static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00};
static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02};
// kIndefBER2 contains a constructed [APPLICATION 31] with an indefinite
// length.
static const uint8_t kIndefBER2[] = {0x7f, 0x1f, 0x80, 0x01,
0x01, 0x02, 0x00, 0x00};
static const uint8_t kIndefDER2[] = {0x7f, 0x1f, 0x03, 0x01, 0x01, 0x02};
// kOctetStringBER contains an indefinite length OCTET STRING with two parts.
// These parts need to be concatenated in DER form.
static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0, 1,
0x04, 0x02, 2, 3, 0x00, 0x00};
static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3};
// kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite
// length elements extensively.
static const uint8_t kNSSBER[] = {
0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90,
0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04,
0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b,
0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00,
};
static const uint8_t kNSSDER[] = {
0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04,
0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06,
0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84,
0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8,
0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38,
0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0,
0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0,
};
// kConstructedStringBER contains a deeply-nested constructed OCTET STRING.
// The BER conversion collapses this to one level deep, but not completely.
static const uint8_t kConstructedStringBER[] = {
0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01,
0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03,
};
static const uint8_t kConstructedStringDER[] = {
0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03,
};
ExpectBerConvert("kSimpleBER", kSimpleBER, sizeof(kSimpleBER), kSimpleBER,
sizeof(kSimpleBER));
ExpectBerConvert("kIndefBER", kIndefDER, sizeof(kIndefDER), kIndefBER,
sizeof(kIndefBER));
ExpectBerConvert("kIndefBER2", kIndefDER2, sizeof(kIndefDER2), kIndefBER2,
sizeof(kIndefBER2));
ExpectBerConvert("kOctetStringBER", kOctetStringDER, sizeof(kOctetStringDER),
kOctetStringBER, sizeof(kOctetStringBER));
ExpectBerConvert("kNSSBER", kNSSDER, sizeof(kNSSDER), kNSSBER,
sizeof(kNSSBER));
ExpectBerConvert("kConstructedStringBER", kConstructedStringDER,
sizeof(kConstructedStringDER), kConstructedStringBER,
sizeof(kConstructedStringBER));
}
struct ImplicitStringTest {
const char *in;
size_t in_len;
bool ok;
const char *out;
size_t out_len;
};
static const ImplicitStringTest kImplicitStringTests[] = {
// A properly-encoded string.
{"\x80\x03\x61\x61\x61", 5, true, "aaa", 3},
// An implicit-tagged string.
{"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3},
// |CBS_get_asn1_implicit_string| only accepts one level deep of nesting.
{"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr,
0},
// The outer tag must match.
{"\x81\x03\x61\x61\x61", 5, false, nullptr, 0},
{"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0},
// The inner tag must match.
{"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0},
};
TEST(CBSTest, ImplicitString) {
for (const auto &test : kImplicitStringTests) {
SCOPED_TRACE(Bytes(test.in, test.in_len));
uint8_t *storage = nullptr;
CBS in, out;
CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len);
int ok = CBS_get_asn1_implicit_string(&in, &out, &storage,
CBS_ASN1_CONTEXT_SPECIFIC | 0,
CBS_ASN1_OCTETSTRING);
bssl::UniquePtr<uint8_t> scoper(storage);
EXPECT_EQ(test.ok, static_cast<bool>(ok));
if (ok) {
EXPECT_EQ(Bytes(test.out, test.out_len),
Bytes(CBS_data(&out), CBS_len(&out)));
}
}
}
struct ASN1Uint64Test {
uint64_t value;
const char *encoding;
size_t encoding_len;
};
static const ASN1Uint64Test kASN1Uint64Tests[] = {
{0, "\x02\x01\x00", 3},
{1, "\x02\x01\x01", 3},
{127, "\x02\x01\x7f", 3},
{128, "\x02\x02\x00\x80", 4},
{0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7},
{UINT64_C(0x0102030405060708),
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{UINT64_C(0xffffffffffffffff),
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidUint64Test {
const char *encoding;
size_t encoding_len;
};
static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = {
// Bad tag.
{"\x03\x01\x00", 3},
// Empty contents.
{"\x02\x00", 2},
// Negative number.
{"\x02\x01\x80", 3},
// Overflow.
{"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11},
// Leading zeros.
{"\x02\x02\x00\x01", 4},
};
TEST(CBSTest, ASN1Uint64) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Uint64Tests); i++) {
SCOPED_TRACE(i);
const ASN1Uint64Test *test = &kASN1Uint64Tests[i];
CBS cbs;
uint64_t value;
uint8_t *out;
size_t len;
CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
ASSERT_TRUE(CBS_get_asn1_uint64(&cbs, &value));
EXPECT_EQ(0u, CBS_len(&cbs));
EXPECT_EQ(test->value, value);
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_uint64(cbb.get(), test->value));
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> scoper(out);
EXPECT_EQ(Bytes(test->encoding, test->encoding_len), Bytes(out, len));
}
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1InvalidUint64Tests); i++) {
const ASN1InvalidUint64Test *test = &kASN1InvalidUint64Tests[i];
CBS cbs;
uint64_t value;
CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
EXPECT_FALSE(CBS_get_asn1_uint64(&cbs, &value));
}
}
TEST(CBBTest, Zero) {
CBB cbb;
CBB_zero(&cbb);
// Calling |CBB_cleanup| on a zero-state |CBB| must not crash.
CBB_cleanup(&cbb);
}
TEST(CBBTest, Reserve) {
uint8_t buf[10];
uint8_t *ptr;
size_t len;
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
// Too large.
EXPECT_FALSE(CBB_reserve(cbb.get(), &ptr, 11));
cbb.Reset();
ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
// Successfully reserve the entire space.
ASSERT_TRUE(CBB_reserve(cbb.get(), &ptr, 10));
EXPECT_EQ(buf, ptr);
// Advancing under the maximum bytes is legal.
ASSERT_TRUE(CBB_did_write(cbb.get(), 5));
ASSERT_TRUE(CBB_finish(cbb.get(), NULL, &len));
EXPECT_EQ(5u, len);
}
// Test that CBB errors are sticky; once on operation on CBB fails, all
// subsequent ones do.
TEST(CBBTest, StickyError) {
// Write an input that exceeds the limit for its length prefix.
bssl::ScopedCBB cbb;
CBB child;
static const uint8_t kZeros[256] = {0};
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
ASSERT_TRUE(CBB_add_bytes(&child, kZeros, sizeof(kZeros)));
ASSERT_FALSE(CBB_flush(cbb.get()));
// All future operations should fail.
uint8_t *ptr;
size_t len;
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
// Write an input that cannot fit in a fixed CBB.
cbb.Reset();
uint8_t buf;
ASSERT_TRUE(CBB_init_fixed(cbb.get(), &buf, 1));
ASSERT_FALSE(CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros)));
// All future operations should fail.
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
// Write a u32 that cannot fit in a u24.
cbb.Reset();
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_FALSE(CBB_add_u24(cbb.get(), 1u << 24));
// All future operations should fail.
EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
}
TEST(CBSTest, BitString) {
static const std::vector<uint8_t> kValidBitStrings[] = {
{0x00}, // 0 bits
{0x07, 0x80}, // 1 bit
{0x04, 0xf0}, // 4 bits
{0x00, 0xff}, // 8 bits
{0x06, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0}, // 42 bits
};
for (const auto& test : kValidBitStrings) {
SCOPED_TRACE(Bytes(test.data(), test.size()));
CBS cbs;
CBS_init(&cbs, test.data(), test.size());
EXPECT_TRUE(CBS_is_valid_asn1_bitstring(&cbs));
}
static const std::vector<uint8_t> kInvalidBitStrings[] = {
// BIT STRINGs always have a leading byte.
std::vector<uint8_t>{},
// It's not possible to take an unused bit off the empty string.
{0x01},
// There can be at most 7 unused bits.
{0x08, 0xff},
{0xff, 0xff},
// All unused bits must be cleared.
{0x06, 0xff, 0xc1},
};
for (const auto& test : kInvalidBitStrings) {
SCOPED_TRACE(Bytes(test.data(), test.size()));
CBS cbs;
CBS_init(&cbs, test.data(), test.size());
EXPECT_FALSE(CBS_is_valid_asn1_bitstring(&cbs));
// CBS_asn1_bitstring_has_bit returns false on invalid inputs.
EXPECT_FALSE(CBS_asn1_bitstring_has_bit(&cbs, 0));
}
static const struct {
std::vector<uint8_t> in;
unsigned bit;
bool bit_set;
} kBitTests[] = {
// Basic tests.
{{0x00}, 0, false},
{{0x07, 0x80}, 0, true},
{{0x06, 0x0f, 0x40}, 0, false},
{{0x06, 0x0f, 0x40}, 1, false},
{{0x06, 0x0f, 0x40}, 2, false},
{{0x06, 0x0f, 0x40}, 3, false},
{{0x06, 0x0f, 0x40}, 4, true},
{{0x06, 0x0f, 0x40}, 5, true},
{{0x06, 0x0f, 0x40}, 6, true},
{{0x06, 0x0f, 0x40}, 7, true},
{{0x06, 0x0f, 0x40}, 8, false},
{{0x06, 0x0f, 0x40}, 9, true},
// Out-of-bounds bits return 0.
{{0x06, 0x0f, 0x40}, 10, false},
{{0x06, 0x0f, 0x40}, 15, false},
{{0x06, 0x0f, 0x40}, 16, false},
{{0x06, 0x0f, 0x40}, 1000, false},
};
for (const auto& test : kBitTests) {
SCOPED_TRACE(Bytes(test.in.data(), test.in.size()));
SCOPED_TRACE(test.bit);
CBS cbs;
CBS_init(&cbs, test.in.data(), test.in.size());
EXPECT_EQ(static_cast<int>(test.bit_set),
CBS_asn1_bitstring_has_bit(&cbs, test.bit));
}
}
TEST(CBBTest, AddOIDFromText) {
const struct {
const char *text;
std::vector<uint8_t> der;
} kValidOIDs[] = {
// Some valid values.
{"0.0", {0x00}},
{"0.2.3.4", {0x2, 0x3, 0x4}},
{"1.2.3.4", {0x2a, 0x3, 0x4}},
{"2.2.3.4", {0x52, 0x3, 0x4}},
{"1.2.840.113554.4.1.72585",
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09}},
// Test edge cases around the first component.
{"0.39", {0x27}},
{"1.0", {0x28}},
{"1.39", {0x4f}},
{"2.0", {0x50}},
{"2.1", {0x51}},
{"2.40", {0x78}},
// Edge cases near an overflow.
{"1.2.18446744073709551615",
{0x2a, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
{"2.18446744073709551535",
{0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
};
const char *kInvalidTexts[] = {
// Invalid second component.
"0.40",
"1.40",
// Invalid first component.
"3.1",
// The empty string is not an OID.
"",
// No empty components.
".1.2.3.4.5",
"1..2.3.4.5",
"1.2.3.4.5.",
// There must be at least two components.
"1",
// No extra leading zeros.
"00.1.2.3.4",
"01.1.2.3.4",
// Overflow for both components or 40*A + B.
"1.2.18446744073709551616",
"2.18446744073709551536",
};
const std::vector<uint8_t> kInvalidDER[] = {
// The empty string is not an OID.
{},
// Non-minimal representation.
{0x80, 0x01},
// Overflow. This is the DER representation of
// 1.2.840.113554.4.1.72585.18446744073709551616. (The final value is
// 2^64.)
{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09,
0x82, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00},
};
for (const auto &t : kValidOIDs) {
SCOPED_TRACE(t.text);
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1_oid_from_text(cbb.get(), t.text, strlen(t.text)));
uint8_t *out;
size_t len;
ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
bssl::UniquePtr<uint8_t> free_out(out);
EXPECT_EQ(Bytes(t.der), Bytes(out, len));
CBS cbs;
CBS_init(&cbs, t.der.data(), t.der.size());
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
ASSERT_TRUE(text.get());
EXPECT_STREQ(t.text, text.get());
}
for (const char *t : kInvalidTexts) {
SCOPED_TRACE(t);
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
EXPECT_FALSE(CBB_add_asn1_oid_from_text(cbb.get(), t, strlen(t)));
}
for (const auto &t : kInvalidDER) {
SCOPED_TRACE(Bytes(t));
CBS cbs;
CBS_init(&cbs, t.data(), t.size());
bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
EXPECT_FALSE(text);
}
}
TEST(CBBTest, FlushASN1SetOf) {
const struct {
std::vector<uint8_t> in, out;
} kValidInputs[] = {
// No elements.
{{}, {}},
// One element.
{{0x30, 0x00}, {0x30, 0x00}},
// Two identical elements.
{{0x30, 0x00, 0x30, 0x00}, {0x30, 0x00, 0x30, 0x00}},
// clang-format off
{{0x30, 0x02, 0x00, 0x00,
0x30, 0x00,
0x01, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x00,
0x30, 0x00,
0x30, 0x03, 0x00, 0x00, 0x01,
0x30, 0x01, 0x00,
0x01, 0x01, 0x00},
{0x01, 0x00,
0x01, 0x01, 0x00,
0x30, 0x00,
0x30, 0x00,
0x30, 0x01, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x02, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x00,
0x30, 0x03, 0x00, 0x00, 0x01}},
// clang-format on
};
for (const auto &t : kValidInputs) {
SCOPED_TRACE(Bytes(t.in));
bssl::ScopedCBB cbb;
CBB child;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
ASSERT_TRUE(CBB_add_bytes(&child, t.in.data(), t.in.size()));
ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
// Running it again should be idempotent.
ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
// The ASN.1 header remain intact.
ASSERT_TRUE(CBB_flush(cbb.get()));
EXPECT_EQ(0x31, CBB_data(cbb.get())[0]);
}
const std::vector<uint8_t> kInvalidInputs[] = {
{0x30},
{0x30, 0x01},
{0x30, 0x00, 0x30, 0x00, 0x30, 0x01},
};
for (const auto &t : kInvalidInputs) {
SCOPED_TRACE(Bytes(t));
bssl::ScopedCBB cbb;
CBB child;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
ASSERT_TRUE(CBB_add_bytes(&child, t.data(), t.size()));
EXPECT_FALSE(CBB_flush_asn1_set_of(&child));
}
}