| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // +build amd64,!gccgo,!appengine |
| |
| package curve25519 |
| |
| // These functions are implemented in the .s files. The names of the functions |
| // in the rest of the file are also taken from the SUPERCOP sources to help |
| // people following along. |
| |
| //go:noescape |
| |
| func cswap(inout *[5]uint64, v uint64) |
| |
| //go:noescape |
| |
| func ladderstep(inout *[5][5]uint64) |
| |
| //go:noescape |
| |
| func freeze(inout *[5]uint64) |
| |
| //go:noescape |
| |
| func mul(dest, a, b *[5]uint64) |
| |
| //go:noescape |
| |
| func square(out, in *[5]uint64) |
| |
| // mladder uses a Montgomery ladder to calculate (xr/zr) *= s. |
| func mladder(xr, zr *[5]uint64, s *[32]byte) { |
| var work [5][5]uint64 |
| |
| work[0] = *xr |
| setint(&work[1], 1) |
| setint(&work[2], 0) |
| work[3] = *xr |
| setint(&work[4], 1) |
| |
| j := uint(6) |
| var prevbit byte |
| |
| for i := 31; i >= 0; i-- { |
| for j < 8 { |
| bit := ((*s)[i] >> j) & 1 |
| swap := bit ^ prevbit |
| prevbit = bit |
| cswap(&work[1], uint64(swap)) |
| ladderstep(&work) |
| j-- |
| } |
| j = 7 |
| } |
| |
| *xr = work[1] |
| *zr = work[2] |
| } |
| |
| func scalarMult(out, in, base *[32]byte) { |
| var e [32]byte |
| copy(e[:], (*in)[:]) |
| e[0] &= 248 |
| e[31] &= 127 |
| e[31] |= 64 |
| |
| var t, z [5]uint64 |
| unpack(&t, base) |
| mladder(&t, &z, &e) |
| invert(&z, &z) |
| mul(&t, &t, &z) |
| pack(out, &t) |
| } |
| |
| func setint(r *[5]uint64, v uint64) { |
| r[0] = v |
| r[1] = 0 |
| r[2] = 0 |
| r[3] = 0 |
| r[4] = 0 |
| } |
| |
| // unpack sets r = x where r consists of 5, 51-bit limbs in little-endian |
| // order. |
| func unpack(r *[5]uint64, x *[32]byte) { |
| r[0] = uint64(x[0]) | |
| uint64(x[1])<<8 | |
| uint64(x[2])<<16 | |
| uint64(x[3])<<24 | |
| uint64(x[4])<<32 | |
| uint64(x[5])<<40 | |
| uint64(x[6]&7)<<48 |
| |
| r[1] = uint64(x[6])>>3 | |
| uint64(x[7])<<5 | |
| uint64(x[8])<<13 | |
| uint64(x[9])<<21 | |
| uint64(x[10])<<29 | |
| uint64(x[11])<<37 | |
| uint64(x[12]&63)<<45 |
| |
| r[2] = uint64(x[12])>>6 | |
| uint64(x[13])<<2 | |
| uint64(x[14])<<10 | |
| uint64(x[15])<<18 | |
| uint64(x[16])<<26 | |
| uint64(x[17])<<34 | |
| uint64(x[18])<<42 | |
| uint64(x[19]&1)<<50 |
| |
| r[3] = uint64(x[19])>>1 | |
| uint64(x[20])<<7 | |
| uint64(x[21])<<15 | |
| uint64(x[22])<<23 | |
| uint64(x[23])<<31 | |
| uint64(x[24])<<39 | |
| uint64(x[25]&15)<<47 |
| |
| r[4] = uint64(x[25])>>4 | |
| uint64(x[26])<<4 | |
| uint64(x[27])<<12 | |
| uint64(x[28])<<20 | |
| uint64(x[29])<<28 | |
| uint64(x[30])<<36 | |
| uint64(x[31]&127)<<44 |
| } |
| |
| // pack sets out = x where out is the usual, little-endian form of the 5, |
| // 51-bit limbs in x. |
| func pack(out *[32]byte, x *[5]uint64) { |
| t := *x |
| freeze(&t) |
| |
| out[0] = byte(t[0]) |
| out[1] = byte(t[0] >> 8) |
| out[2] = byte(t[0] >> 16) |
| out[3] = byte(t[0] >> 24) |
| out[4] = byte(t[0] >> 32) |
| out[5] = byte(t[0] >> 40) |
| out[6] = byte(t[0] >> 48) |
| |
| out[6] ^= byte(t[1]<<3) & 0xf8 |
| out[7] = byte(t[1] >> 5) |
| out[8] = byte(t[1] >> 13) |
| out[9] = byte(t[1] >> 21) |
| out[10] = byte(t[1] >> 29) |
| out[11] = byte(t[1] >> 37) |
| out[12] = byte(t[1] >> 45) |
| |
| out[12] ^= byte(t[2]<<6) & 0xc0 |
| out[13] = byte(t[2] >> 2) |
| out[14] = byte(t[2] >> 10) |
| out[15] = byte(t[2] >> 18) |
| out[16] = byte(t[2] >> 26) |
| out[17] = byte(t[2] >> 34) |
| out[18] = byte(t[2] >> 42) |
| out[19] = byte(t[2] >> 50) |
| |
| out[19] ^= byte(t[3]<<1) & 0xfe |
| out[20] = byte(t[3] >> 7) |
| out[21] = byte(t[3] >> 15) |
| out[22] = byte(t[3] >> 23) |
| out[23] = byte(t[3] >> 31) |
| out[24] = byte(t[3] >> 39) |
| out[25] = byte(t[3] >> 47) |
| |
| out[25] ^= byte(t[4]<<4) & 0xf0 |
| out[26] = byte(t[4] >> 4) |
| out[27] = byte(t[4] >> 12) |
| out[28] = byte(t[4] >> 20) |
| out[29] = byte(t[4] >> 28) |
| out[30] = byte(t[4] >> 36) |
| out[31] = byte(t[4] >> 44) |
| } |
| |
| // invert calculates r = x^-1 mod p using Fermat's little theorem. |
| func invert(r *[5]uint64, x *[5]uint64) { |
| var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64 |
| |
| square(&z2, x) /* 2 */ |
| square(&t, &z2) /* 4 */ |
| square(&t, &t) /* 8 */ |
| mul(&z9, &t, x) /* 9 */ |
| mul(&z11, &z9, &z2) /* 11 */ |
| square(&t, &z11) /* 22 */ |
| mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */ |
| |
| square(&t, &z2_5_0) /* 2^6 - 2^1 */ |
| for i := 1; i < 5; i++ { /* 2^20 - 2^10 */ |
| square(&t, &t) |
| } |
| mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */ |
| |
| square(&t, &z2_10_0) /* 2^11 - 2^1 */ |
| for i := 1; i < 10; i++ { /* 2^20 - 2^10 */ |
| square(&t, &t) |
| } |
| mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */ |
| |
| square(&t, &z2_20_0) /* 2^21 - 2^1 */ |
| for i := 1; i < 20; i++ { /* 2^40 - 2^20 */ |
| square(&t, &t) |
| } |
| mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */ |
| |
| square(&t, &t) /* 2^41 - 2^1 */ |
| for i := 1; i < 10; i++ { /* 2^50 - 2^10 */ |
| square(&t, &t) |
| } |
| mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */ |
| |
| square(&t, &z2_50_0) /* 2^51 - 2^1 */ |
| for i := 1; i < 50; i++ { /* 2^100 - 2^50 */ |
| square(&t, &t) |
| } |
| mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */ |
| |
| square(&t, &z2_100_0) /* 2^101 - 2^1 */ |
| for i := 1; i < 100; i++ { /* 2^200 - 2^100 */ |
| square(&t, &t) |
| } |
| mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */ |
| |
| square(&t, &t) /* 2^201 - 2^1 */ |
| for i := 1; i < 50; i++ { /* 2^250 - 2^50 */ |
| square(&t, &t) |
| } |
| mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */ |
| |
| square(&t, &t) /* 2^251 - 2^1 */ |
| square(&t, &t) /* 2^252 - 2^2 */ |
| square(&t, &t) /* 2^253 - 2^3 */ |
| |
| square(&t, &t) /* 2^254 - 2^4 */ |
| |
| square(&t, &t) /* 2^255 - 2^5 */ |
| mul(r, &t, &z11) /* 2^255 - 21 */ |
| } |