blob: 1505c71be4beb391b40083e25067a961f8062db3 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "fillins/bits.h"
#include "string_util.h"
#include "x509_certificate.h"
#include <limits.h>
#include <stdlib.h>
#include <memory>
#include <string>
#include <vector>
#include "fillins/base64.h"
#include <openssl/span.h>
#include "base/logging.h"
#include <string_view>
#include "fillins/string_util.h"
#include "fillins/openssl_util.h"
#include "fillins/ip_address.h"
#include "base/registry_controlled_domains/registry_controlled_domain.h"
#include "base/tracing.h"
#include "base/url_util.h"
#include "asn1_util.h"
#include "pem.h"
#include "cert_errors.h"
#include "name_constraints.h"
#include "parsed_certificate.h"
#include "signature_algorithm.h"
#include "verify_certificate_chain.h"
#include "verify_name_match.h"
#include "verify_signed_data.h"
#include "time_conversions.h"
#include "fillins/x509_util.h"
#include "parser.h"
#include <openssl/evp.h>
#include <openssl/pool.h>
#include <openssl/sha.h>
#include "url/url_canon.h"
namespace bssl {
namespace {
// Indicates the order to use when trying to decode binary data, which is
// based on (speculation) as to what will be most common -> least common
const X509Certificate::Format kFormatDecodePriority[] = {
X509Certificate::FORMAT_SINGLE_CERTIFICATE,
X509Certificate::FORMAT_PKCS7
};
// The PEM block header used for DER certificates
const char kCertificateHeader[] = "CERTIFICATE";
// The PEM block header used for PKCS#7 data
const char kPKCS7Header[] = "PKCS7";
// Utility to split |src| on the first occurrence of |c|, if any. |right| will
// either be empty if |c| was not found, or will contain the remainder of the
// string including the split character itself.
void SplitOnChar(std::string_view src,
char c,
std::string_view* left,
std::string_view* right) {
size_t pos = src.find(c);
if (pos == std::string_view::npos) {
*left = src;
*right = std::string_view();
} else {
*left = src.substr(0, pos);
*right = src.substr(pos);
}
}
// Sets |value| to the Value from a DER Sequence Tag-Length-Value and return
// true, or return false if the TLV was not a valid DER Sequence.
[[nodiscard]] bool ParseSequenceValue(const der::Input& tlv,
der::Input* value) {
der::Parser parser(tlv);
return parser.ReadTag(der::kSequence, value) && !parser.HasMore();
}
// Normalize |cert|'s Issuer and store it in |out_normalized_issuer|, returning
// true on success or false if there was a parsing error.
bool GetNormalizedCertIssuer(CRYPTO_BUFFER* cert,
std::string* out_normalized_issuer) {
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
if (!ParseCertificate(
der::Input(CRYPTO_BUFFER_data(cert), CRYPTO_BUFFER_len(cert)),
&tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value,
nullptr)) {
return false;
}
ParsedTbsCertificate tbs;
if (!ParseTbsCertificate(tbs_certificate_tlv,
x509_util::DefaultParseCertificateOptions(), &tbs,
nullptr))
return false;
der::Input issuer_value;
if (!ParseSequenceValue(tbs.issuer_tlv, &issuer_value))
return false;
CertErrors errors;
return NormalizeName(issuer_value, out_normalized_issuer, &errors);
}
bssl::UniquePtr<CRYPTO_BUFFER> CreateCertBufferFromBytesWithSanityCheck(
bssl::Span<const uint8_t> data) {
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
// Do a bare minimum of DER parsing here to see if the input looks
// certificate-ish.
if (!ParseCertificate(der::Input(data.data(), data.size()),
&tbs_certificate_tlv, &signature_algorithm_tlv,
&signature_value, nullptr)) {
return nullptr;
}
return x509_util::CreateCryptoBuffer(data);
}
} // namespace
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromBuffer(
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer,
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates) {
return CreateFromBufferUnsafeOptions(std::move(cert_buffer),
std::move(intermediates), {});
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromBufferUnsafeOptions(
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer,
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates,
UnsafeCreateOptions options) {
DCHECK(cert_buffer);
ParsedFields parsed;
if (!parsed.Initialize(cert_buffer.get(), options)) {
return nullptr;
}
return base::WrapRefCounted(new X509Certificate(
std::move(parsed), std::move(cert_buffer), std::move(intermediates)));
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromDERCertChain(
const std::vector<std::string_view>& der_certs) {
return CreateFromDERCertChainUnsafeOptions(der_certs, {});
}
// static
std::shared_ptr<X509Certificate>
X509Certificate::CreateFromDERCertChainUnsafeOptions(
const std::vector<std::string_view>& der_certs,
UnsafeCreateOptions options) {
TRACE_EVENT0("io", "X509Certificate::CreateFromDERCertChain");
if (der_certs.empty())
return nullptr;
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediate_ca_certs;
intermediate_ca_certs.reserve(der_certs.size() - 1);
for (size_t i = 1; i < der_certs.size(); i++) {
intermediate_ca_certs.push_back(
x509_util::CreateCryptoBuffer(der_certs[i]));
}
return CreateFromBufferUnsafeOptions(
x509_util::CreateCryptoBuffer(der_certs[0]),
std::move(intermediate_ca_certs), options);
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromBytes(
bssl::Span<const uint8_t> data) {
return CreateFromBytesUnsafeOptions(data, {});
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromBytesUnsafeOptions(
bssl::Span<const uint8_t> data,
UnsafeCreateOptions options) {
std::shared_ptr<X509Certificate> cert = CreateFromBufferUnsafeOptions(
x509_util::CreateCryptoBuffer(data), {}, options);
return cert;
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromPickle(
base::PickleIterator* pickle_iter) {
return CreateFromPickleUnsafeOptions(pickle_iter, {});
}
// static
std::shared_ptr<X509Certificate> X509Certificate::CreateFromPickleUnsafeOptions(
base::PickleIterator* pickle_iter,
UnsafeCreateOptions options) {
size_t chain_length = 0;
if (!pickle_iter->ReadLength(&chain_length))
return nullptr;
std::vector<std::string_view> cert_chain;
const char* data = nullptr;
size_t data_length = 0;
for (size_t i = 0; i < chain_length; ++i) {
if (!pickle_iter->ReadData(&data, &data_length))
return nullptr;
cert_chain.emplace_back(data, data_length);
}
return CreateFromDERCertChainUnsafeOptions(cert_chain, options);
}
// static
CertificateList X509Certificate::CreateCertificateListFromBytes(
bssl::Span<const uint8_t> data,
int format) {
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> certificates;
// Check to see if it is in a PEM-encoded form. This check is performed
// first, as both OS X and NSS will both try to convert if they detect
// PEM encoding, except they don't do it consistently between the two.
std::string_view data_string(reinterpret_cast<const char*>(data.data()),
data.size());
std::vector<std::string> pem_headers;
// To maintain compatibility with NSS/Firefox, CERTIFICATE is a universally
// valid PEM block header for any format.
pem_headers.push_back(kCertificateHeader);
if (format & FORMAT_PKCS7)
pem_headers.push_back(kPKCS7Header);
PEMTokenizer pem_tokenizer(data_string, pem_headers);
while (pem_tokenizer.GetNext()) {
std::string decoded(pem_tokenizer.data());
bssl::UniquePtr<CRYPTO_BUFFER> handle;
if (format & FORMAT_PEM_CERT_SEQUENCE) {
handle = CreateCertBufferFromBytesWithSanityCheck(
fillins::as_bytes(bssl::MakeSpan(decoded)));
}
if (handle) {
// Parsed a DER encoded certificate. All PEM blocks that follow must
// also be DER encoded certificates wrapped inside of PEM blocks.
format = FORMAT_PEM_CERT_SEQUENCE;
certificates.push_back(std::move(handle));
continue;
}
// If the first block failed to parse as a DER certificate, and
// formats other than PEM are acceptable, check to see if the decoded
// data is one of the accepted formats.
if (format & ~FORMAT_PEM_CERT_SEQUENCE) {
for (size_t i = 0;
certificates.empty() && i < std::size(kFormatDecodePriority); ++i) {
if (format & kFormatDecodePriority[i]) {
certificates = CreateCertBuffersFromBytes(
fillins::as_bytes(bssl::MakeSpan(decoded)),
kFormatDecodePriority[i]);
}
}
}
// Stop parsing after the first block for any format but a sequence of
// PEM-encoded DER certificates. The case of FORMAT_PEM_CERT_SEQUENCE
// is handled above, and continues processing until a certificate fails
// to parse.
break;
}
// Try each of the formats, in order of parse preference, to see if |data|
// contains the binary representation of a Format, if it failed to parse
// as a PEM certificate/chain.
for (size_t i = 0;
certificates.empty() && i < std::size(kFormatDecodePriority); ++i) {
if (format & kFormatDecodePriority[i])
certificates = CreateCertBuffersFromBytes(data, kFormatDecodePriority[i]);
}
CertificateList results;
// No certificates parsed.
if (certificates.empty())
return results;
for (auto& it : certificates) {
std::shared_ptr<X509Certificate> cert = CreateFromBuffer(std::move(it), {});
if (cert)
results.push_back(std::move(cert));
}
return results;
}
std::shared_ptr<X509Certificate> X509Certificate::CloneWithDifferentIntermediates(
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates) {
// If intermediates are the same, return another reference to the same
// object. Note that this only does a pointer equality comparison on the
// CRYPTO_BUFFERs, which is generally sufficient, but in some edge cases
// buffers have equal contents but with different addresses. This is
// acceptable as this is just an optimization.
if (intermediates == intermediate_ca_certs_) {
return this;
}
return base::WrapRefCounted(
new X509Certificate(*this, std::move(intermediates)));
}
void X509Certificate::Persist(base::Pickle* pickle) const {
DCHECK(cert_buffer_);
// This would be an absolutely insane number of intermediates.
if (intermediate_ca_certs_.size() > static_cast<size_t>(INT_MAX) - 1) {
abort(); //NOTREACHED;
return;
}
pickle->WriteInt(static_cast<int>(intermediate_ca_certs_.size() + 1));
pickle->WriteString(x509_util::CryptoBufferAsStringPiece(cert_buffer_.get()));
for (const auto& intermediate : intermediate_ca_certs_) {
pickle->WriteString(
x509_util::CryptoBufferAsStringPiece(intermediate.get()));
}
}
bool X509Certificate::GetSubjectAltName(
std::vector<std::string>* dns_names,
std::vector<std::string>* ip_addrs) const {
if (dns_names)
dns_names->clear();
if (ip_addrs)
ip_addrs->clear();
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
if (!ParseCertificate(der::Input(CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get())),
&tbs_certificate_tlv, &signature_algorithm_tlv,
&signature_value, nullptr)) {
return false;
}
ParsedTbsCertificate tbs;
if (!ParseTbsCertificate(tbs_certificate_tlv,
x509_util::DefaultParseCertificateOptions(), &tbs,
nullptr))
return false;
if (!tbs.extensions_tlv)
return false;
std::map<der::Input, ParsedExtension> extensions;
if (!ParseExtensions(tbs.extensions_tlv.value(), &extensions))
return false;
ParsedExtension subject_alt_names_extension;
if (!ConsumeExtension(der::Input(kSubjectAltNameOid), &extensions,
&subject_alt_names_extension)) {
return false;
}
CertErrors errors;
std::unique_ptr<GeneralNames> subject_alt_names =
GeneralNames::Create(subject_alt_names_extension.value, &errors);
if (!subject_alt_names)
return false;
if (dns_names) {
for (const auto& dns_name : subject_alt_names->dns_names)
dns_names->push_back(std::string(dns_name));
}
if (ip_addrs) {
for (const fillins::IPAddress& addr : subject_alt_names->ip_addresses) {
ip_addrs->push_back(
std::string(reinterpret_cast<const char*>(addr.bytes().data()),
addr.bytes().size()));
}
}
return !subject_alt_names->dns_names.empty() ||
!subject_alt_names->ip_addresses.empty();
}
bool X509Certificate::HasExpired() const {
return absl::Now() > valid_expiry();
}
bool X509Certificate::EqualsExcludingChain(const X509Certificate* other) const {
return x509_util::CryptoBufferEqual(cert_buffer_.get(),
other->cert_buffer_.get());
}
bool X509Certificate::EqualsIncludingChain(const X509Certificate* other) const {
if (intermediate_ca_certs_.size() != other->intermediate_ca_certs_.size() ||
!EqualsExcludingChain(other)) {
return false;
}
for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) {
if (!x509_util::CryptoBufferEqual(intermediate_ca_certs_[i].get(),
other->intermediate_ca_certs_[i].get())) {
return false;
}
}
return true;
}
bool X509Certificate::IsIssuedByEncoded(
const std::vector<std::string>& valid_issuers) const {
std::vector<std::string> normalized_issuers;
CertErrors errors;
for (const auto& raw_issuer : valid_issuers) {
der::Input issuer_value;
std::string normalized_issuer;
if (!ParseSequenceValue(der::Input(&raw_issuer), &issuer_value) ||
!NormalizeName(issuer_value, &normalized_issuer, &errors)) {
continue;
}
normalized_issuers.push_back(std::move(normalized_issuer));
}
std::string normalized_cert_issuer;
if (!GetNormalizedCertIssuer(cert_buffer_.get(), &normalized_cert_issuer))
return false;
if (base::Contains(normalized_issuers, normalized_cert_issuer))
return true;
for (const auto& intermediate : intermediate_ca_certs_) {
if (!GetNormalizedCertIssuer(intermediate.get(), &normalized_cert_issuer))
return false;
if (base::Contains(normalized_issuers, normalized_cert_issuer))
return true;
}
return false;
}
// static
bool X509Certificate::VerifyHostname(
const std::string& hostname,
const std::vector<std::string>& cert_san_dns_names,
const std::vector<std::string>& cert_san_ip_addrs) {
DCHECK(!hostname.empty());
if (cert_san_dns_names.empty() && cert_san_ip_addrs.empty()) {
// Either a dNSName or iPAddress subjectAltName MUST be present in order
// to match, so fail quickly if not.
return false;
}
// Perform name verification following http://tools.ietf.org/html/rfc6125.
// The terminology used in this method is as per that RFC:-
// Reference identifier == the host the local user/agent is intending to
// access, i.e. the thing displayed in the URL bar.
// Presented identifier(s) == name(s) the server knows itself as, in its cert.
// CanonicalizeHost requires surrounding brackets to parse an IPv6 address.
const std::string host_or_ip = hostname.find(':') != std::string::npos ?
"[" + hostname + "]" : hostname;
url::CanonHostInfo host_info;
std::string reference_name = CanonicalizeHost(host_or_ip, &host_info);
// If the host cannot be canonicalized, fail fast.
if (reference_name.empty())
return false;
// Fully handle all cases where |hostname| contains an IP address.
if (host_info.IsIPAddress()) {
std::string_view ip_addr_string(
reinterpret_cast<const char*>(host_info.address),
host_info.AddressLength());
return base::Contains(cert_san_ip_addrs, ip_addr_string);
}
// The host portion of a URL may support a variety of name resolution formats
// and services. However, the only supported name types in this code are IP
// addresses, which have been handled above via iPAddress subjectAltNames,
// and DNS names, via dNSName subjectAltNames.
// Validate that the host conforms to the DNS preferred name syntax, in
// either relative or absolute form, and exclude the "root" label for DNS.
if (reference_name == "." || !IsCanonicalizedHostCompliant(reference_name))
return false;
// CanonicalizeHost does not normalize absolute vs relative DNS names. If
// the input name was absolute (included trailing .), normalize it as if it
// was relative.
if (reference_name.back() == '.')
reference_name.pop_back();
// |reference_domain| is the remainder of |host| after the leading host
// component is stripped off, but includes the leading dot e.g.
// "www.f.com" -> ".f.com".
// If there is no meaningful domain part to |host| (e.g. it contains no dots)
// then |reference_domain| will be empty.
std::string_view reference_host, reference_domain;
SplitOnChar(reference_name, '.', &reference_host, &reference_domain);
bool allow_wildcards = false;
if (!reference_domain.empty()) {
DCHECK(bssl::string_util::StartsWith(reference_domain, "."));
// Do not allow wildcards for public/ICANN registry controlled domains -
// that is, prevent *.com or *.co.uk as valid presented names, but do not
// prevent *.appspot.com (a private registry controlled domain).
// In addition, unknown top-level domains (such as 'intranet' domains or
// new TLDs/gTLDs not yet added to the registry controlled domain dataset)
// are also implicitly prevented.
// Because |reference_domain| must contain at least one name component that
// is not registry controlled, this ensures that all reference domains
// contain at least three domain components when using wildcards.
size_t registry_length =
registry_controlled_domains::GetCanonicalHostRegistryLength(
reference_name,
registry_controlled_domains::INCLUDE_UNKNOWN_REGISTRIES,
registry_controlled_domains::EXCLUDE_PRIVATE_REGISTRIES);
// Because |reference_name| was already canonicalized, the following
// should never happen.
CHECK_NE(std::string::npos, registry_length);
// Account for the leading dot in |reference_domain|.
bool is_registry_controlled =
registry_length != 0 &&
registry_length == (reference_domain.size() - 1);
// Additionally, do not attempt wildcard matching for purely numeric
// hostnames.
allow_wildcards =
!is_registry_controlled &&
reference_name.find_first_not_of("0123456789.") != std::string::npos;
}
// Now step through the DNS names doing wild card comparison (if necessary)
// on each against the reference name.
for (const auto& cert_san_dns_name : cert_san_dns_names) {
// Catch badly corrupt cert names up front.
if (cert_san_dns_name.empty() ||
cert_san_dns_name.find('\0') != std::string::npos) {
continue;
}
std::string presented_name(base::ToLowerASCII(cert_san_dns_name));
// Remove trailing dot, if any.
if (*presented_name.rbegin() == '.')
presented_name.resize(presented_name.length() - 1);
// The hostname must be at least as long as the cert name it is matching,
// as we require the wildcard (if present) to match at least one character.
if (presented_name.length() > reference_name.length())
continue;
std::string_view presented_host, presented_domain;
SplitOnChar(presented_name, '.', &presented_host, &presented_domain);
if (presented_domain != reference_domain)
continue;
if (presented_host != "*") {
if (presented_host == reference_host)
return true;
continue;
}
if (!allow_wildcards)
continue;
return true;
}
return false;
}
bool X509Certificate::VerifyNameMatch(const std::string& hostname) const {
std::vector<std::string> dns_names, ip_addrs;
GetSubjectAltName(&dns_names, &ip_addrs);
return VerifyHostname(hostname, dns_names, ip_addrs);
}
// static
bool X509Certificate::GetPEMEncodedFromDER(std::string_view der_encoded,
std::string* pem_encoded) {
if (der_encoded.empty())
return false;
*pem_encoded = PEMEncode(der_encoded, "CERTIFICATE");
return true;
}
// static
bool X509Certificate::GetPEMEncoded(const CRYPTO_BUFFER* cert_buffer,
std::string* pem_encoded) {
return GetPEMEncodedFromDER(x509_util::CryptoBufferAsStringPiece(cert_buffer),
pem_encoded);
}
bool X509Certificate::GetPEMEncodedChain(
std::vector<std::string>* pem_encoded) const {
std::vector<std::string> encoded_chain;
std::string pem_data;
if (!GetPEMEncoded(cert_buffer(), &pem_data))
return false;
encoded_chain.push_back(pem_data);
for (const auto& intermediate_ca_cert : intermediate_ca_certs_) {
if (!GetPEMEncoded(intermediate_ca_cert.get(), &pem_data))
return false;
encoded_chain.push_back(pem_data);
}
pem_encoded->swap(encoded_chain);
return true;
}
// static
void X509Certificate::GetPublicKeyInfo(const CRYPTO_BUFFER* cert_buffer,
size_t* size_bits,
PublicKeyType* type) {
*type = kPublicKeyTypeUnknown;
*size_bits = 0;
std::string_view spki;
if (!asn1::ExtractSPKIFromDERCert(
std::string_view(
reinterpret_cast<const char*>(CRYPTO_BUFFER_data(cert_buffer)),
CRYPTO_BUFFER_len(cert_buffer)),
&spki)) {
return;
}
bssl::UniquePtr<EVP_PKEY> pkey;
fillins::OpenSSLErrStackTracer err_tracer;
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(spki.data()), spki.size());
pkey.reset(EVP_parse_public_key(&cbs));
if (!pkey)
return;
switch (EVP_PKEY_id(pkey.get())) {
case EVP_PKEY_RSA:
*type = kPublicKeyTypeRSA;
break;
case EVP_PKEY_DSA:
*type = kPublicKeyTypeDSA;
break;
case EVP_PKEY_EC:
*type = kPublicKeyTypeECDSA;
break;
case EVP_PKEY_DH:
*type = kPublicKeyTypeDH;
break;
}
*size_bits = base::saturated_cast<size_t>(EVP_PKEY_bits(pkey.get()));
}
// static
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>>
X509Certificate::CreateCertBuffersFromBytes(bssl::Span<const uint8_t> data,
Format format) {
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> results;
switch (format) {
case FORMAT_SINGLE_CERTIFICATE: {
bssl::UniquePtr<CRYPTO_BUFFER> handle =
CreateCertBufferFromBytesWithSanityCheck(data);
if (handle)
results.push_back(std::move(handle));
break;
}
case FORMAT_PKCS7: {
x509_util::CreateCertBuffersFromPKCS7Bytes(data, &results);
break;
}
default: {
abort(); //NOTREACHED << "Certificate format " << format << " unimplemented";
break;
}
}
return results;
}
// static
SHA256HashValue X509Certificate::CalculateFingerprint256(
const CRYPTO_BUFFER* cert) {
SHA256HashValue sha256;
SHA256(CRYPTO_BUFFER_data(cert), CRYPTO_BUFFER_len(cert), sha256.data);
return sha256;
}
SHA256HashValue X509Certificate::CalculateChainFingerprint256() const {
SHA256HashValue sha256;
memset(sha256.data, 0, sizeof(sha256.data));
SHA256_CTX sha256_ctx;
SHA256_Init(&sha256_ctx);
SHA256_Update(&sha256_ctx, CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get()));
for (const auto& cert : intermediate_ca_certs_) {
SHA256_Update(&sha256_ctx, CRYPTO_BUFFER_data(cert.get()),
CRYPTO_BUFFER_len(cert.get()));
}
SHA256_Final(sha256.data, &sha256_ctx);
return sha256;
}
// static
bool X509Certificate::IsSelfSigned(CRYPTO_BUFFER* cert_buffer) {
std::shared_ptr<const ParsedCertificate> parsed_cert =
ParsedCertificate::Create(bssl::UpRef(cert_buffer),
x509_util::DefaultParseCertificateOptions(),
/*errors=*/nullptr);
if (!parsed_cert) {
return false;
}
return VerifyCertificateIsSelfSigned(*parsed_cert, /*cache=*/nullptr,
/*errors=*/nullptr);
}
X509Certificate::X509Certificate(
ParsedFields parsed,
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer,
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates)
: parsed_(std::move(parsed)),
cert_buffer_(std::move(cert_buffer)),
intermediate_ca_certs_(std::move(intermediates)) {}
X509Certificate::X509Certificate(
const X509Certificate& other,
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates)
: parsed_(other.parsed_),
cert_buffer_(bssl::UpRef(other.cert_buffer_)),
intermediate_ca_certs_(std::move(intermediates)) {}
X509Certificate::~X509Certificate() = default;
X509Certificate::ParsedFields::ParsedFields() = default;
X509Certificate::ParsedFields::ParsedFields(const ParsedFields&) = default;
X509Certificate::ParsedFields::ParsedFields(ParsedFields&&) = default;
X509Certificate::ParsedFields::~ParsedFields() = default;
bool X509Certificate::ParsedFields::Initialize(
const CRYPTO_BUFFER* cert_buffer,
X509Certificate::UnsafeCreateOptions options) {
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
if (!ParseCertificate(der::Input(CRYPTO_BUFFER_data(cert_buffer),
CRYPTO_BUFFER_len(cert_buffer)),
&tbs_certificate_tlv, &signature_algorithm_tlv,
&signature_value, nullptr)) {
return false;
}
ParsedTbsCertificate tbs;
if (!ParseTbsCertificate(tbs_certificate_tlv,
x509_util::DefaultParseCertificateOptions(), &tbs,
nullptr))
return false;
CertPrincipal::PrintableStringHandling printable_string_handling =
options.printable_string_is_utf8
? CertPrincipal::PrintableStringHandling::kAsUTF8Hack
: CertPrincipal::PrintableStringHandling::kDefault;
if (!subject_.ParseDistinguishedName(tbs.subject_tlv,
printable_string_handling) ||
!issuer_.ParseDistinguishedName(tbs.issuer_tlv,
printable_string_handling)) {
return false;
}
if (!GeneralizedTimeToTime(tbs.validity_not_before, &valid_start_) ||
!GeneralizedTimeToTime(tbs.validity_not_after, &valid_expiry_)) {
return false;
}
serial_number_ = tbs.serial_number.AsString();
return true;
}
} // namespace net