| /* Copyright (c) 2015, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/crypto.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| |
| #include "../internal.h" |
| |
| |
| // Prints out the data buffer as a sequence of hex bytes. |
| static void PrintDataHex(const void *data, size_t len) { |
| for (size_t i = 0; i < len; ++i) { |
| fprintf(stderr, "%02x", (int)((const uint8_t *)data)[i]); |
| } |
| } |
| |
| // Helper for testing that PBKDF2 derives the expected key from the given |
| // inputs. Returns 1 on success, 0 otherwise. |
| static bool TestPBKDF2(const void *password, size_t password_len, |
| const void *salt, size_t salt_len, unsigned iterations, |
| const EVP_MD *digest, size_t key_len, |
| const uint8_t *expected_key) { |
| uint8_t key[64]; |
| |
| if (key_len > sizeof(key)) { |
| fprintf(stderr, "Output buffer is not large enough.\n"); |
| return false; |
| } |
| |
| if (!PKCS5_PBKDF2_HMAC((const char *)password, password_len, |
| (const uint8_t *)salt, salt_len, iterations, digest, |
| key_len, key)) { |
| fprintf(stderr, "Call to PKCS5_PBKDF2_HMAC failed\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (OPENSSL_memcmp(key, expected_key, key_len) != 0) { |
| fprintf(stderr, "Resulting key material does not match expectation\n"); |
| fprintf(stderr, "Expected:\n "); |
| PrintDataHex(expected_key, key_len); |
| fprintf(stderr, "\nActual:\n "); |
| PrintDataHex(key, key_len); |
| fprintf(stderr, "\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Tests deriving a key using an empty password (specified both as NULL and as |
| // non-NULL). Note that NULL has special meaning to HMAC initialization. |
| static bool TestEmptyPassword() { |
| const uint8_t kKey[] = {0xa3, 0x3d, 0xdd, 0xc3, 0x04, 0x78, 0x18, |
| 0x55, 0x15, 0x31, 0x1f, 0x87, 0x52, 0x89, |
| 0x5d, 0x36, 0xea, 0x43, 0x63, 0xa2}; |
| |
| if (!TestPBKDF2(NULL, 0, "salt", 4, 1, EVP_sha1(), sizeof(kKey), kKey) || |
| !TestPBKDF2("", 0, "salt", 4, 1, EVP_sha1(), sizeof(kKey), kKey)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Tests deriving a key using an empty salt. Note that the expectation was |
| // generated using OpenSSL itself, and hence is not verified. |
| static bool TestEmptySalt() { |
| const uint8_t kKey[] = {0x8b, 0xc2, 0xf9, 0x16, 0x7a, 0x81, 0xcd, 0xcf, |
| 0xad, 0x12, 0x35, 0xcd, 0x90, 0x47, 0xf1, 0x13, |
| 0x62, 0x71, 0xc1, 0xf9, 0x78, 0xfc, 0xfc, 0xb3, |
| 0x5e, 0x22, 0xdb, 0xea, 0xfa, 0x46, 0x34, 0xf6}; |
| |
| if (!TestPBKDF2("password", 8, NULL, 0, 2, EVP_sha256(), sizeof(kKey), |
| kKey) || |
| !TestPBKDF2("password", 8, "", 0, 2, EVP_sha256(), sizeof(kKey), kKey)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Exercises test vectors taken from https://tools.ietf.org/html/rfc6070. |
| // Note that each of these test vectors uses SHA-1 as the digest. |
| static bool TestRFC6070Vectors() { |
| const uint8_t kKey1[] = {0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, |
| 0x71, 0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, |
| 0x12, 0x06, 0x2f, 0xe0, 0x37, 0xa6}; |
| const uint8_t kKey2[] = {0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, |
| 0x8c, 0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, |
| 0x41, 0xf0, 0xd8, 0xde, 0x89, 0x57}; |
| const uint8_t kKey3[] = {0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d, |
| 0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3}; |
| |
| if (!TestPBKDF2("password", 8, "salt", 4, 1, EVP_sha1(), sizeof(kKey1), |
| kKey1) || |
| !TestPBKDF2("password", 8, "salt", 4, 2, EVP_sha1(), sizeof(kKey2), |
| kKey2) || |
| !TestPBKDF2("pass\0word", 9, "sa\0lt", 5, 4096, EVP_sha1(), |
| sizeof(kKey3), kKey3)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Tests key derivation using SHA-2 digests. |
| static bool TestSHA2() { |
| // This test was taken from: |
| // http://stackoverflow.com/questions/5130513/pbkdf2-hmac-sha2-test-vectors. |
| const uint8_t kKey1[] = {0xae, 0x4d, 0x0c, 0x95, 0xaf, 0x6b, 0x46, 0xd3, |
| 0x2d, 0x0a, 0xdf, 0xf9, 0x28, 0xf0, 0x6d, 0xd0, |
| 0x2a, 0x30, 0x3f, 0x8e, 0xf3, 0xc2, 0x51, 0xdf, |
| 0xd6, 0xe2, 0xd8, 0x5a, 0x95, 0x47, 0x4c, 0x43}; |
| |
| // This test was taken from: |
| // http://stackoverflow.com/questions/15593184/pbkdf2-hmac-sha-512-test-vectors. |
| const uint8_t kKey2[] = { |
| 0x8c, 0x05, 0x11, 0xf4, 0xc6, 0xe5, 0x97, 0xc6, 0xac, 0x63, 0x15, |
| 0xd8, 0xf0, 0x36, 0x2e, 0x22, 0x5f, 0x3c, 0x50, 0x14, 0x95, 0xba, |
| 0x23, 0xb8, 0x68, 0xc0, 0x05, 0x17, 0x4d, 0xc4, 0xee, 0x71, 0x11, |
| 0x5b, 0x59, 0xf9, 0xe6, 0x0c, 0xd9, 0x53, 0x2f, 0xa3, 0x3e, 0x0f, |
| 0x75, 0xae, 0xfe, 0x30, 0x22, 0x5c, 0x58, 0x3a, 0x18, 0x6c, 0xd8, |
| 0x2b, 0xd4, 0xda, 0xea, 0x97, 0x24, 0xa3, 0xd3, 0xb8}; |
| |
| if (!TestPBKDF2("password", 8, "salt", 4, 2, EVP_sha256(), sizeof(kKey1), |
| kKey1) || |
| !TestPBKDF2("passwordPASSWORDpassword", 24, |
| "saltSALTsaltSALTsaltSALTsaltSALTsalt", 36, 4096, |
| EVP_sha512(), sizeof(kKey2), kKey2)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Tests key derivation using iterations=0. |
| // |
| // RFC 2898 defines the iteration count (c) as a "positive integer". So doing a |
| // key derivation with iterations=0 is ill-defined and should result in a |
| // failure. |
| static bool TestZeroIterations() { |
| static const char kPassword[] = "password"; |
| const size_t password_len = strlen(kPassword); |
| static const uint8_t kSalt[] = {1, 2, 3, 4}; |
| const size_t salt_len = sizeof(kSalt); |
| const EVP_MD *digest = EVP_sha1(); |
| |
| uint8_t key[10] = {0}; |
| const size_t key_len = sizeof(key); |
| |
| // Verify that calling with iterations=1 works. |
| if (!PKCS5_PBKDF2_HMAC(kPassword, password_len, kSalt, salt_len, |
| 1 /* iterations */, digest, key_len, key)) { |
| fprintf(stderr, "PBKDF2 failed with iterations=1\n"); |
| return false; |
| } |
| |
| // Flip the first key byte (so can later test if it got set). |
| const uint8_t expected_first_byte = key[0]; |
| key[0] = ~key[0]; |
| |
| // However calling it with iterations=0 fails. |
| if (PKCS5_PBKDF2_HMAC(kPassword, password_len, kSalt, salt_len, |
| 0 /* iterations */, digest, key_len, key)) { |
| fprintf(stderr, "PBKDF2 returned zero with iterations=0\n"); |
| return false; |
| } |
| |
| // For backwards compatibility, the iterations == 0 case still fills in |
| // the out key. |
| return key[0] == expected_first_byte; |
| } |
| |
| int main(void) { |
| CRYPTO_library_init(); |
| |
| if (!TestEmptyPassword()) { |
| fprintf(stderr, "TestEmptyPassword failed\n"); |
| return 1; |
| } |
| |
| if (!TestEmptySalt()) { |
| fprintf(stderr, "TestEmptySalt failed\n"); |
| return 1; |
| } |
| |
| if (!TestRFC6070Vectors()) { |
| fprintf(stderr, "TestRFC6070Vectors failed\n"); |
| return 1; |
| } |
| |
| if (!TestSHA2()) { |
| fprintf(stderr, "TestSHA2 failed\n"); |
| return 1; |
| } |
| |
| if (!TestZeroIterations()) { |
| fprintf(stderr, "TestZeroIterations failed\n"); |
| return 1; |
| } |
| |
| printf("PASS\n"); |
| ERR_free_strings(); |
| return 0; |
| } |