| /* ==================================================================== | 
 |  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    licensing@OpenSSL.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/evp.h> | 
 |  | 
 | #include <openssl/bio.h> | 
 | #include <openssl/bn.h> | 
 | #include <openssl/dsa.h> | 
 | #include <openssl/ec.h> | 
 | #include <openssl/ec_key.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/rsa.h> | 
 |  | 
 | #include "../internal.h" | 
 | #include "../fipsmodule/rsa/internal.h" | 
 |  | 
 |  | 
 | static int print_hex(BIO *bp, const uint8_t *data, size_t len, int off) { | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     if ((i % 15) == 0) { | 
 |       if (BIO_puts(bp, "\n") <= 0 ||  // | 
 |           !BIO_indent(bp, off + 4, 128)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     if (BIO_printf(bp, "%02x%s", data[i], (i + 1 == len) ? "" : ":") <= 0) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   if (BIO_write(bp, "\n", 1) <= 0) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static int bn_print(BIO *bp, const char *name, const BIGNUM *num, int off) { | 
 |   if (num == NULL) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   if (!BIO_indent(bp, off, 128)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_is_zero(num)) { | 
 |     if (BIO_printf(bp, "%s 0\n", name) <= 0) { | 
 |       return 0; | 
 |     } | 
 |     return 1; | 
 |   } | 
 |  | 
 |   uint64_t u64; | 
 |   if (BN_get_u64(num, &u64)) { | 
 |     const char *neg = BN_is_negative(num) ? "-" : ""; | 
 |     return BIO_printf(bp, "%s %s%" PRIu64 " (%s0x%" PRIx64 ")\n", name, neg, | 
 |                       u64, neg, u64) > 0; | 
 |   } | 
 |  | 
 |   if (BIO_printf(bp, "%s%s", name, | 
 |                   (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Print |num| in hex, adding a leading zero, as in ASN.1, if the high bit | 
 |   // is set. | 
 |   // | 
 |   // TODO(davidben): Do we need to do this? We already print "(Negative)" above | 
 |   // and negative values are never valid in keys anyway. | 
 |   size_t len = BN_num_bytes(num); | 
 |   uint8_t *buf = OPENSSL_malloc(len + 1); | 
 |   if (buf == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   buf[0] = 0; | 
 |   BN_bn2bin(num, buf + 1); | 
 |   int ret; | 
 |   if (len > 0 && (buf[1] & 0x80) != 0) { | 
 |     // Print the whole buffer. | 
 |     ret = print_hex(bp, buf, len + 1, off); | 
 |   } else { | 
 |     // Skip the leading zero. | 
 |     ret = print_hex(bp, buf + 1, len, off); | 
 |   } | 
 |   OPENSSL_free(buf); | 
 |   return ret; | 
 | } | 
 |  | 
 | // RSA keys. | 
 |  | 
 | static int do_rsa_print(BIO *out, const RSA *rsa, int off, | 
 |                         int include_private) { | 
 |   int mod_len = 0; | 
 |   if (rsa->n != NULL) { | 
 |     mod_len = BN_num_bits(rsa->n); | 
 |   } | 
 |  | 
 |   if (!BIO_indent(out, off, 128)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const char *s, *str; | 
 |   if (include_private && rsa->d) { | 
 |     if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { | 
 |       return 0; | 
 |     } | 
 |     str = "modulus:"; | 
 |     s = "publicExponent:"; | 
 |   } else { | 
 |     if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { | 
 |       return 0; | 
 |     } | 
 |     str = "Modulus:"; | 
 |     s = "Exponent:"; | 
 |   } | 
 |   if (!bn_print(out, str, rsa->n, off) || | 
 |       !bn_print(out, s, rsa->e, off)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (include_private) { | 
 |     if (!bn_print(out, "privateExponent:", rsa->d, off) || | 
 |         !bn_print(out, "prime1:", rsa->p, off) || | 
 |         !bn_print(out, "prime2:", rsa->q, off) || | 
 |         !bn_print(out, "exponent1:", rsa->dmp1, off) || | 
 |         !bn_print(out, "exponent2:", rsa->dmq1, off) || | 
 |         !bn_print(out, "coefficient:", rsa->iqmp, off)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 0); | 
 | } | 
 |  | 
 | static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 1); | 
 | } | 
 |  | 
 |  | 
 | // DSA keys. | 
 |  | 
 | static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { | 
 |   const BIGNUM *priv_key = NULL; | 
 |   if (ptype == 2) { | 
 |     priv_key = DSA_get0_priv_key(x); | 
 |   } | 
 |  | 
 |   const BIGNUM *pub_key = NULL; | 
 |   if (ptype > 0) { | 
 |     pub_key = DSA_get0_pub_key(x); | 
 |   } | 
 |  | 
 |   const char *ktype = "DSA-Parameters"; | 
 |   if (ptype == 2) { | 
 |     ktype = "Private-Key"; | 
 |   } else if (ptype == 1) { | 
 |     ktype = "Public-Key"; | 
 |   } | 
 |  | 
 |   if (!BIO_indent(bp, off, 128) || | 
 |       BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(DSA_get0_p(x))) <= | 
 |           0 || | 
 |       // |priv_key| and |pub_key| may be NULL, in which case |bn_print| will | 
 |       // silently skip them. | 
 |       !bn_print(bp, "priv:", priv_key, off) || | 
 |       !bn_print(bp, "pub:", pub_key, off) || | 
 |       !bn_print(bp, "P:", DSA_get0_p(x), off) || | 
 |       !bn_print(bp, "Q:", DSA_get0_q(x), off) || | 
 |       !bn_print(bp, "G:", DSA_get0_g(x), off)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 0); | 
 | } | 
 |  | 
 | static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 1); | 
 | } | 
 |  | 
 | static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 2); | 
 | } | 
 |  | 
 |  | 
 | // EC keys. | 
 |  | 
 | static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { | 
 |   const EC_GROUP *group; | 
 |   if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { | 
 |     OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const char *ecstr; | 
 |   if (ktype == 2) { | 
 |     ecstr = "Private-Key"; | 
 |   } else if (ktype == 1) { | 
 |     ecstr = "Public-Key"; | 
 |   } else { | 
 |     ecstr = "ECDSA-Parameters"; | 
 |   } | 
 |  | 
 |   if (!BIO_indent(bp, off, 128)) { | 
 |     return 0; | 
 |   } | 
 |   int curve_name = EC_GROUP_get_curve_name(group); | 
 |   if (BIO_printf(bp, "%s: (%s)\n", ecstr, | 
 |                  curve_name == NID_undef | 
 |                      ? "unknown curve" | 
 |                      : EC_curve_nid2nist(curve_name)) <= 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (ktype == 2) { | 
 |     const BIGNUM *priv_key = EC_KEY_get0_private_key(x); | 
 |     if (priv_key != NULL &&  // | 
 |         !bn_print(bp, "priv:", priv_key, off)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (ktype > 0 && EC_KEY_get0_public_key(x) != NULL) { | 
 |     uint8_t *pub = NULL; | 
 |     size_t pub_len = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL); | 
 |     if (pub_len == 0) { | 
 |       return 0; | 
 |     } | 
 |     int ret = BIO_indent(bp, off, 128) &&  // | 
 |               BIO_puts(bp, "pub:") > 0 &&  // | 
 |               print_hex(bp, pub, pub_len, off); | 
 |     OPENSSL_free(pub); | 
 |     if (!ret) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 0); | 
 | } | 
 |  | 
 | static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 1); | 
 | } | 
 |  | 
 |  | 
 | static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { | 
 |   return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 2); | 
 | } | 
 |  | 
 |  | 
 | typedef struct { | 
 |   int type; | 
 |   int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent); | 
 |   int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent); | 
 |   int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent); | 
 | } EVP_PKEY_PRINT_METHOD; | 
 |  | 
 | static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { | 
 |     { | 
 |         EVP_PKEY_RSA, | 
 |         rsa_pub_print, | 
 |         rsa_priv_print, | 
 |         NULL /* param_print */, | 
 |     }, | 
 |     { | 
 |         EVP_PKEY_DSA, | 
 |         dsa_pub_print, | 
 |         dsa_priv_print, | 
 |         dsa_param_print, | 
 |     }, | 
 |     { | 
 |         EVP_PKEY_EC, | 
 |         eckey_pub_print, | 
 |         eckey_priv_print, | 
 |         eckey_param_print, | 
 |     }, | 
 | }; | 
 |  | 
 | static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); | 
 |  | 
 | static EVP_PKEY_PRINT_METHOD *find_method(int type) { | 
 |   for (size_t i = 0; i < kPrintMethodsLen; i++) { | 
 |     if (kPrintMethods[i].type == type) { | 
 |       return &kPrintMethods[i]; | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 | static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, | 
 |                              const char *kstr) { | 
 |   BIO_indent(out, indent, 128); | 
 |   BIO_printf(out, "%s algorithm unsupported\n", kstr); | 
 |   return 1; | 
 | } | 
 |  | 
 | int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, | 
 |                           ASN1_PCTX *pctx) { | 
 |   EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); | 
 |   if (method != NULL && method->pub_print != NULL) { | 
 |     return method->pub_print(out, pkey, indent); | 
 |   } | 
 |   return print_unsupported(out, pkey, indent, "Public Key"); | 
 | } | 
 |  | 
 | int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, | 
 |                            ASN1_PCTX *pctx) { | 
 |   EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); | 
 |   if (method != NULL && method->priv_print != NULL) { | 
 |     return method->priv_print(out, pkey, indent); | 
 |   } | 
 |   return print_unsupported(out, pkey, indent, "Private Key"); | 
 | } | 
 |  | 
 | int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, | 
 |                           ASN1_PCTX *pctx) { | 
 |   EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey)); | 
 |   if (method != NULL && method->param_print != NULL) { | 
 |     return method->param_print(out, pkey, indent); | 
 |   } | 
 |   return print_unsupported(out, pkey, indent, "Parameters"); | 
 | } |