| // Copyright 2005, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // The Google C++ Testing and Mocking Framework (Google Test) |
| // |
| // This header file declares functions and macros used internally by |
| // Google Test. They are subject to change without notice. |
| |
| // GOOGLETEST_CM0001 DO NOT DELETE |
| |
| #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
| #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
| |
| #include "gtest/internal/gtest-port.h" |
| |
| #if GTEST_OS_LINUX |
| # include <stdlib.h> |
| # include <sys/types.h> |
| # include <sys/wait.h> |
| # include <unistd.h> |
| #endif // GTEST_OS_LINUX |
| |
| #if GTEST_HAS_EXCEPTIONS |
| # include <stdexcept> |
| #endif |
| |
| #include <ctype.h> |
| #include <float.h> |
| #include <string.h> |
| #include <iomanip> |
| #include <limits> |
| #include <map> |
| #include <set> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "gtest/gtest-message.h" |
| #include "gtest/internal/gtest-filepath.h" |
| #include "gtest/internal/gtest-string.h" |
| #include "gtest/internal/gtest-type-util.h" |
| |
| // Due to C++ preprocessor weirdness, we need double indirection to |
| // concatenate two tokens when one of them is __LINE__. Writing |
| // |
| // foo ## __LINE__ |
| // |
| // will result in the token foo__LINE__, instead of foo followed by |
| // the current line number. For more details, see |
| // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 |
| #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) |
| #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar |
| |
| // Stringifies its argument. |
| #define GTEST_STRINGIFY_(name) #name |
| |
| namespace proto2 { class Message; } |
| |
| namespace testing { |
| |
| // Forward declarations. |
| |
| class AssertionResult; // Result of an assertion. |
| class Message; // Represents a failure message. |
| class Test; // Represents a test. |
| class TestInfo; // Information about a test. |
| class TestPartResult; // Result of a test part. |
| class UnitTest; // A collection of test suites. |
| |
| template <typename T> |
| ::std::string PrintToString(const T& value); |
| |
| namespace internal { |
| |
| struct TraceInfo; // Information about a trace point. |
| class TestInfoImpl; // Opaque implementation of TestInfo |
| class UnitTestImpl; // Opaque implementation of UnitTest |
| |
| // The text used in failure messages to indicate the start of the |
| // stack trace. |
| GTEST_API_ extern const char kStackTraceMarker[]; |
| |
| // An IgnoredValue object can be implicitly constructed from ANY value. |
| class IgnoredValue { |
| struct Sink {}; |
| public: |
| // This constructor template allows any value to be implicitly |
| // converted to IgnoredValue. The object has no data member and |
| // doesn't try to remember anything about the argument. We |
| // deliberately omit the 'explicit' keyword in order to allow the |
| // conversion to be implicit. |
| // Disable the conversion if T already has a magical conversion operator. |
| // Otherwise we get ambiguity. |
| template <typename T, |
| typename std::enable_if<!std::is_convertible<T, Sink>::value, |
| int>::type = 0> |
| IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) |
| }; |
| |
| // Appends the user-supplied message to the Google-Test-generated message. |
| GTEST_API_ std::string AppendUserMessage( |
| const std::string& gtest_msg, const Message& user_msg); |
| |
| #if GTEST_HAS_EXCEPTIONS |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \ |
| /* an exported class was derived from a class that was not exported */) |
| |
| // This exception is thrown by (and only by) a failed Google Test |
| // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions |
| // are enabled). We derive it from std::runtime_error, which is for |
| // errors presumably detectable only at run time. Since |
| // std::runtime_error inherits from std::exception, many testing |
| // frameworks know how to extract and print the message inside it. |
| class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { |
| public: |
| explicit GoogleTestFailureException(const TestPartResult& failure); |
| }; |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 |
| |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| namespace edit_distance { |
| // Returns the optimal edits to go from 'left' to 'right'. |
| // All edits cost the same, with replace having lower priority than |
| // add/remove. |
| // Simple implementation of the Wagner-Fischer algorithm. |
| // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm |
| enum EditType { kMatch, kAdd, kRemove, kReplace }; |
| GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
| const std::vector<size_t>& left, const std::vector<size_t>& right); |
| |
| // Same as above, but the input is represented as strings. |
| GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
| const std::vector<std::string>& left, |
| const std::vector<std::string>& right); |
| |
| // Create a diff of the input strings in Unified diff format. |
| GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, |
| const std::vector<std::string>& right, |
| size_t context = 2); |
| |
| } // namespace edit_distance |
| |
| // Calculate the diff between 'left' and 'right' and return it in unified diff |
| // format. |
| // If not null, stores in 'total_line_count' the total number of lines found |
| // in left + right. |
| GTEST_API_ std::string DiffStrings(const std::string& left, |
| const std::string& right, |
| size_t* total_line_count); |
| |
| // Constructs and returns the message for an equality assertion |
| // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. |
| // |
| // The first four parameters are the expressions used in the assertion |
| // and their values, as strings. For example, for ASSERT_EQ(foo, bar) |
| // where foo is 5 and bar is 6, we have: |
| // |
| // expected_expression: "foo" |
| // actual_expression: "bar" |
| // expected_value: "5" |
| // actual_value: "6" |
| // |
| // The ignoring_case parameter is true iff the assertion is a |
| // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will |
| // be inserted into the message. |
| GTEST_API_ AssertionResult EqFailure(const char* expected_expression, |
| const char* actual_expression, |
| const std::string& expected_value, |
| const std::string& actual_value, |
| bool ignoring_case); |
| |
| // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. |
| GTEST_API_ std::string GetBoolAssertionFailureMessage( |
| const AssertionResult& assertion_result, |
| const char* expression_text, |
| const char* actual_predicate_value, |
| const char* expected_predicate_value); |
| |
| // This template class represents an IEEE floating-point number |
| // (either single-precision or double-precision, depending on the |
| // template parameters). |
| // |
| // The purpose of this class is to do more sophisticated number |
| // comparison. (Due to round-off error, etc, it's very unlikely that |
| // two floating-points will be equal exactly. Hence a naive |
| // comparison by the == operation often doesn't work.) |
| // |
| // Format of IEEE floating-point: |
| // |
| // The most-significant bit being the leftmost, an IEEE |
| // floating-point looks like |
| // |
| // sign_bit exponent_bits fraction_bits |
| // |
| // Here, sign_bit is a single bit that designates the sign of the |
| // number. |
| // |
| // For float, there are 8 exponent bits and 23 fraction bits. |
| // |
| // For double, there are 11 exponent bits and 52 fraction bits. |
| // |
| // More details can be found at |
| // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. |
| // |
| // Template parameter: |
| // |
| // RawType: the raw floating-point type (either float or double) |
| template <typename RawType> |
| class FloatingPoint { |
| public: |
| // Defines the unsigned integer type that has the same size as the |
| // floating point number. |
| typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; |
| |
| // Constants. |
| |
| // # of bits in a number. |
| static const size_t kBitCount = 8*sizeof(RawType); |
| |
| // # of fraction bits in a number. |
| static const size_t kFractionBitCount = |
| std::numeric_limits<RawType>::digits - 1; |
| |
| // # of exponent bits in a number. |
| static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
| |
| // The mask for the sign bit. |
| static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
| |
| // The mask for the fraction bits. |
| static const Bits kFractionBitMask = |
| ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
| |
| // The mask for the exponent bits. |
| static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
| |
| // How many ULP's (Units in the Last Place) we want to tolerate when |
| // comparing two numbers. The larger the value, the more error we |
| // allow. A 0 value means that two numbers must be exactly the same |
| // to be considered equal. |
| // |
| // The maximum error of a single floating-point operation is 0.5 |
| // units in the last place. On Intel CPU's, all floating-point |
| // calculations are done with 80-bit precision, while double has 64 |
| // bits. Therefore, 4 should be enough for ordinary use. |
| // |
| // See the following article for more details on ULP: |
| // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
| static const size_t kMaxUlps = 4; |
| |
| // Constructs a FloatingPoint from a raw floating-point number. |
| // |
| // On an Intel CPU, passing a non-normalized NAN (Not a Number) |
| // around may change its bits, although the new value is guaranteed |
| // to be also a NAN. Therefore, don't expect this constructor to |
| // preserve the bits in x when x is a NAN. |
| explicit FloatingPoint(const RawType& x) { u_.value_ = x; } |
| |
| // Static methods |
| |
| // Reinterprets a bit pattern as a floating-point number. |
| // |
| // This function is needed to test the AlmostEquals() method. |
| static RawType ReinterpretBits(const Bits bits) { |
| FloatingPoint fp(0); |
| fp.u_.bits_ = bits; |
| return fp.u_.value_; |
| } |
| |
| // Returns the floating-point number that represent positive infinity. |
| static RawType Infinity() { |
| return ReinterpretBits(kExponentBitMask); |
| } |
| |
| // Returns the maximum representable finite floating-point number. |
| static RawType Max(); |
| |
| // Non-static methods |
| |
| // Returns the bits that represents this number. |
| const Bits &bits() const { return u_.bits_; } |
| |
| // Returns the exponent bits of this number. |
| Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } |
| |
| // Returns the fraction bits of this number. |
| Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } |
| |
| // Returns the sign bit of this number. |
| Bits sign_bit() const { return kSignBitMask & u_.bits_; } |
| |
| // Returns true iff this is NAN (not a number). |
| bool is_nan() const { |
| // It's a NAN if the exponent bits are all ones and the fraction |
| // bits are not entirely zeros. |
| return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
| } |
| |
| // Returns true iff this number is at most kMaxUlps ULP's away from |
| // rhs. In particular, this function: |
| // |
| // - returns false if either number is (or both are) NAN. |
| // - treats really large numbers as almost equal to infinity. |
| // - thinks +0.0 and -0.0 are 0 DLP's apart. |
| bool AlmostEquals(const FloatingPoint& rhs) const { |
| // The IEEE standard says that any comparison operation involving |
| // a NAN must return false. |
| if (is_nan() || rhs.is_nan()) return false; |
| |
| return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) |
| <= kMaxUlps; |
| } |
| |
| private: |
| // The data type used to store the actual floating-point number. |
| union FloatingPointUnion { |
| RawType value_; // The raw floating-point number. |
| Bits bits_; // The bits that represent the number. |
| }; |
| |
| // Converts an integer from the sign-and-magnitude representation to |
| // the biased representation. More precisely, let N be 2 to the |
| // power of (kBitCount - 1), an integer x is represented by the |
| // unsigned number x + N. |
| // |
| // For instance, |
| // |
| // -N + 1 (the most negative number representable using |
| // sign-and-magnitude) is represented by 1; |
| // 0 is represented by N; and |
| // N - 1 (the biggest number representable using |
| // sign-and-magnitude) is represented by 2N - 1. |
| // |
| // Read http://en.wikipedia.org/wiki/Signed_number_representations |
| // for more details on signed number representations. |
| static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
| if (kSignBitMask & sam) { |
| // sam represents a negative number. |
| return ~sam + 1; |
| } else { |
| // sam represents a positive number. |
| return kSignBitMask | sam; |
| } |
| } |
| |
| // Given two numbers in the sign-and-magnitude representation, |
| // returns the distance between them as an unsigned number. |
| static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
| const Bits &sam2) { |
| const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
| const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
| return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
| } |
| |
| FloatingPointUnion u_; |
| }; |
| |
| // We cannot use std::numeric_limits<T>::max() as it clashes with the max() |
| // macro defined by <windows.h>. |
| template <> |
| inline float FloatingPoint<float>::Max() { return FLT_MAX; } |
| template <> |
| inline double FloatingPoint<double>::Max() { return DBL_MAX; } |
| |
| // Typedefs the instances of the FloatingPoint template class that we |
| // care to use. |
| typedef FloatingPoint<float> Float; |
| typedef FloatingPoint<double> Double; |
| |
| // In order to catch the mistake of putting tests that use different |
| // test fixture classes in the same test suite, we need to assign |
| // unique IDs to fixture classes and compare them. The TypeId type is |
| // used to hold such IDs. The user should treat TypeId as an opaque |
| // type: the only operation allowed on TypeId values is to compare |
| // them for equality using the == operator. |
| typedef const void* TypeId; |
| |
| template <typename T> |
| class TypeIdHelper { |
| public: |
| // dummy_ must not have a const type. Otherwise an overly eager |
| // compiler (e.g. MSVC 7.1 & 8.0) may try to merge |
| // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". |
| static bool dummy_; |
| }; |
| |
| template <typename T> |
| bool TypeIdHelper<T>::dummy_ = false; |
| |
| // GetTypeId<T>() returns the ID of type T. Different values will be |
| // returned for different types. Calling the function twice with the |
| // same type argument is guaranteed to return the same ID. |
| template <typename T> |
| TypeId GetTypeId() { |
| // The compiler is required to allocate a different |
| // TypeIdHelper<T>::dummy_ variable for each T used to instantiate |
| // the template. Therefore, the address of dummy_ is guaranteed to |
| // be unique. |
| return &(TypeIdHelper<T>::dummy_); |
| } |
| |
| // Returns the type ID of ::testing::Test. Always call this instead |
| // of GetTypeId< ::testing::Test>() to get the type ID of |
| // ::testing::Test, as the latter may give the wrong result due to a |
| // suspected linker bug when compiling Google Test as a Mac OS X |
| // framework. |
| GTEST_API_ TypeId GetTestTypeId(); |
| |
| // Defines the abstract factory interface that creates instances |
| // of a Test object. |
| class TestFactoryBase { |
| public: |
| virtual ~TestFactoryBase() {} |
| |
| // Creates a test instance to run. The instance is both created and destroyed |
| // within TestInfoImpl::Run() |
| virtual Test* CreateTest() = 0; |
| |
| protected: |
| TestFactoryBase() {} |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); |
| }; |
| |
| // This class provides implementation of TeastFactoryBase interface. |
| // It is used in TEST and TEST_F macros. |
| template <class TestClass> |
| class TestFactoryImpl : public TestFactoryBase { |
| public: |
| Test* CreateTest() override { return new TestClass; } |
| }; |
| |
| #if GTEST_OS_WINDOWS |
| |
| // Predicate-formatters for implementing the HRESULT checking macros |
| // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} |
| // We pass a long instead of HRESULT to avoid causing an |
| // include dependency for the HRESULT type. |
| GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, |
| long hr); // NOLINT |
| GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, |
| long hr); // NOLINT |
| |
| #endif // GTEST_OS_WINDOWS |
| |
| // Types of SetUpTestSuite() and TearDownTestSuite() functions. |
| using SetUpTestSuiteFunc = void (*)(); |
| using TearDownTestSuiteFunc = void (*)(); |
| |
| struct CodeLocation { |
| CodeLocation(const std::string& a_file, int a_line) |
| : file(a_file), line(a_line) {} |
| |
| std::string file; |
| int line; |
| }; |
| |
| // Helper to identify which setup function for TestCase / TestSuite to call. |
| // Only one function is allowed, either TestCase or TestSute but not both. |
| |
| // Utility functions to help SuiteApiResolver |
| using SetUpTearDownSuiteFuncType = void (*)(); |
| |
| inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( |
| SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { |
| return a == def ? nullptr : a; |
| } |
| |
| template <typename T> |
| // Note that SuiteApiResolver inherits from T because |
| // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way |
| // SuiteApiResolver can access them. |
| struct SuiteApiResolver : T { |
| // testing::Test is only forward declared at this point. So we make it a |
| // dependend class for the compiler to be OK with it. |
| using Test = |
| typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; |
| |
| static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite() { |
| SetUpTearDownSuiteFuncType test_case_fp = |
| GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); |
| SetUpTearDownSuiteFuncType test_suite_fp = |
| GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); |
| |
| GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
| << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " |
| "make sure there is only one present "; |
| |
| return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
| } |
| |
| static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite() { |
| SetUpTearDownSuiteFuncType test_case_fp = |
| GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); |
| SetUpTearDownSuiteFuncType test_suite_fp = |
| GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); |
| |
| GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
| << "Test can not provide both TearDownTestSuite and TearDownTestCase," |
| " please make sure there is only one present "; |
| |
| return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
| } |
| }; |
| |
| // Creates a new TestInfo object and registers it with Google Test; |
| // returns the created object. |
| // |
| // Arguments: |
| // |
| // test_suite_name: name of the test suite |
| // name: name of the test |
| // type_param the name of the test's type parameter, or NULL if |
| // this is not a typed or a type-parameterized test. |
| // value_param text representation of the test's value parameter, |
| // or NULL if this is not a type-parameterized test. |
| // code_location: code location where the test is defined |
| // fixture_class_id: ID of the test fixture class |
| // set_up_tc: pointer to the function that sets up the test suite |
| // tear_down_tc: pointer to the function that tears down the test suite |
| // factory: pointer to the factory that creates a test object. |
| // The newly created TestInfo instance will assume |
| // ownership of the factory object. |
| GTEST_API_ TestInfo* MakeAndRegisterTestInfo( |
| const char* test_suite_name, const char* name, const char* type_param, |
| const char* value_param, CodeLocation code_location, |
| TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, |
| TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); |
| |
| // If *pstr starts with the given prefix, modifies *pstr to be right |
| // past the prefix and returns true; otherwise leaves *pstr unchanged |
| // and returns false. None of pstr, *pstr, and prefix can be NULL. |
| GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); |
| |
| #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
| /* class A needs to have dll-interface to be used by clients of class B */) |
| |
| // State of the definition of a type-parameterized test suite. |
| class GTEST_API_ TypedTestSuitePState { |
| public: |
| TypedTestSuitePState() : registered_(false) {} |
| |
| // Adds the given test name to defined_test_names_ and return true |
| // if the test suite hasn't been registered; otherwise aborts the |
| // program. |
| bool AddTestName(const char* file, int line, const char* case_name, |
| const char* test_name) { |
| if (registered_) { |
| fprintf(stderr, |
| "%s Test %s must be defined before " |
| "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", |
| FormatFileLocation(file, line).c_str(), test_name, case_name); |
| fflush(stderr); |
| posix::Abort(); |
| } |
| registered_tests_.insert( |
| ::std::make_pair(test_name, CodeLocation(file, line))); |
| return true; |
| } |
| |
| bool TestExists(const std::string& test_name) const { |
| return registered_tests_.count(test_name) > 0; |
| } |
| |
| const CodeLocation& GetCodeLocation(const std::string& test_name) const { |
| RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); |
| GTEST_CHECK_(it != registered_tests_.end()); |
| return it->second; |
| } |
| |
| // Verifies that registered_tests match the test names in |
| // defined_test_names_; returns registered_tests if successful, or |
| // aborts the program otherwise. |
| const char* VerifyRegisteredTestNames( |
| const char* file, int line, const char* registered_tests); |
| |
| private: |
| typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; |
| |
| bool registered_; |
| RegisteredTestsMap registered_tests_; |
| }; |
| |
| // Legacy API is deprecated but still available |
| #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
| using TypedTestCasePState = TypedTestSuitePState; |
| #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
| |
| // Skips to the first non-space char after the first comma in 'str'; |
| // returns NULL if no comma is found in 'str'. |
| inline const char* SkipComma(const char* str) { |
| const char* comma = strchr(str, ','); |
| if (comma == nullptr) { |
| return nullptr; |
| } |
| while (IsSpace(*(++comma))) {} |
| return comma; |
| } |
| |
| // Returns the prefix of 'str' before the first comma in it; returns |
| // the entire string if it contains no comma. |
| inline std::string GetPrefixUntilComma(const char* str) { |
| const char* comma = strchr(str, ','); |
| return comma == nullptr ? str : std::string(str, comma); |
| } |
| |
| // Splits a given string on a given delimiter, populating a given |
| // vector with the fields. |
| void SplitString(const ::std::string& str, char delimiter, |
| ::std::vector< ::std::string>* dest); |
| |
| // The default argument to the template below for the case when the user does |
| // not provide a name generator. |
| struct DefaultNameGenerator { |
| template <typename T> |
| static std::string GetName(int i) { |
| return StreamableToString(i); |
| } |
| }; |
| |
| template <typename Provided = DefaultNameGenerator> |
| struct NameGeneratorSelector { |
| typedef Provided type; |
| }; |
| |
| template <typename NameGenerator> |
| void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {} |
| |
| template <typename NameGenerator, typename Types> |
| void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { |
| result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); |
| GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, |
| i + 1); |
| } |
| |
| template <typename NameGenerator, typename Types> |
| std::vector<std::string> GenerateNames() { |
| std::vector<std::string> result; |
| GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); |
| return result; |
| } |
| |
| // TypeParameterizedTest<Fixture, TestSel, Types>::Register() |
| // registers a list of type-parameterized tests with Google Test. The |
| // return value is insignificant - we just need to return something |
| // such that we can call this function in a namespace scope. |
| // |
| // Implementation note: The GTEST_TEMPLATE_ macro declares a template |
| // template parameter. It's defined in gtest-type-util.h. |
| template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> |
| class TypeParameterizedTest { |
| public: |
| // 'index' is the index of the test in the type list 'Types' |
| // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, |
| // Types). Valid values for 'index' are [0, N - 1] where N is the |
| // length of Types. |
| static bool Register(const char* prefix, const CodeLocation& code_location, |
| const char* case_name, const char* test_names, int index, |
| const std::vector<std::string>& type_names = |
| GenerateNames<DefaultNameGenerator, Types>()) { |
| typedef typename Types::Head Type; |
| typedef Fixture<Type> FixtureClass; |
| typedef typename GTEST_BIND_(TestSel, Type) TestClass; |
| |
| // First, registers the first type-parameterized test in the type |
| // list. |
| MakeAndRegisterTestInfo( |
| (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + |
| "/" + type_names[index]) |
| .c_str(), |
| StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), |
| GetTypeName<Type>().c_str(), |
| nullptr, // No value parameter. |
| code_location, GetTypeId<FixtureClass>(), |
| SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(), |
| SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(), |
| new TestFactoryImpl<TestClass>); |
| |
| // Next, recurses (at compile time) with the tail of the type list. |
| return TypeParameterizedTest<Fixture, TestSel, |
| typename Types::Tail>::Register(prefix, |
| code_location, |
| case_name, |
| test_names, |
| index + 1, |
| type_names); |
| } |
| }; |
| |
| // The base case for the compile time recursion. |
| template <GTEST_TEMPLATE_ Fixture, class TestSel> |
| class TypeParameterizedTest<Fixture, TestSel, Types0> { |
| public: |
| static bool Register(const char* /*prefix*/, const CodeLocation&, |
| const char* /*case_name*/, const char* /*test_names*/, |
| int /*index*/, |
| const std::vector<std::string>& = |
| std::vector<std::string>() /*type_names*/) { |
| return true; |
| } |
| }; |
| |
| // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() |
| // registers *all combinations* of 'Tests' and 'Types' with Google |
| // Test. The return value is insignificant - we just need to return |
| // something such that we can call this function in a namespace scope. |
| template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> |
| class TypeParameterizedTestSuite { |
| public: |
| static bool Register(const char* prefix, CodeLocation code_location, |
| const TypedTestSuitePState* state, const char* case_name, |
| const char* test_names, |
| const std::vector<std::string>& type_names = |
| GenerateNames<DefaultNameGenerator, Types>()) { |
| std::string test_name = StripTrailingSpaces( |
| GetPrefixUntilComma(test_names)); |
| if (!state->TestExists(test_name)) { |
| fprintf(stderr, "Failed to get code location for test %s.%s at %s.", |
| case_name, test_name.c_str(), |
| FormatFileLocation(code_location.file.c_str(), |
| code_location.line).c_str()); |
| fflush(stderr); |
| posix::Abort(); |
| } |
| const CodeLocation& test_location = state->GetCodeLocation(test_name); |
| |
| typedef typename Tests::Head Head; |
| |
| // First, register the first test in 'Test' for each type in 'Types'. |
| TypeParameterizedTest<Fixture, Head, Types>::Register( |
| prefix, test_location, case_name, test_names, 0, type_names); |
| |
| // Next, recurses (at compile time) with the tail of the test list. |
| return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, |
| Types>::Register(prefix, code_location, |
| state, case_name, |
| SkipComma(test_names), |
| type_names); |
| } |
| }; |
| |
| // The base case for the compile time recursion. |
| template <GTEST_TEMPLATE_ Fixture, typename Types> |
| class TypeParameterizedTestSuite<Fixture, Templates0, Types> { |
| public: |
| static bool Register(const char* /*prefix*/, const CodeLocation&, |
| const TypedTestSuitePState* /*state*/, |
| const char* /*case_name*/, const char* /*test_names*/, |
| const std::vector<std::string>& = |
| std::vector<std::string>() /*type_names*/) { |
| return true; |
| } |
| }; |
| |
| #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
| |
| // Returns the current OS stack trace as an std::string. |
| // |
| // The maximum number of stack frames to be included is specified by |
| // the gtest_stack_trace_depth flag. The skip_count parameter |
| // specifies the number of top frames to be skipped, which doesn't |
| // count against the number of frames to be included. |
| // |
| // For example, if Foo() calls Bar(), which in turn calls |
| // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in |
| // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. |
| GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( |
| UnitTest* unit_test, int skip_count); |
| |
| // Helpers for suppressing warnings on unreachable code or constant |
| // condition. |
| |
| // Always returns true. |
| GTEST_API_ bool AlwaysTrue(); |
| |
| // Always returns false. |
| inline bool AlwaysFalse() { return !AlwaysTrue(); } |
| |
| // Helper for suppressing false warning from Clang on a const char* |
| // variable declared in a conditional expression always being NULL in |
| // the else branch. |
| struct GTEST_API_ ConstCharPtr { |
| ConstCharPtr(const char* str) : value(str) {} |
| operator bool() const { return true; } |
| const char* value; |
| }; |
| |
| // A simple Linear Congruential Generator for generating random |
| // numbers with a uniform distribution. Unlike rand() and srand(), it |
| // doesn't use global state (and therefore can't interfere with user |
| // code). Unlike rand_r(), it's portable. An LCG isn't very random, |
| // but it's good enough for our purposes. |
| class GTEST_API_ Random { |
| public: |
| static const UInt32 kMaxRange = 1u << 31; |
| |
| explicit Random(UInt32 seed) : state_(seed) {} |
| |
| void Reseed(UInt32 seed) { state_ = seed; } |
| |
| // Generates a random number from [0, range). Crashes if 'range' is |
| // 0 or greater than kMaxRange. |
| UInt32 Generate(UInt32 range); |
| |
| private: |
| UInt32 state_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); |
| }; |
| |
| // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a |
| // compiler error iff T1 and T2 are different types. |
| template <typename T1, typename T2> |
| struct CompileAssertTypesEqual; |
| |
| template <typename T> |
| struct CompileAssertTypesEqual<T, T> { |
| }; |
| |
| // Removes the reference from a type if it is a reference type, |
| // otherwise leaves it unchanged. This is the same as |
| // tr1::remove_reference, which is not widely available yet. |
| template <typename T> |
| struct RemoveReference { typedef T type; }; // NOLINT |
| template <typename T> |
| struct RemoveReference<T&> { typedef T type; }; // NOLINT |
| |
| // A handy wrapper around RemoveReference that works when the argument |
| // T depends on template parameters. |
| #define GTEST_REMOVE_REFERENCE_(T) \ |
| typename ::testing::internal::RemoveReference<T>::type |
| |
| // Removes const from a type if it is a const type, otherwise leaves |
| // it unchanged. This is the same as tr1::remove_const, which is not |
| // widely available yet. |
| template <typename T> |
| struct RemoveConst { typedef T type; }; // NOLINT |
| template <typename T> |
| struct RemoveConst<const T> { typedef T type; }; // NOLINT |
| |
| // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above |
| // definition to fail to remove the const in 'const int[3]' and 'const |
| // char[3][4]'. The following specialization works around the bug. |
| template <typename T, size_t N> |
| struct RemoveConst<const T[N]> { |
| typedef typename RemoveConst<T>::type type[N]; |
| }; |
| |
| // A handy wrapper around RemoveConst that works when the argument |
| // T depends on template parameters. |
| #define GTEST_REMOVE_CONST_(T) \ |
| typename ::testing::internal::RemoveConst<T>::type |
| |
| // Turns const U&, U&, const U, and U all into U. |
| #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ |
| GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) |
| |
| // IsAProtocolMessage<T>::value is a compile-time bool constant that's |
| // true iff T is type proto2::Message or a subclass of it. |
| template <typename T> |
| struct IsAProtocolMessage |
| : public bool_constant< |
| std::is_convertible<const T*, const ::proto2::Message*>::value> { |
| }; |
| |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an |
| // STL-style container class, the first overload of IsContainerTest |
| // will be viable (since both C::iterator* and C::const_iterator* are |
| // valid types and NULL can be implicitly converted to them). It will |
| // be picked over the second overload as 'int' is a perfect match for |
| // the type of argument 0. If C::iterator or C::const_iterator is not |
| // a valid type, the first overload is not viable, and the second |
| // overload will be picked. Therefore, we can determine whether C is |
| // a container class by checking the type of IsContainerTest<C>(0). |
| // The value of the expression is insignificant. |
| // |
| // In C++11 mode we check the existence of a const_iterator and that an |
| // iterator is properly implemented for the container. |
| // |
| // For pre-C++11 that we look for both C::iterator and C::const_iterator. |
| // The reason is that C++ injects the name of a class as a member of the |
| // class itself (e.g. you can refer to class iterator as either |
| // 'iterator' or 'iterator::iterator'). If we look for C::iterator |
| // only, for example, we would mistakenly think that a class named |
| // iterator is an STL container. |
| // |
| // Also note that the simpler approach of overloading |
| // IsContainerTest(typename C::const_iterator*) and |
| // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. |
| typedef int IsContainer; |
| template <class C, |
| class Iterator = decltype(::std::declval<const C&>().begin()), |
| class = decltype(::std::declval<const C&>().end()), |
| class = decltype(++::std::declval<Iterator&>()), |
| class = decltype(*::std::declval<Iterator>()), |
| class = typename C::const_iterator> |
| IsContainer IsContainerTest(int /* dummy */) { |
| return 0; |
| } |
| |
| typedef char IsNotContainer; |
| template <class C> |
| IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } |
| |
| // Trait to detect whether a type T is a hash table. |
| // The heuristic used is that the type contains an inner type `hasher` and does |
| // not contain an inner type `reverse_iterator`. |
| // If the container is iterable in reverse, then order might actually matter. |
| template <typename T> |
| struct IsHashTable { |
| private: |
| template <typename U> |
| static char test(typename U::hasher*, typename U::reverse_iterator*); |
| template <typename U> |
| static int test(typename U::hasher*, ...); |
| template <typename U> |
| static char test(...); |
| |
| public: |
| static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); |
| }; |
| |
| template <typename T> |
| const bool IsHashTable<T>::value; |
| |
| template <typename C, |
| bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> |
| struct IsRecursiveContainerImpl; |
| |
| template <typename C> |
| struct IsRecursiveContainerImpl<C, false> : public false_type {}; |
| |
| // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to |
| // obey the same inconsistencies as the IsContainerTest, namely check if |
| // something is a container is relying on only const_iterator in C++11 and |
| // is relying on both const_iterator and iterator otherwise |
| template <typename C> |
| struct IsRecursiveContainerImpl<C, true> { |
| using value_type = decltype(*std::declval<typename C::const_iterator>()); |
| using type = |
| is_same<typename std::remove_const< |
| typename std::remove_reference<value_type>::type>::type, |
| C>; |
| }; |
| |
| // IsRecursiveContainer<Type> is a unary compile-time predicate that |
| // evaluates whether C is a recursive container type. A recursive container |
| // type is a container type whose value_type is equal to the container type |
| // itself. An example for a recursive container type is |
| // boost::filesystem::path, whose iterator has a value_type that is equal to |
| // boost::filesystem::path. |
| template <typename C> |
| struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; |
| |
| // EnableIf<condition>::type is void when 'Cond' is true, and |
| // undefined when 'Cond' is false. To use SFINAE to make a function |
| // overload only apply when a particular expression is true, add |
| // "typename EnableIf<expression>::type* = 0" as the last parameter. |
| template<bool> struct EnableIf; |
| template<> struct EnableIf<true> { typedef void type; }; // NOLINT |
| |
| // Utilities for native arrays. |
| |
| // ArrayEq() compares two k-dimensional native arrays using the |
| // elements' operator==, where k can be any integer >= 0. When k is |
| // 0, ArrayEq() degenerates into comparing a single pair of values. |
| |
| template <typename T, typename U> |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
| |
| // This generic version is used when k is 0. |
| template <typename T, typename U> |
| inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } |
| |
| // This overload is used when k >= 1. |
| template <typename T, typename U, size_t N> |
| inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { |
| return internal::ArrayEq(lhs, N, rhs); |
| } |
| |
| // This helper reduces code bloat. If we instead put its logic inside |
| // the previous ArrayEq() function, arrays with different sizes would |
| // lead to different copies of the template code. |
| template <typename T, typename U> |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
| for (size_t i = 0; i != size; i++) { |
| if (!internal::ArrayEq(lhs[i], rhs[i])) |
| return false; |
| } |
| return true; |
| } |
| |
| // Finds the first element in the iterator range [begin, end) that |
| // equals elem. Element may be a native array type itself. |
| template <typename Iter, typename Element> |
| Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
| for (Iter it = begin; it != end; ++it) { |
| if (internal::ArrayEq(*it, elem)) |
| return it; |
| } |
| return end; |
| } |
| |
| // CopyArray() copies a k-dimensional native array using the elements' |
| // operator=, where k can be any integer >= 0. When k is 0, |
| // CopyArray() degenerates into copying a single value. |
| |
| template <typename T, typename U> |
| void CopyArray(const T* from, size_t size, U* to); |
| |
| // This generic version is used when k is 0. |
| template <typename T, typename U> |
| inline void CopyArray(const T& from, U* to) { *to = from; } |
| |
| // This overload is used when k >= 1. |
| template <typename T, typename U, size_t N> |
| inline void CopyArray(const T(&from)[N], U(*to)[N]) { |
| internal::CopyArray(from, N, *to); |
| } |
| |
| // This helper reduces code bloat. If we instead put its logic inside |
| // the previous CopyArray() function, arrays with different sizes |
| // would lead to different copies of the template code. |
| template <typename T, typename U> |
| void CopyArray(const T* from, size_t size, U* to) { |
| for (size_t i = 0; i != size; i++) { |
| internal::CopyArray(from[i], to + i); |
| } |
| } |
| |
| // The relation between an NativeArray object (see below) and the |
| // native array it represents. |
| // We use 2 different structs to allow non-copyable types to be used, as long |
| // as RelationToSourceReference() is passed. |
| struct RelationToSourceReference {}; |
| struct RelationToSourceCopy {}; |
| |
| // Adapts a native array to a read-only STL-style container. Instead |
| // of the complete STL container concept, this adaptor only implements |
| // members useful for Google Mock's container matchers. New members |
| // should be added as needed. To simplify the implementation, we only |
| // support Element being a raw type (i.e. having no top-level const or |
| // reference modifier). It's the client's responsibility to satisfy |
| // this requirement. Element can be an array type itself (hence |
| // multi-dimensional arrays are supported). |
| template <typename Element> |
| class NativeArray { |
| public: |
| // STL-style container typedefs. |
| typedef Element value_type; |
| typedef Element* iterator; |
| typedef const Element* const_iterator; |
| |
| // Constructs from a native array. References the source. |
| NativeArray(const Element* array, size_t count, RelationToSourceReference) { |
| InitRef(array, count); |
| } |
| |
| // Constructs from a native array. Copies the source. |
| NativeArray(const Element* array, size_t count, RelationToSourceCopy) { |
| InitCopy(array, count); |
| } |
| |
| // Copy constructor. |
| NativeArray(const NativeArray& rhs) { |
| (this->*rhs.clone_)(rhs.array_, rhs.size_); |
| } |
| |
| ~NativeArray() { |
| if (clone_ != &NativeArray::InitRef) |
| delete[] array_; |
| } |
| |
| // STL-style container methods. |
| size_t size() const { return size_; } |
| const_iterator begin() const { return array_; } |
| const_iterator end() const { return array_ + size_; } |
| bool operator==(const NativeArray& rhs) const { |
| return size() == rhs.size() && |
| ArrayEq(begin(), size(), rhs.begin()); |
| } |
| |
| private: |
| enum { |
| kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper< |
| Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value |
| }; |
| |
| // Initializes this object with a copy of the input. |
| void InitCopy(const Element* array, size_t a_size) { |
| Element* const copy = new Element[a_size]; |
| CopyArray(array, a_size, copy); |
| array_ = copy; |
| size_ = a_size; |
| clone_ = &NativeArray::InitCopy; |
| } |
| |
| // Initializes this object with a reference of the input. |
| void InitRef(const Element* array, size_t a_size) { |
| array_ = array; |
| size_ = a_size; |
| clone_ = &NativeArray::InitRef; |
| } |
| |
| const Element* array_; |
| size_t size_; |
| void (NativeArray::*clone_)(const Element*, size_t); |
| |
| GTEST_DISALLOW_ASSIGN_(NativeArray); |
| }; |
| |
| // Backport of std::index_sequence. |
| template <size_t... Is> |
| struct IndexSequence { |
| using type = IndexSequence; |
| }; |
| |
| // Double the IndexSequence, and one if plus_one is true. |
| template <bool plus_one, typename T, size_t sizeofT> |
| struct DoubleSequence; |
| template <size_t... I, size_t sizeofT> |
| struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { |
| using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; |
| }; |
| template <size_t... I, size_t sizeofT> |
| struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { |
| using type = IndexSequence<I..., (sizeofT + I)...>; |
| }; |
| |
| // Backport of std::make_index_sequence. |
| // It uses O(ln(N)) instantiation depth. |
| template <size_t N> |
| struct MakeIndexSequence |
| : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type, |
| N / 2>::type {}; |
| |
| template <> |
| struct MakeIndexSequence<0> : IndexSequence<> {}; |
| |
| // FIXME: This implementation of ElemFromList is O(1) in instantiation depth, |
| // but it is O(N^2) in total instantiations. Not sure if this is the best |
| // tradeoff, as it will make it somewhat slow to compile. |
| template <typename T, size_t, size_t> |
| struct ElemFromListImpl {}; |
| |
| template <typename T, size_t I> |
| struct ElemFromListImpl<T, I, I> { |
| using type = T; |
| }; |
| |
| // Get the Nth element from T... |
| // It uses O(1) instantiation depth. |
| template <size_t N, typename I, typename... T> |
| struct ElemFromList; |
| |
| template <size_t N, size_t... I, typename... T> |
| struct ElemFromList<N, IndexSequence<I...>, T...> |
| : ElemFromListImpl<T, N, I>... {}; |
| |
| template <typename... T> |
| class FlatTuple; |
| |
| template <typename Derived, size_t I> |
| struct FlatTupleElemBase; |
| |
| template <typename... T, size_t I> |
| struct FlatTupleElemBase<FlatTuple<T...>, I> { |
| using value_type = |
| typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type, |
| T...>::type; |
| FlatTupleElemBase() = default; |
| explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {} |
| value_type value; |
| }; |
| |
| template <typename Derived, typename Idx> |
| struct FlatTupleBase; |
| |
| template <size_t... Idx, typename... T> |
| struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> |
| : FlatTupleElemBase<FlatTuple<T...>, Idx>... { |
| using Indices = IndexSequence<Idx...>; |
| FlatTupleBase() = default; |
| explicit FlatTupleBase(T... t) |
| : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {} |
| }; |
| |
| // Analog to std::tuple but with different tradeoffs. |
| // This class minimizes the template instantiation depth, thus allowing more |
| // elements that std::tuple would. std::tuple has been seen to require an |
| // instantiation depth of more than 10x the number of elements in some |
| // implementations. |
| // FlatTuple and ElemFromList are not recursive and have a fixed depth |
| // regardless of T... |
| // MakeIndexSequence, on the other hand, it is recursive but with an |
| // instantiation depth of O(ln(N)). |
| template <typename... T> |
| class FlatTuple |
| : private FlatTupleBase<FlatTuple<T...>, |
| typename MakeIndexSequence<sizeof...(T)>::type> { |
| using Indices = typename FlatTuple::FlatTupleBase::Indices; |
| |
| public: |
| FlatTuple() = default; |
| explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {} |
| |
| template <size_t I> |
| const typename ElemFromList<I, Indices, T...>::type& Get() const { |
| return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
| } |
| |
| template <size_t I> |
| typename ElemFromList<I, Indices, T...>::type& Get() { |
| return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
| } |
| }; |
| |
| // Utility functions to be called with static_assert to induce deprecation |
| // warnings. |
| GTEST_INTERNAL_DEPRECATED( |
| "INSTANTIATE_TEST_CASE_P is deprecated, please use " |
| "INSTANTIATE_TEST_SUITE_P") |
| constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } |
| |
| GTEST_INTERNAL_DEPRECATED( |
| "TYPED_TEST_CASE_P is deprecated, please use " |
| "TYPED_TEST_SUITE_P") |
| constexpr bool TypedTestCase_P_IsDeprecated() { return true; } |
| |
| GTEST_INTERNAL_DEPRECATED( |
| "TYPED_TEST_CASE is deprecated, please use " |
| "TYPED_TEST_SUITE") |
| constexpr bool TypedTestCaseIsDeprecated() { return true; } |
| |
| GTEST_INTERNAL_DEPRECATED( |
| "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " |
| "REGISTER_TYPED_TEST_SUITE_P") |
| constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } |
| |
| GTEST_INTERNAL_DEPRECATED( |
| "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " |
| "INSTANTIATE_TYPED_TEST_SUITE_P") |
| constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } |
| |
| } // namespace internal |
| } // namespace testing |
| |
| #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ |
| ::testing::internal::AssertHelper(result_type, file, line, message) \ |
| = ::testing::Message() |
| |
| #define GTEST_MESSAGE_(message, result_type) \ |
| GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) |
| |
| #define GTEST_FATAL_FAILURE_(message) \ |
| return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) |
| |
| #define GTEST_NONFATAL_FAILURE_(message) \ |
| GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) |
| |
| #define GTEST_SUCCESS_(message) \ |
| GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) |
| |
| #define GTEST_SKIP_(message) \ |
| return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) |
| |
| // Suppress MSVC warning 4072 (unreachable code) for the code following |
| // statement if it returns or throws (or doesn't return or throw in some |
| // situations). |
| #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ |
| if (::testing::internal::AlwaysTrue()) { statement; } |
| |
| #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ |
| GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
| if (::testing::internal::ConstCharPtr gtest_msg = "") { \ |
| bool gtest_caught_expected = false; \ |
| try { \ |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
| } \ |
| catch (expected_exception const&) { \ |
| gtest_caught_expected = true; \ |
| } \ |
| catch (...) { \ |
| gtest_msg.value = \ |
| "Expected: " #statement " throws an exception of type " \ |
| #expected_exception ".\n Actual: it throws a different type."; \ |
| goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
| } \ |
| if (!gtest_caught_expected) { \ |
| gtest_msg.value = \ |
| "Expected: " #statement " throws an exception of type " \ |
| #expected_exception ".\n Actual: it throws nothing."; \ |
| goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
| } \ |
| } else \ |
| GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ |
| fail(gtest_msg.value) |
| |
| #define GTEST_TEST_NO_THROW_(statement, fail) \ |
| GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
| if (::testing::internal::AlwaysTrue()) { \ |
| try { \ |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
| } \ |
| catch (...) { \ |
| goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
| } \ |
| } else \ |
| GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ |
| fail("Expected: " #statement " doesn't throw an exception.\n" \ |
| " Actual: it throws.") |
| |
| #define GTEST_TEST_ANY_THROW_(statement, fail) \ |
| GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
| if (::testing::internal::AlwaysTrue()) { \ |
| bool gtest_caught_any = false; \ |
| try { \ |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
| } \ |
| catch (...) { \ |
| gtest_caught_any = true; \ |
| } \ |
| if (!gtest_caught_any) { \ |
| goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ |
| } \ |
| } else \ |
| GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ |
| fail("Expected: " #statement " throws an exception.\n" \ |
| " Actual: it doesn't.") |
| |
| |
| // Implements Boolean test assertions such as EXPECT_TRUE. expression can be |
| // either a boolean expression or an AssertionResult. text is a textual |
| // represenation of expression as it was passed into the EXPECT_TRUE. |
| #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ |
| GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
| if (const ::testing::AssertionResult gtest_ar_ = \ |
| ::testing::AssertionResult(expression)) \ |
| ; \ |
| else \ |
| fail(::testing::internal::GetBoolAssertionFailureMessage(\ |
| gtest_ar_, text, #actual, #expected).c_str()) |
| |
| #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ |
| GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
| if (::testing::internal::AlwaysTrue()) { \ |
| ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
| if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ |
| goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ |
| } \ |
| } else \ |
| GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ |
| fail("Expected: " #statement " doesn't generate new fatal " \ |
| "failures in the current thread.\n" \ |
| " Actual: it does.") |
| |
| // Expands to the name of the class that implements the given test. |
| #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
| test_suite_name##_##test_name##_Test |
| |
| // Helper macro for defining tests. |
| #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ |
| class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
| : public parent_class { \ |
| public: \ |
| GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ |
| \ |
| private: \ |
| virtual void TestBody(); \ |
| static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
| test_name)); \ |
| }; \ |
| \ |
| ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
| test_name)::test_info_ = \ |
| ::testing::internal::MakeAndRegisterTestInfo( \ |
| #test_suite_name, #test_name, nullptr, nullptr, \ |
| ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ |
| ::testing::internal::SuiteApiResolver< \ |
| parent_class>::GetSetUpCaseOrSuite(), \ |
| ::testing::internal::SuiteApiResolver< \ |
| parent_class>::GetTearDownCaseOrSuite(), \ |
| new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ |
| test_suite_name, test_name)>); \ |
| void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() |
| |
| #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |