| # Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. |
| # |
| # Permission to use, copy, modify, and/or distribute this software for any |
| # purpose with or without fee is hereby granted, provided that the above |
| # copyright notice and this permission notice appear in all copies. |
| # |
| # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| # SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| # OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| # |
| # |
| # This code is based on p256_beeu-x86_64-asm.pl (which is based on BN_mod_inverse_odd). |
| # |
| |
| # The first two arguments should always be the flavour and output file path. |
| if ($#ARGV < 1) { die "Not enough arguments provided. |
| Two arguments are necessary: the flavour and the output file path."; } |
| |
| $flavour = shift; |
| $output = shift; |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or |
| die "can't locate arm-xlate.pl"; |
| |
| open OUT,"| \"$^X\" $xlate $flavour $output"; |
| *STDOUT=*OUT; |
| ############################################################################# |
| # extern int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS], |
| # BN_ULONG a[P256_LIMBS], |
| # BN_ULONG n[P256_LIMBS]); |
| # |
| # (Binary Extended GCD (Euclidean) Algorithm. |
| # See A. Menezes, P. vanOorschot, and S. Vanstone's Handbook of Applied Cryptography, |
| # Chapter 14, Algorithm 14.61 and Note 14.64 |
| # http://cacr.uwaterloo.ca/hac/about/chap14.pdf) |
| |
| # Assumption 1: n is odd for the BEEU |
| # Assumption 2: 1 < a < n < 2^256 |
| |
| # Details |
| # The inverse of x modulo y can be calculated using Alg. 14.61, where "a" would be that inverse. |
| # In other words, |
| # ax == 1 (mod y) (where the symbol “==“ denotes ”congruent“) |
| # a == x^{-1} (mod y) |
| # |
| # It can be shown that throughout all the iterations of the algorithm, the following holds: |
| # u = Ax + By |
| # v = Cx + Dy |
| # The values B and D are not of interest in this case, so they need not be computed by the algorithm. |
| # This means the following congruences hold through the iterations of the algorithm. |
| # Ax == u (mod y) |
| # Cx == v (mod y) |
| |
| # Now we will modify the notation to match that of BN_mod_inverse_odd() |
| # on which beeu_mod_inverse_vartime() in `p256_beeu-x86_64-asm` is based. |
| # In those functions: |
| # x, y -> a, n |
| # u, v -> B, A |
| # A, C -> X, Y’, where Y’ = -Y |
| # Hence, the following holds throughout the algorithm iterations |
| # Xa == B (mod n) |
| # -Ya == A (mod n) |
| # |
| # Same algorithm in Python: |
| # def beeu(a, n): |
| # X = 1 |
| # Y = 0 |
| # B = a |
| # A = n |
| # while (B != 0): |
| # while (B % 2) == 0: |
| # B >>= 1 |
| # if (X % 2) == 1: |
| # X = X + n |
| # X >>= 1 |
| # while (A % 2) == 0: |
| # A >>= 1 |
| # if (Y % 2) == 1: |
| # Y = Y + n |
| # Y >>= 1 |
| # if (B >= A): |
| # B = B - A |
| # X = X + Y |
| # else: |
| # A = A - B |
| # Y = Y + X |
| # if (A != 1): |
| # # error |
| # return 0 |
| # else: |
| # while (Y > n): |
| # Y = Y - n |
| # Y = n - Y |
| # return Y |
| |
| |
| # For the internal variables, |
| # x0-x2, x30 are used to hold the modulus n. The input parameters passed in |
| # x1,x2 are copied first before corrupting them. x0 (out) is stored on the stack. |
| # x3-x7 are used for parameters, which is not the case in this function, so they are corruptible |
| # x8 is corruptible here |
| # (the function doesn't return a struct, hence x8 doesn't contain a passed-in address |
| # for that struct). |
| # x9-x15 are corruptible registers |
| # x19-x28 are callee-saved registers |
| |
| # X/Y will hold the inverse parameter |
| # Assumption: a,n,X,Y < 2^(256) |
| # Initially, X := 1, Y := 0 |
| # A := n, B := a |
| |
| # Function parameters (as per the Procedure Call Standard) |
| my($out, $a_in, $n_in)=map("x$_",(0..2)); |
| # Internal variables |
| my($n0, $n1, $n2, $n3)=map("x$_",(0..2,30)); |
| my($x0, $x1, $x2, $x3, $x4)=map("x$_",(3..7)); |
| my($y0, $y1, $y2, $y3, $y4)=map("x$_",(8..12)); |
| my($shift)=("x13"); |
| my($t0, $t1, $t2, $t3)=map("x$_",(14,15,19,20)); |
| my($a0, $a1, $a2, $a3)=map("x$_",(21..24)); |
| my($b0, $b1, $b2, $b3)=map("x$_",(25..28)); |
| |
| # if B == 0, jump to end of loop |
| sub TEST_B_ZERO { |
| return <<___; |
| orr $t0, $b0, $b1 |
| orr $t0, $t0, $b2 |
| |
| // reverse the bit order of $b0. This is needed for clz after this macro |
| rbit $t1, $b0 |
| |
| orr $t0, $t0, $b3 |
| cbz $t0,.Lbeeu_loop_end |
| ___ |
| } |
| |
| # Shift right by 1 bit, adding the modulus first if the variable is odd |
| # if least_sig_bit(var0) == 0, |
| # goto shift1_<ctr> |
| # else |
| # add n and goto shift1_<ctr> |
| # Prerequisite: t0 = 0 |
| $g_next_label = 0; |
| sub SHIFT1 { |
| my ($var0, $var1, $var2, $var3, $var4) = @_; |
| my $label = ".Lshift1_${g_next_label}"; |
| $g_next_label++; |
| return <<___; |
| tbz $var0, #0, $label |
| adds $var0, $var0, $n0 |
| adcs $var1, $var1, $n1 |
| adcs $var2, $var2, $n2 |
| adcs $var3, $var3, $n3 |
| adc $var4, $var4, $t0 |
| $label: |
| // var0 := [var1|var0]<64..1>; |
| // i.e. concatenate var1 and var0, |
| // extract bits <64..1> from the resulting 128-bit value |
| // and put them in var0 |
| extr $var0, $var1, $var0, #1 |
| extr $var1, $var2, $var1, #1 |
| extr $var2, $var3, $var2, #1 |
| extr $var3, $var4, $var3, #1 |
| lsr $var4, $var4, #1 |
| ___ |
| } |
| |
| # compilation by clang 10.0.0 with -O2/-O3 of |
| # a[0] = (a[0] >> count) | (a[1] << (64-count)); |
| # a[1] = (a[1] >> count) | (a[2] << (64-count)); |
| # a[2] = (a[2] >> count) | (a[3] << (64-count)); |
| # a[3] >>= count; |
| # Note: EXTR instruction used in SHIFT1 is similar to x86_64's SHRDQ |
| # except that the second source operand of EXTR is only immediate; |
| # that's why it cannot be used here where $shift is a variable |
| # |
| # In the following, |
| # t0 := 0 - shift |
| # |
| # then var0, for example, will be shifted right as follows: |
| # var0 := (var0 >> (uint(shift) mod 64)) | (var1 << (uint(t0) mod 64)) |
| # "uint() mod 64" is from the definition of LSL and LSR instructions. |
| # |
| # What matters here is the order of instructions relative to certain other |
| # instructions, i.e. |
| # - lsr and lsl must precede orr of the corresponding registers. |
| # - lsl must preced the lsr of the same register afterwards. |
| # The chosen order of the instructions overall is to try and maximize |
| # the pipeline usage. |
| sub SHIFT256 { |
| my ($var0, $var1, $var2, $var3) = @_; |
| return <<___; |
| neg $t0, $shift |
| lsr $var0, $var0, $shift |
| lsl $t1, $var1, $t0 |
| |
| lsr $var1, $var1, $shift |
| lsl $t2, $var2, $t0 |
| |
| orr $var0, $var0, $t1 |
| |
| lsr $var2, $var2, $shift |
| lsl $t3, $var3, $t0 |
| |
| orr $var1, $var1, $t2 |
| |
| lsr $var3, $var3, $shift |
| |
| orr $var2, $var2, $t3 |
| ___ |
| } |
| |
| $code.=<<___; |
| #include "openssl/arm_arch.h" |
| |
| .text |
| .globl beeu_mod_inverse_vartime |
| .type beeu_mod_inverse_vartime, %function |
| .align 4 |
| beeu_mod_inverse_vartime: |
| // Reserve enough space for 14 8-byte registers on the stack |
| // in the first stp call for x29, x30. |
| // Then store the remaining callee-saved registers. |
| // |
| // | x29 | x30 | x19 | x20 | ... | x27 | x28 | x0 | x2 | |
| // ^ ^ |
| // sp <------------------- 112 bytes ----------------> old sp |
| // x29 (FP) |
| // |
| AARCH64_SIGN_LINK_REGISTER |
| stp x29,x30,[sp,#-112]! |
| add x29,sp,#0 |
| stp x19,x20,[sp,#16] |
| stp x21,x22,[sp,#32] |
| stp x23,x24,[sp,#48] |
| stp x25,x26,[sp,#64] |
| stp x27,x28,[sp,#80] |
| stp x0,x2,[sp,#96] |
| |
| // B = b3..b0 := a |
| ldp $b0,$b1,[$a_in] |
| ldp $b2,$b3,[$a_in,#16] |
| |
| // n3..n0 := n |
| // Note: the value of input params are changed in the following. |
| ldp $n0,$n1,[$n_in] |
| ldp $n2,$n3,[$n_in,#16] |
| |
| // A = a3..a0 := n |
| mov $a0, $n0 |
| mov $a1, $n1 |
| mov $a2, $n2 |
| mov $a3, $n3 |
| |
| // X = x4..x0 := 1 |
| mov $x0, #1 |
| eor $x1, $x1, $x1 |
| eor $x2, $x2, $x2 |
| eor $x3, $x3, $x3 |
| eor $x4, $x4, $x4 |
| |
| // Y = y4..y0 := 0 |
| eor $y0, $y0, $y0 |
| eor $y1, $y1, $y1 |
| eor $y2, $y2, $y2 |
| eor $y3, $y3, $y3 |
| eor $y4, $y4, $y4 |
| |
| .Lbeeu_loop: |
| // if B == 0, jump to .Lbeeu_loop_end |
| ${\TEST_B_ZERO} |
| |
| // 0 < B < |n|, |
| // 0 < A <= |n|, |
| // (1) X*a == B (mod |n|), |
| // (2) (-1)*Y*a == A (mod |n|) |
| |
| // Now divide B by the maximum possible power of two in the |
| // integers, and divide X by the same value mod |n|. |
| // When we're done, (1) still holds. |
| |
| // shift := number of trailing 0s in $b0 |
| // ( = number of leading 0s in $t1; see the "rbit" instruction in TEST_B_ZERO) |
| clz $shift, $t1 |
| |
| // If there is no shift, goto shift_A_Y |
| cbz $shift, .Lbeeu_shift_A_Y |
| |
| // Shift B right by "$shift" bits |
| ${\SHIFT256($b0, $b1, $b2, $b3)} |
| |
| // Shift X right by "$shift" bits, adding n whenever X becomes odd. |
| // $shift--; |
| // $t0 := 0; needed in the addition to the most significant word in SHIFT1 |
| eor $t0, $t0, $t0 |
| .Lbeeu_shift_loop_X: |
| ${\SHIFT1($x0, $x1, $x2, $x3, $x4)} |
| subs $shift, $shift, #1 |
| bne .Lbeeu_shift_loop_X |
| |
| // Note: the steps above perform the same sequence as in p256_beeu-x86_64-asm.pl |
| // with the following differences: |
| // - "$shift" is set directly to the number of trailing 0s in B |
| // (using rbit and clz instructions) |
| // - The loop is only used to call SHIFT1(X) |
| // and $shift is decreased while executing the X loop. |
| // - SHIFT256(B, $shift) is performed before right-shifting X; they are independent |
| |
| .Lbeeu_shift_A_Y: |
| // Same for A and Y. |
| // Afterwards, (2) still holds. |
| // Reverse the bit order of $a0 |
| // $shift := number of trailing 0s in $a0 (= number of leading 0s in $t1) |
| rbit $t1, $a0 |
| clz $shift, $t1 |
| |
| // If there is no shift, goto |B-A|, X+Y update |
| cbz $shift, .Lbeeu_update_B_X_or_A_Y |
| |
| // Shift A right by "$shift" bits |
| ${\SHIFT256($a0, $a1, $a2, $a3)} |
| |
| // Shift Y right by "$shift" bits, adding n whenever Y becomes odd. |
| // $shift--; |
| // $t0 := 0; needed in the addition to the most significant word in SHIFT1 |
| eor $t0, $t0, $t0 |
| .Lbeeu_shift_loop_Y: |
| ${\SHIFT1($y0, $y1, $y2, $y3, $y4)} |
| subs $shift, $shift, #1 |
| bne .Lbeeu_shift_loop_Y |
| |
| .Lbeeu_update_B_X_or_A_Y: |
| // Try T := B - A; if cs, continue with B > A (cs: carry set = no borrow) |
| // Note: this is a case of unsigned arithmetic, where T fits in 4 64-bit words |
| // without taking a sign bit if generated. The lack of a carry would |
| // indicate a negative result. See, for example, |
| // https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes |
| subs $t0, $b0, $a0 |
| sbcs $t1, $b1, $a1 |
| sbcs $t2, $b2, $a2 |
| sbcs $t3, $b3, $a3 |
| bcs .Lbeeu_B_greater_than_A |
| |
| // Else A > B => |
| // A := A - B; Y := Y + X; goto beginning of the loop |
| subs $a0, $a0, $b0 |
| sbcs $a1, $a1, $b1 |
| sbcs $a2, $a2, $b2 |
| sbcs $a3, $a3, $b3 |
| |
| adds $y0, $y0, $x0 |
| adcs $y1, $y1, $x1 |
| adcs $y2, $y2, $x2 |
| adcs $y3, $y3, $x3 |
| adc $y4, $y4, $x4 |
| b .Lbeeu_loop |
| |
| .Lbeeu_B_greater_than_A: |
| // Continue with B > A => |
| // B := B - A; X := X + Y; goto beginning of the loop |
| mov $b0, $t0 |
| mov $b1, $t1 |
| mov $b2, $t2 |
| mov $b3, $t3 |
| |
| adds $x0, $x0, $y0 |
| adcs $x1, $x1, $y1 |
| adcs $x2, $x2, $y2 |
| adcs $x3, $x3, $y3 |
| adc $x4, $x4, $y4 |
| b .Lbeeu_loop |
| |
| .Lbeeu_loop_end: |
| // The Euclid's algorithm loop ends when A == gcd(a,n); |
| // this would be 1, when a and n are co-prime (i.e. do not have a common factor). |
| // Since (-1)*Y*a == A (mod |n|), Y>0 |
| // then out = -Y mod n |
| |
| // Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|) |
| // Is A-1 == 0? |
| // If not, fail. |
| sub $t0, $a0, #1 |
| orr $t0, $t0, $a1 |
| orr $t0, $t0, $a2 |
| orr $t0, $t0, $a3 |
| cbnz $t0, .Lbeeu_err |
| |
| // If Y>n ==> Y:=Y-n |
| .Lbeeu_reduction_loop: |
| // x_i := y_i - n_i (X is no longer needed, use it as temp) |
| // ($t0 = 0 from above) |
| subs $x0, $y0, $n0 |
| sbcs $x1, $y1, $n1 |
| sbcs $x2, $y2, $n2 |
| sbcs $x3, $y3, $n3 |
| sbcs $x4, $y4, $t0 |
| |
| // If result is non-negative (i.e., cs = carry set = no borrow), |
| // y_i := x_i; goto reduce again |
| // else |
| // y_i := y_i; continue |
| csel $y0, $x0, $y0, cs |
| csel $y1, $x1, $y1, cs |
| csel $y2, $x2, $y2, cs |
| csel $y3, $x3, $y3, cs |
| csel $y4, $x4, $y4, cs |
| bcs .Lbeeu_reduction_loop |
| |
| // Now Y < n (Y cannot be equal to n, since the inverse cannot be 0) |
| // out = -Y = n-Y |
| subs $y0, $n0, $y0 |
| sbcs $y1, $n1, $y1 |
| sbcs $y2, $n2, $y2 |
| sbcs $y3, $n3, $y3 |
| |
| // Save Y in output (out (x0) was saved on the stack) |
| ldr x3, [sp,#96] |
| stp $y0, $y1, [x3] |
| stp $y2, $y3, [x3,#16] |
| // return 1 (success) |
| mov x0, #1 |
| b .Lbeeu_finish |
| |
| .Lbeeu_err: |
| // return 0 (error) |
| eor x0, x0, x0 |
| |
| .Lbeeu_finish: |
| // Restore callee-saved registers, except x0, x2 |
| add sp,x29,#0 |
| ldp x19,x20,[sp,#16] |
| ldp x21,x22,[sp,#32] |
| ldp x23,x24,[sp,#48] |
| ldp x25,x26,[sp,#64] |
| ldp x27,x28,[sp,#80] |
| ldp x29,x30,[sp],#112 |
| |
| AARCH64_VALIDATE_LINK_REGISTER |
| ret |
| .size beeu_mod_inverse_vartime,.-beeu_mod_inverse_vartime |
| ___ |
| |
| |
| foreach (split("\n",$code)) { |
| s/\`([^\`]*)\`/eval $1/ge; |
| |
| print $_,"\n"; |
| } |
| close STDOUT or die "error closing STDOUT: $!"; # enforce flush |