blob: e259aeff388abd0a747dd79d69ba05718fd85a93 [file] [log] [blame]
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#
#
# This code is based on p256_beeu-x86_64-asm.pl (which is based on BN_mod_inverse_odd).
#
# The first two arguments should always be the flavour and output file path.
if ($#ARGV < 1) { die "Not enough arguments provided.
Two arguments are necessary: the flavour and the output file path."; }
$flavour = shift;
$output = shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
#############################################################################
# extern int beeu_mod_inverse_vartime(BN_ULONG out[P256_LIMBS],
# BN_ULONG a[P256_LIMBS],
# BN_ULONG n[P256_LIMBS]);
#
# (Binary Extended GCD (Euclidean) Algorithm.
# See A. Menezes, P. vanOorschot, and S. Vanstone's Handbook of Applied Cryptography,
# Chapter 14, Algorithm 14.61 and Note 14.64
# http://cacr.uwaterloo.ca/hac/about/chap14.pdf)
# Assumption 1: n is odd for the BEEU
# Assumption 2: 1 < a < n < 2^256
# Details
# The inverse of x modulo y can be calculated using Alg. 14.61, where "a" would be that inverse.
# In other words,
# ax == 1 (mod y) (where the symbol “==“ denotes ”congruent“)
# a == x^{-1} (mod y)
#
# It can be shown that throughout all the iterations of the algorithm, the following holds:
# u = Ax + By
# v = Cx + Dy
# The values B and D are not of interest in this case, so they need not be computed by the algorithm.
# This means the following congruences hold through the iterations of the algorithm.
# Ax == u (mod y)
# Cx == v (mod y)
# Now we will modify the notation to match that of BN_mod_inverse_odd()
# on which beeu_mod_inverse_vartime() in `p256_beeu-x86_64-asm` is based.
# In those functions:
# x, y -> a, n
# u, v -> B, A
# A, C -> X, Y’, where Y’ = -Y
# Hence, the following holds throughout the algorithm iterations
# Xa == B (mod n)
# -Ya == A (mod n)
#
# Same algorithm in Python:
# def beeu(a, n):
# X = 1
# Y = 0
# B = a
# A = n
# while (B != 0):
# while (B % 2) == 0:
# B >>= 1
# if (X % 2) == 1:
# X = X + n
# X >>= 1
# while (A % 2) == 0:
# A >>= 1
# if (Y % 2) == 1:
# Y = Y + n
# Y >>= 1
# if (B >= A):
# B = B - A
# X = X + Y
# else:
# A = A - B
# Y = Y + X
# if (A != 1):
# # error
# return 0
# else:
# while (Y > n):
# Y = Y - n
# Y = n - Y
# return Y
# For the internal variables,
# x0-x2, x30 are used to hold the modulus n. The input parameters passed in
# x1,x2 are copied first before corrupting them. x0 (out) is stored on the stack.
# x3-x7 are used for parameters, which is not the case in this function, so they are corruptible
# x8 is corruptible here
# (the function doesn't return a struct, hence x8 doesn't contain a passed-in address
# for that struct).
# x9-x15 are corruptible registers
# x19-x28 are callee-saved registers
# X/Y will hold the inverse parameter
# Assumption: a,n,X,Y < 2^(256)
# Initially, X := 1, Y := 0
# A := n, B := a
# Function parameters (as per the Procedure Call Standard)
my($out, $a_in, $n_in)=map("x$_",(0..2));
# Internal variables
my($n0, $n1, $n2, $n3)=map("x$_",(0..2,30));
my($x0, $x1, $x2, $x3, $x4)=map("x$_",(3..7));
my($y0, $y1, $y2, $y3, $y4)=map("x$_",(8..12));
my($shift)=("x13");
my($t0, $t1, $t2, $t3)=map("x$_",(14,15,19,20));
my($a0, $a1, $a2, $a3)=map("x$_",(21..24));
my($b0, $b1, $b2, $b3)=map("x$_",(25..28));
# if B == 0, jump to end of loop
sub TEST_B_ZERO {
return <<___;
orr $t0, $b0, $b1
orr $t0, $t0, $b2
// reverse the bit order of $b0. This is needed for clz after this macro
rbit $t1, $b0
orr $t0, $t0, $b3
cbz $t0,.Lbeeu_loop_end
___
}
# Shift right by 1 bit, adding the modulus first if the variable is odd
# if least_sig_bit(var0) == 0,
# goto shift1_<ctr>
# else
# add n and goto shift1_<ctr>
# Prerequisite: t0 = 0
$g_next_label = 0;
sub SHIFT1 {
my ($var0, $var1, $var2, $var3, $var4) = @_;
my $label = ".Lshift1_${g_next_label}";
$g_next_label++;
return <<___;
tbz $var0, #0, $label
adds $var0, $var0, $n0
adcs $var1, $var1, $n1
adcs $var2, $var2, $n2
adcs $var3, $var3, $n3
adc $var4, $var4, $t0
$label:
// var0 := [var1|var0]<64..1>;
// i.e. concatenate var1 and var0,
// extract bits <64..1> from the resulting 128-bit value
// and put them in var0
extr $var0, $var1, $var0, #1
extr $var1, $var2, $var1, #1
extr $var2, $var3, $var2, #1
extr $var3, $var4, $var3, #1
lsr $var4, $var4, #1
___
}
# compilation by clang 10.0.0 with -O2/-O3 of
# a[0] = (a[0] >> count) | (a[1] << (64-count));
# a[1] = (a[1] >> count) | (a[2] << (64-count));
# a[2] = (a[2] >> count) | (a[3] << (64-count));
# a[3] >>= count;
# Note: EXTR instruction used in SHIFT1 is similar to x86_64's SHRDQ
# except that the second source operand of EXTR is only immediate;
# that's why it cannot be used here where $shift is a variable
#
# In the following,
# t0 := 0 - shift
#
# then var0, for example, will be shifted right as follows:
# var0 := (var0 >> (uint(shift) mod 64)) | (var1 << (uint(t0) mod 64))
# "uint() mod 64" is from the definition of LSL and LSR instructions.
#
# What matters here is the order of instructions relative to certain other
# instructions, i.e.
# - lsr and lsl must precede orr of the corresponding registers.
# - lsl must preced the lsr of the same register afterwards.
# The chosen order of the instructions overall is to try and maximize
# the pipeline usage.
sub SHIFT256 {
my ($var0, $var1, $var2, $var3) = @_;
return <<___;
neg $t0, $shift
lsr $var0, $var0, $shift
lsl $t1, $var1, $t0
lsr $var1, $var1, $shift
lsl $t2, $var2, $t0
orr $var0, $var0, $t1
lsr $var2, $var2, $shift
lsl $t3, $var3, $t0
orr $var1, $var1, $t2
lsr $var3, $var3, $shift
orr $var2, $var2, $t3
___
}
$code.=<<___;
#include "openssl/arm_arch.h"
.text
.globl beeu_mod_inverse_vartime
.type beeu_mod_inverse_vartime, %function
.align 4
beeu_mod_inverse_vartime:
// Reserve enough space for 14 8-byte registers on the stack
// in the first stp call for x29, x30.
// Then store the remaining callee-saved registers.
//
// | x29 | x30 | x19 | x20 | ... | x27 | x28 | x0 | x2 |
// ^ ^
// sp <------------------- 112 bytes ----------------> old sp
// x29 (FP)
//
AARCH64_SIGN_LINK_REGISTER
stp x29,x30,[sp,#-112]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
stp x0,x2,[sp,#96]
// B = b3..b0 := a
ldp $b0,$b1,[$a_in]
ldp $b2,$b3,[$a_in,#16]
// n3..n0 := n
// Note: the value of input params are changed in the following.
ldp $n0,$n1,[$n_in]
ldp $n2,$n3,[$n_in,#16]
// A = a3..a0 := n
mov $a0, $n0
mov $a1, $n1
mov $a2, $n2
mov $a3, $n3
// X = x4..x0 := 1
mov $x0, #1
eor $x1, $x1, $x1
eor $x2, $x2, $x2
eor $x3, $x3, $x3
eor $x4, $x4, $x4
// Y = y4..y0 := 0
eor $y0, $y0, $y0
eor $y1, $y1, $y1
eor $y2, $y2, $y2
eor $y3, $y3, $y3
eor $y4, $y4, $y4
.Lbeeu_loop:
// if B == 0, jump to .Lbeeu_loop_end
${\TEST_B_ZERO}
// 0 < B < |n|,
// 0 < A <= |n|,
// (1) X*a == B (mod |n|),
// (2) (-1)*Y*a == A (mod |n|)
// Now divide B by the maximum possible power of two in the
// integers, and divide X by the same value mod |n|.
// When we're done, (1) still holds.
// shift := number of trailing 0s in $b0
// ( = number of leading 0s in $t1; see the "rbit" instruction in TEST_B_ZERO)
clz $shift, $t1
// If there is no shift, goto shift_A_Y
cbz $shift, .Lbeeu_shift_A_Y
// Shift B right by "$shift" bits
${\SHIFT256($b0, $b1, $b2, $b3)}
// Shift X right by "$shift" bits, adding n whenever X becomes odd.
// $shift--;
// $t0 := 0; needed in the addition to the most significant word in SHIFT1
eor $t0, $t0, $t0
.Lbeeu_shift_loop_X:
${\SHIFT1($x0, $x1, $x2, $x3, $x4)}
subs $shift, $shift, #1
bne .Lbeeu_shift_loop_X
// Note: the steps above perform the same sequence as in p256_beeu-x86_64-asm.pl
// with the following differences:
// - "$shift" is set directly to the number of trailing 0s in B
// (using rbit and clz instructions)
// - The loop is only used to call SHIFT1(X)
// and $shift is decreased while executing the X loop.
// - SHIFT256(B, $shift) is performed before right-shifting X; they are independent
.Lbeeu_shift_A_Y:
// Same for A and Y.
// Afterwards, (2) still holds.
// Reverse the bit order of $a0
// $shift := number of trailing 0s in $a0 (= number of leading 0s in $t1)
rbit $t1, $a0
clz $shift, $t1
// If there is no shift, goto |B-A|, X+Y update
cbz $shift, .Lbeeu_update_B_X_or_A_Y
// Shift A right by "$shift" bits
${\SHIFT256($a0, $a1, $a2, $a3)}
// Shift Y right by "$shift" bits, adding n whenever Y becomes odd.
// $shift--;
// $t0 := 0; needed in the addition to the most significant word in SHIFT1
eor $t0, $t0, $t0
.Lbeeu_shift_loop_Y:
${\SHIFT1($y0, $y1, $y2, $y3, $y4)}
subs $shift, $shift, #1
bne .Lbeeu_shift_loop_Y
.Lbeeu_update_B_X_or_A_Y:
// Try T := B - A; if cs, continue with B > A (cs: carry set = no borrow)
// Note: this is a case of unsigned arithmetic, where T fits in 4 64-bit words
// without taking a sign bit if generated. The lack of a carry would
// indicate a negative result. See, for example,
// https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/condition-codes-1-condition-flags-and-codes
subs $t0, $b0, $a0
sbcs $t1, $b1, $a1
sbcs $t2, $b2, $a2
sbcs $t3, $b3, $a3
bcs .Lbeeu_B_greater_than_A
// Else A > B =>
// A := A - B; Y := Y + X; goto beginning of the loop
subs $a0, $a0, $b0
sbcs $a1, $a1, $b1
sbcs $a2, $a2, $b2
sbcs $a3, $a3, $b3
adds $y0, $y0, $x0
adcs $y1, $y1, $x1
adcs $y2, $y2, $x2
adcs $y3, $y3, $x3
adc $y4, $y4, $x4
b .Lbeeu_loop
.Lbeeu_B_greater_than_A:
// Continue with B > A =>
// B := B - A; X := X + Y; goto beginning of the loop
mov $b0, $t0
mov $b1, $t1
mov $b2, $t2
mov $b3, $t3
adds $x0, $x0, $y0
adcs $x1, $x1, $y1
adcs $x2, $x2, $y2
adcs $x3, $x3, $y3
adc $x4, $x4, $y4
b .Lbeeu_loop
.Lbeeu_loop_end:
// The Euclid's algorithm loop ends when A == gcd(a,n);
// this would be 1, when a and n are co-prime (i.e. do not have a common factor).
// Since (-1)*Y*a == A (mod |n|), Y>0
// then out = -Y mod n
// Verify that A = 1 ==> (-1)*Y*a = A = 1 (mod |n|)
// Is A-1 == 0?
// If not, fail.
sub $t0, $a0, #1
orr $t0, $t0, $a1
orr $t0, $t0, $a2
orr $t0, $t0, $a3
cbnz $t0, .Lbeeu_err
// If Y>n ==> Y:=Y-n
.Lbeeu_reduction_loop:
// x_i := y_i - n_i (X is no longer needed, use it as temp)
// ($t0 = 0 from above)
subs $x0, $y0, $n0
sbcs $x1, $y1, $n1
sbcs $x2, $y2, $n2
sbcs $x3, $y3, $n3
sbcs $x4, $y4, $t0
// If result is non-negative (i.e., cs = carry set = no borrow),
// y_i := x_i; goto reduce again
// else
// y_i := y_i; continue
csel $y0, $x0, $y0, cs
csel $y1, $x1, $y1, cs
csel $y2, $x2, $y2, cs
csel $y3, $x3, $y3, cs
csel $y4, $x4, $y4, cs
bcs .Lbeeu_reduction_loop
// Now Y < n (Y cannot be equal to n, since the inverse cannot be 0)
// out = -Y = n-Y
subs $y0, $n0, $y0
sbcs $y1, $n1, $y1
sbcs $y2, $n2, $y2
sbcs $y3, $n3, $y3
// Save Y in output (out (x0) was saved on the stack)
ldr x3, [sp,#96]
stp $y0, $y1, [x3]
stp $y2, $y3, [x3,#16]
// return 1 (success)
mov x0, #1
b .Lbeeu_finish
.Lbeeu_err:
// return 0 (error)
eor x0, x0, x0
.Lbeeu_finish:
// Restore callee-saved registers, except x0, x2
add sp,x29,#0
ldp x19,x20,[sp,#16]
ldp x21,x22,[sp,#32]
ldp x23,x24,[sp,#48]
ldp x25,x26,[sp,#64]
ldp x27,x28,[sp,#80]
ldp x29,x30,[sp],#112
AARCH64_VALIDATE_LINK_REGISTER
ret
.size beeu_mod_inverse_vartime,.-beeu_mod_inverse_vartime
___
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
print $_,"\n";
}
close STDOUT or die "error closing STDOUT: $!"; # enforce flush