blob: fbfacf89db22b1362a2cc1932ccb7ddc21e5e627 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L
#endif
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <algorithm>
#include "../internal.h"
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void PrintSocketError(const char *func) {
perror(func);
}
#else
static void PrintSocketError(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
class ScopedSocket {
public:
explicit ScopedSocket(int sock) : sock_(sock) {}
~ScopedSocket() {
closesocket(sock_);
}
private:
const int sock_;
};
static bool TestSocketConnect() {
static const char kTestMessage[] = "test";
int listening_sock = socket(AF_INET, SOCK_STREAM, 0);
if (listening_sock == -1) {
PrintSocketError("socket");
return false;
}
ScopedSocket listening_sock_closer(listening_sock);
struct sockaddr_in sin;
OPENSSL_memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
PrintSocketError("inet_pton");
return false;
}
if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
PrintSocketError("bind");
return false;
}
if (listen(listening_sock, 1)) {
PrintSocketError("listen");
return false;
}
socklen_t sockaddr_len = sizeof(sin);
if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) ||
sockaddr_len != sizeof(sin)) {
PrintSocketError("getsockname");
return false;
}
char hostname[80];
BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1",
ntohs(sin.sin_port));
bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname));
if (!bio) {
fprintf(stderr, "BIO_new_connect failed.\n");
return false;
}
if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) !=
sizeof(kTestMessage)) {
fprintf(stderr, "BIO_write failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len);
if (sock == -1) {
PrintSocketError("accept");
return false;
}
ScopedSocket sock_closer(sock);
char buf[5];
if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) {
PrintSocketError("read");
return false;
}
if (OPENSSL_memcmp(buf, kTestMessage, sizeof(kTestMessage))) {
return false;
}
return true;
}
static bool TestPrintf() {
// Test a short output, a very long one, and various sizes around
// 256 (the size of the buffer) to ensure edge cases are correct.
static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 };
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio) {
fprintf(stderr, "BIO_new failed\n");
return false;
}
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kLengths); i++) {
char string[1024];
if (kLengths[i] >= sizeof(string)) {
fprintf(stderr, "Bad test string length\n");
return false;
}
OPENSSL_memset(string, 'a', sizeof(string));
string[kLengths[i]] = '\0';
int ret = BIO_printf(bio.get(), "test %s", string);
if (ret < 0 || static_cast<size_t>(ret) != 5 + kLengths[i]) {
fprintf(stderr, "BIO_printf failed: %d\n", ret);
return false;
}
const uint8_t *contents;
size_t len;
if (!BIO_mem_contents(bio.get(), &contents, &len)) {
fprintf(stderr, "BIO_mem_contents failed\n");
return false;
}
if (len != 5 + kLengths[i] ||
strncmp((const char *)contents, "test ", 5) != 0 ||
strncmp((const char *)contents + 5, string, kLengths[i]) != 0) {
fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents);
return false;
}
if (!BIO_reset(bio.get())) {
fprintf(stderr, "BIO_reset failed\n");
return false;
}
}
return true;
}
static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len,
size_t expected_len, size_t max_len) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(data, data_len));
uint8_t *out;
size_t out_len;
int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len);
if (!ok) {
out = nullptr;
}
bssl::UniquePtr<uint8_t> out_storage(out);
if (should_succeed != (ok == 1)) {
return false;
}
if (should_succeed && (out_len != expected_len ||
OPENSSL_memcmp(data, out, expected_len) != 0)) {
return false;
}
return true;
}
static bool TestASN1() {
static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0};
static const uint8_t kData2[] = {0x30, 3, 1, 2}; /* truncated */
static const uint8_t kData3[] = {0x30, 0x81, 1, 1}; /* should be short len */
static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1}; /* zero padded. */
if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) ||
!ReadASN1(false, kData2, sizeof(kData2), 0, 100) ||
!ReadASN1(false, kData3, sizeof(kData3), 0, 100) ||
!ReadASN1(false, kData4, sizeof(kData4), 0, 100)) {
return false;
}
static const size_t kLargePayloadLen = 8000;
static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8,
kLargePayloadLen & 0xff};
bssl::UniquePtr<uint8_t> large(reinterpret_cast<uint8_t *>(
OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen)));
if (!large) {
return false;
}
OPENSSL_memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen);
OPENSSL_memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix));
if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen * 2)) {
fprintf(stderr, "Large payload test failed.\n");
return false;
}
if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen - 1)) {
fprintf(stderr, "max_len test failed.\n");
return false;
}
static const uint8_t kIndefPrefix[] = {0x30, 0x80};
OPENSSL_memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix));
if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen*2)) {
fprintf(stderr, "indefinite length test failed.\n");
return false;
}
if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen-1)) {
fprintf(stderr, "indefinite length, max_len test failed.\n");
return false;
}
return true;
}
static bool TestPair() {
// Run through the tests twice, swapping |bio1| and |bio2|, for symmetry.
for (int i = 0; i < 2; i++) {
BIO *bio1, *bio2;
if (!BIO_new_bio_pair(&bio1, 10, &bio2, 10)) {
return false;
}
bssl::UniquePtr<BIO> free_bio1(bio1), free_bio2(bio2);
if (i == 1) {
std::swap(bio1, bio2);
}
// Check initial states.
if (BIO_ctrl_get_write_guarantee(bio1) != 10 ||
BIO_ctrl_get_read_request(bio1) != 0) {
return false;
}
// Data written in one end may be read out the other.
char buf[20];
if (BIO_write(bio1, "12345", 5) != 5 ||
BIO_ctrl_get_write_guarantee(bio1) != 5 ||
BIO_read(bio2, buf, sizeof(buf)) != 5 ||
OPENSSL_memcmp(buf, "12345", 5) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 10) {
return false;
}
// Attempting to write more than 10 bytes will write partially.
if (BIO_write(bio1, "1234567890___", 13) != 10 ||
BIO_ctrl_get_write_guarantee(bio1) != 0 ||
BIO_write(bio1, "z", 1) != -1 ||
!BIO_should_write(bio1) ||
BIO_read(bio2, buf, sizeof(buf)) != 10 ||
OPENSSL_memcmp(buf, "1234567890", 10) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 10) {
return false;
}
// Unsuccessful reads update the read request.
if (BIO_read(bio2, buf, 5) != -1 ||
!BIO_should_read(bio2) ||
BIO_ctrl_get_read_request(bio1) != 5) {
return false;
}
// The read request is clamped to the size of the buffer.
if (BIO_read(bio2, buf, 20) != -1 ||
!BIO_should_read(bio2) ||
BIO_ctrl_get_read_request(bio1) != 10) {
return false;
}
// Data may be written and read in chunks.
if (BIO_write(bio1, "12345", 5) != 5 ||
BIO_ctrl_get_write_guarantee(bio1) != 5 ||
BIO_write(bio1, "67890___", 8) != 5 ||
BIO_ctrl_get_write_guarantee(bio1) != 0 ||
BIO_read(bio2, buf, 3) != 3 ||
OPENSSL_memcmp(buf, "123", 3) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 3 ||
BIO_read(bio2, buf, sizeof(buf)) != 7 ||
OPENSSL_memcmp(buf, "4567890", 7) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 10) {
return false;
}
// Successful reads reset the read request.
if (BIO_ctrl_get_read_request(bio1) != 0) {
return false;
}
// Test writes and reads starting in the middle of the ring buffer and
// wrapping to front.
if (BIO_write(bio1, "abcdefgh", 8) != 8 ||
BIO_ctrl_get_write_guarantee(bio1) != 2 ||
BIO_read(bio2, buf, 3) != 3 ||
OPENSSL_memcmp(buf, "abc", 3) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 5 ||
BIO_write(bio1, "ijklm___", 8) != 5 ||
BIO_ctrl_get_write_guarantee(bio1) != 0 ||
BIO_read(bio2, buf, sizeof(buf)) != 10 ||
OPENSSL_memcmp(buf, "defghijklm", 10) != 0 ||
BIO_ctrl_get_write_guarantee(bio1) != 10) {
return false;
}
// Data may flow from both ends in parallel.
if (BIO_write(bio1, "12345", 5) != 5 ||
BIO_write(bio2, "67890", 5) != 5 ||
BIO_read(bio2, buf, sizeof(buf)) != 5 ||
OPENSSL_memcmp(buf, "12345", 5) != 0 ||
BIO_read(bio1, buf, sizeof(buf)) != 5 ||
OPENSSL_memcmp(buf, "67890", 5) != 0) {
return false;
}
// Closing the write end causes an EOF on the read half, after draining.
if (BIO_write(bio1, "12345", 5) != 5 ||
!BIO_shutdown_wr(bio1) ||
BIO_read(bio2, buf, sizeof(buf)) != 5 ||
OPENSSL_memcmp(buf, "12345", 5) != 0 ||
BIO_read(bio2, buf, sizeof(buf)) != 0) {
return false;
}
// A closed write end may not be written to.
if (BIO_ctrl_get_write_guarantee(bio1) != 0 ||
BIO_write(bio1, "_____", 5) != -1) {
return false;
}
uint32_t err = ERR_get_error();
if (ERR_GET_LIB(err) != ERR_LIB_BIO ||
ERR_GET_REASON(err) != BIO_R_BROKEN_PIPE) {
return false;
}
// The other end is still functional.
if (BIO_write(bio2, "12345", 5) != 5 ||
BIO_read(bio1, buf, sizeof(buf)) != 5 ||
OPENSSL_memcmp(buf, "12345", 5) != 0) {
return false;
}
}
return true;
}
int main() {
CRYPTO_library_init();
#if defined(OPENSSL_WINDOWS)
// Initialize Winsock.
WORD wsa_version = MAKEWORD(2, 2);
WSADATA wsa_data;
int wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#endif
if (!TestSocketConnect() ||
!TestPrintf() ||
!TestASN1() ||
!TestPair()) {
return 1;
}
printf("PASS\n");
return 0;
}