| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 1999. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/bn.h> |
| #include <openssl/buf.h> |
| #include <openssl/cipher.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/mem.h> |
| #include <openssl/x509.h> |
| |
| #include "../bytestring/internal.h" |
| #include "../evp/internal.h" |
| |
| |
| #define PKCS12_KEY_ID 1 |
| #define PKCS12_IV_ID 2 |
| #define PKCS12_MAC_ID 3 |
| |
| static int ascii_to_ucs2(const char *ascii, size_t ascii_len, |
| uint8_t **out, size_t *out_len) { |
| uint8_t *unitmp; |
| size_t ulen, i; |
| |
| ulen = ascii_len * 2 + 2; |
| if (ulen < ascii_len) { |
| return 0; |
| } |
| unitmp = OPENSSL_malloc(ulen); |
| if (unitmp == NULL) { |
| return 0; |
| } |
| for (i = 0; i < ulen - 2; i += 2) { |
| unitmp[i] = 0; |
| unitmp[i + 1] = ascii[i >> 1]; |
| } |
| |
| /* Make result double null terminated */ |
| unitmp[ulen - 2] = 0; |
| unitmp[ulen - 1] = 0; |
| *out_len = ulen; |
| *out = unitmp; |
| return 1; |
| } |
| |
| static int pkcs12_key_gen_raw(const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *salt, size_t salt_len, |
| int id, int iterations, |
| size_t out_len, uint8_t *out, |
| const EVP_MD *md_type) { |
| uint8_t *B, *D, *I, *p, *Ai; |
| int Slen, Plen, Ilen, Ijlen; |
| int i, j, v; |
| size_t u; |
| int ret = 0; |
| BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */ |
| EVP_MD_CTX ctx; |
| |
| EVP_MD_CTX_init(&ctx); |
| v = EVP_MD_block_size(md_type); |
| u = EVP_MD_size(md_type); |
| D = OPENSSL_malloc(v); |
| Ai = OPENSSL_malloc(u); |
| B = OPENSSL_malloc(v + 1); |
| Slen = v * ((salt_len + v - 1) / v); |
| if (pass_raw_len) { |
| Plen = v * ((pass_raw_len + v - 1) / v); |
| } else { |
| Plen = 0; |
| } |
| Ilen = Slen + Plen; |
| I = OPENSSL_malloc(Ilen); |
| Ij = BN_new(); |
| Bpl1 = BN_new(); |
| if (!D || !Ai || !B || !I || !Ij || !Bpl1) { |
| goto err; |
| } |
| for (i = 0; i < v; i++) { |
| D[i] = id; |
| } |
| p = I; |
| for (i = 0; i < Slen; i++) { |
| *p++ = salt[i % salt_len]; |
| } |
| for (i = 0; i < Plen; i++) { |
| *p++ = pass_raw[i % pass_raw_len]; |
| } |
| for (;;) { |
| if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| !EVP_DigestUpdate(&ctx, D, v) || |
| !EVP_DigestUpdate(&ctx, I, Ilen) || |
| !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| goto err; |
| } |
| for (j = 1; j < iterations; j++) { |
| if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| !EVP_DigestUpdate(&ctx, Ai, u) || |
| !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| goto err; |
| } |
| } |
| memcpy(out, Ai, out_len < u ? out_len : u); |
| if (u >= out_len) { |
| ret = 1; |
| goto end; |
| } |
| out_len -= u; |
| out += u; |
| for (j = 0; j < v; j++) { |
| B[j] = Ai[j % u]; |
| } |
| /* Work out B + 1 first then can use B as tmp space */ |
| if (!BN_bin2bn(B, v, Bpl1) || |
| !BN_add_word(Bpl1, 1)) { |
| goto err; |
| } |
| for (j = 0; j < Ilen; j += v) { |
| if (!BN_bin2bn(I + j, v, Ij) || |
| !BN_add(Ij, Ij, Bpl1) || |
| !BN_bn2bin(Ij, B)) { |
| goto err; |
| } |
| Ijlen = BN_num_bytes(Ij); |
| /* If more than 2^(v*8) - 1 cut off MSB */ |
| if (Ijlen > v) { |
| if (!BN_bn2bin(Ij, B)) { |
| goto err; |
| } |
| memcpy(I + j, B + 1, v); |
| /* If less than v bytes pad with zeroes */ |
| } else if (Ijlen < v) { |
| memset(I + j, 0, v - Ijlen); |
| if (!BN_bn2bin(Ij, I + j + v - Ijlen)) { |
| goto err; |
| } |
| } else if (!BN_bn2bin(Ij, I + j)) { |
| goto err; |
| } |
| } |
| } |
| |
| err: |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_raw, ERR_R_MALLOC_FAILURE); |
| |
| end: |
| OPENSSL_free(Ai); |
| OPENSSL_free(B); |
| OPENSSL_free(D); |
| OPENSSL_free(I); |
| BN_free(Ij); |
| BN_free(Bpl1); |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| return ret; |
| } |
| |
| static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw, |
| size_t pass_raw_len, ASN1_TYPE *param, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| int is_encrypt) { |
| PBEPARAM *pbe; |
| int salt_len, iterations, ret; |
| uint8_t *salt; |
| const uint8_t *pbuf; |
| uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; |
| |
| /* Extract useful info from parameter */ |
| if (param == NULL || param->type != V_ASN1_SEQUENCE || |
| param->value.sequence == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| pbuf = param->value.sequence->data; |
| pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length); |
| if (pbe == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!pbe->iter) { |
| iterations = 1; |
| } else { |
| iterations = ASN1_INTEGER_get(pbe->iter); |
| } |
| salt = pbe->salt->data; |
| salt_len = pbe->salt->length; |
| if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_KEY_ID, |
| iterations, EVP_CIPHER_key_length(cipher), key, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| PBEPARAM_free(pbe); |
| return 0; |
| } |
| if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, salt_len, PKCS12_IV_ID, |
| iterations, EVP_CIPHER_iv_length(cipher), iv, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| PBEPARAM_free(pbe); |
| return 0; |
| } |
| PBEPARAM_free(pbe); |
| ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
| OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
| return ret; |
| } |
| |
| typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw, |
| size_t pass_raw_len, ASN1_TYPE *param, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| int is_encrypt); |
| |
| struct pbe_suite { |
| int pbe_nid; |
| const EVP_CIPHER* (*cipher_func)(void); |
| const EVP_MD* (*md_func)(void); |
| keygen_func keygen; |
| }; |
| |
| static const struct pbe_suite kBuiltinPBE[] = { |
| { |
| NID_pbe_WithSHA1And40BitRC2_CBC, EVP_rc2_40_cbc, EVP_sha1, pkcs12_pbe_keyivgen, |
| }, |
| { |
| NID_pbe_WithSHA1And128BitRC4, EVP_rc4, EVP_sha1, pkcs12_pbe_keyivgen, |
| }, |
| { |
| NID_pbe_WithSHA1And3_Key_TripleDES_CBC, EVP_des_ede3_cbc, EVP_sha1, |
| pkcs12_pbe_keyivgen, |
| }, |
| }; |
| |
| static int pbe_cipher_init(ASN1_OBJECT *pbe_obj, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| ASN1_TYPE *param, |
| EVP_CIPHER_CTX *ctx, int is_encrypt) { |
| const EVP_CIPHER *cipher; |
| const EVP_MD *md; |
| unsigned i; |
| |
| const struct pbe_suite *suite = NULL; |
| const int pbe_nid = OBJ_obj2nid(pbe_obj); |
| |
| for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) { |
| if (kBuiltinPBE[i].pbe_nid == pbe_nid) { |
| suite = &kBuiltinPBE[i]; |
| break; |
| } |
| } |
| |
| if (suite == NULL) { |
| char obj_str[80]; |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM); |
| if (!pbe_obj) { |
| strncpy(obj_str, "NULL", sizeof(obj_str)); |
| } else { |
| i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj); |
| } |
| ERR_add_error_data(2, "TYPE=", obj_str); |
| return 0; |
| } |
| |
| if (suite->cipher_func == NULL) { |
| cipher = NULL; |
| } else { |
| cipher = suite->cipher_func(); |
| if (!cipher) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER); |
| return 0; |
| } |
| } |
| |
| if (suite->md_func == NULL) { |
| md = NULL; |
| } else { |
| md = suite->md_func(); |
| if (!md) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST); |
| return 0; |
| } |
| } |
| |
| if (!suite->keygen(ctx, pass_raw, pass_raw_len, param, cipher, md, |
| is_encrypt)) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int pbe_crypt(const X509_ALGOR *algor, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *in, size_t in_len, |
| uint8_t **out, size_t *out_len, |
| int is_encrypt) { |
| uint8_t *buf; |
| int n, ret = 0; |
| EVP_CIPHER_CTX ctx; |
| unsigned block_size; |
| |
| EVP_CIPHER_CTX_init(&ctx); |
| |
| if (!pbe_cipher_init(algor->algorithm, pass_raw, pass_raw_len, |
| algor->parameter, &ctx, is_encrypt)) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM); |
| return 0; |
| } |
| block_size = EVP_CIPHER_CTX_block_size(&ctx); |
| |
| if (in_len + block_size < in_len) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG); |
| goto err; |
| } |
| |
| buf = OPENSSL_malloc(in_len + block_size); |
| if (buf == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) { |
| OPENSSL_free(buf); |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| goto err; |
| } |
| *out_len = n; |
| |
| if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) { |
| OPENSSL_free(buf); |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| goto err; |
| } |
| *out_len += n; |
| *out = buf; |
| ret = 1; |
| |
| err: |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it, |
| const uint8_t *pass_raw, |
| size_t pass_raw_len, |
| ASN1_OCTET_STRING *oct) { |
| uint8_t *out; |
| const uint8_t *p; |
| void *ret; |
| size_t out_len; |
| |
| if (!pbe_crypt(algor, pass_raw, pass_raw_len, oct->data, oct->length, |
| &out, &out_len, 0 /* decrypt */)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR); |
| return NULL; |
| } |
| p = out; |
| ret = ASN1_item_d2i(NULL, &p, out_len, it); |
| OPENSSL_cleanse(out, out_len); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR); |
| } |
| OPENSSL_free(out); |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| int pass_len) { |
| uint8_t *pass_raw = NULL; |
| size_t pass_raw_len = 0; |
| PKCS8_PRIV_KEY_INFO *ret; |
| |
| if (pass) { |
| if (pass_len == -1) { |
| pass_len = strlen(pass); |
| } |
| if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_decrypt, PKCS8_R_DECODE_ERROR); |
| return NULL; |
| } |
| } |
| |
| ret = PKCS8_decrypt_pbe(pkcs8, pass_raw, pass_raw_len); |
| |
| if (pass_raw) { |
| OPENSSL_cleanse(pass_raw, pass_raw_len); |
| OPENSSL_free(pass_raw); |
| } |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *PKCS8_decrypt_pbe(X509_SIG *pkcs8, const uint8_t *pass_raw, |
| size_t pass_raw_len) { |
| return pkcs12_item_decrypt_d2i(pkcs8->algor, |
| ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw, |
| pass_raw_len, pkcs8->digest); |
| } |
| |
| static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor, |
| const ASN1_ITEM *it, |
| const uint8_t *pass_raw, |
| size_t pass_raw_len, void *obj) { |
| ASN1_OCTET_STRING *oct; |
| uint8_t *in = NULL; |
| int in_len; |
| size_t crypt_len; |
| |
| oct = M_ASN1_OCTET_STRING_new(); |
| if (oct == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| in_len = ASN1_item_i2d(obj, &in, it); |
| if (!in) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR); |
| return NULL; |
| } |
| if (!pbe_crypt(algor, pass_raw, pass_raw_len, in, in_len, &oct->data, &crypt_len, |
| 1 /* encrypt */)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR); |
| OPENSSL_free(in); |
| return NULL; |
| } |
| oct->length = crypt_len; |
| OPENSSL_cleanse(in, in_len); |
| OPENSSL_free(in); |
| return oct; |
| } |
| |
| X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| int pass_len, uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| uint8_t *pass_raw = NULL; |
| size_t pass_raw_len = 0; |
| X509_SIG *ret; |
| |
| if (pass) { |
| if (pass_len == -1) { |
| pass_len = strlen(pass); |
| } |
| if (!ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, PKCS8_R_DECODE_ERROR); |
| return NULL; |
| } |
| } |
| |
| ret = PKCS8_encrypt_pbe(pbe_nid, pass_raw, pass_raw_len, |
| salt, salt_len, iterations, p8inf); |
| |
| if (pass_raw) { |
| OPENSSL_cleanse(pass_raw, pass_raw_len); |
| OPENSSL_free(pass_raw); |
| } |
| return ret; |
| } |
| |
| X509_SIG *PKCS8_encrypt_pbe(int pbe_nid, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| X509_SIG *pkcs8 = NULL; |
| X509_ALGOR *pbe; |
| |
| pkcs8 = X509_SIG_new(); |
| if (pkcs8 == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len); |
| if (!pbe) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, ERR_R_ASN1_LIB); |
| goto err; |
| } |
| |
| X509_ALGOR_free(pkcs8->algor); |
| pkcs8->algor = pbe; |
| M_ASN1_OCTET_STRING_free(pkcs8->digest); |
| pkcs8->digest = pkcs12_item_i2d_encrypt( |
| pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass_raw, pass_raw_len, p8inf); |
| if (!pkcs8->digest) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt_pbe, PKCS8_R_ENCRYPT_ERROR); |
| goto err; |
| } |
| |
| return pkcs8; |
| |
| err: |
| X509_SIG_free(pkcs8); |
| return NULL; |
| } |
| |
| EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| EVP_PKEY *pkey = NULL; |
| ASN1_OBJECT *algoid; |
| char obj_tmp[80]; |
| |
| if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8)) { |
| return NULL; |
| } |
| |
| pkey = EVP_PKEY_new(); |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, |
| PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| i2t_ASN1_OBJECT(obj_tmp, 80, algoid); |
| ERR_add_error_data(2, "TYPE=", obj_tmp); |
| goto error; |
| } |
| |
| if (pkey->ameth->priv_decode) { |
| if (!pkey->ameth->priv_decode(pkey, p8)) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| |
| return pkey; |
| |
| error: |
| EVP_PKEY_free(pkey); |
| return NULL; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| PKCS8_PRIV_KEY_INFO *p8; |
| |
| p8 = PKCS8_PRIV_KEY_INFO_new(); |
| if (p8 == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| p8->broken = PKCS8_OK; |
| |
| if (pkey->ameth) { |
| if (pkey->ameth->priv_encode) { |
| if (!pkey->ameth->priv_encode(p8, pkey)) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| PKCS8_R_PRIVATE_KEY_ENCODE_ERROR); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| goto error; |
| } |
| return p8; |
| |
| error: |
| PKCS8_PRIV_KEY_INFO_free(p8); |
| return NULL; |
| } |
| |
| struct pkcs12_context { |
| EVP_PKEY **out_key; |
| STACK_OF(X509) *out_certs; |
| uint8_t *password; |
| size_t password_len; |
| }; |
| |
| static int PKCS12_handle_content_info(CBS *content_info, unsigned depth, |
| struct pkcs12_context *ctx); |
| |
| /* PKCS12_handle_content_infos parses a series of PKCS#7 ContentInfos in a |
| * SEQUENCE. */ |
| static int PKCS12_handle_content_infos(CBS *content_infos, |
| unsigned depth, |
| struct pkcs12_context *ctx) { |
| uint8_t *der_bytes = NULL; |
| size_t der_len; |
| CBS in; |
| int ret = 0; |
| |
| /* Generally we only expect depths 0 (the top level, with a |
| * pkcs7-encryptedData and a pkcs7-data) and depth 1 (the various PKCS#12 |
| * bags). */ |
| if (depth > 3) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, |
| PKCS8_R_PKCS12_TOO_DEEPLY_NESTED); |
| return 0; |
| } |
| |
| /* Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
| * the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
| * conversion cannot see through those wrappings. So each time we step |
| * through one we need to convert to DER again. */ |
| if (!CBS_asn1_ber_to_der(content_infos, &der_bytes, &der_len)) { |
| return 0; |
| } |
| |
| if (der_bytes != NULL) { |
| CBS_init(&in, der_bytes, der_len); |
| } else { |
| CBS_init(&in, CBS_data(content_infos), CBS_len(content_infos)); |
| } |
| |
| if (!CBS_get_asn1(&in, &in, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| while (CBS_len(&in) > 0) { |
| CBS content_info; |
| if (!CBS_get_asn1(&in, &content_info, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_infos, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!PKCS12_handle_content_info(&content_info, depth + 1, ctx)) { |
| goto err; |
| } |
| } |
| |
| /* NSS includes additional data after the SEQUENCE, but it's an (unwrapped) |
| * copy of the same encrypted private key (with the same IV and |
| * ciphertext)! */ |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(der_bytes); |
| return ret; |
| } |
| |
| /* PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
| * PKCS#12 structure. */ |
| static int PKCS12_handle_content_info(CBS *content_info, unsigned depth, |
| struct pkcs12_context *ctx) { |
| CBS content_type, wrapped_contents, contents, content_infos; |
| int nid, ret = 0; |
| |
| if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(content_info, &wrapped_contents, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| nid = OBJ_cbs2nid(&content_type); |
| if (nid == NID_pkcs7_encrypted) { |
| /* See https://tools.ietf.org/html/rfc2315#section-13. |
| * |
| * PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
| * encrypted certificate bag and it's generally encrypted with 40-bit |
| * RC2-CBC. */ |
| CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
| X509_ALGOR *algor = NULL; |
| const uint8_t *inp; |
| uint8_t *out; |
| size_t out_len; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || |
| /* EncryptedContentInfo, see |
| * https://tools.ietf.org/html/rfc2315#section-10.1 */ |
| !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || |
| /* AlgorithmIdentifier, see |
| * https://tools.ietf.org/html/rfc5280#section-4.1.1.2 */ |
| !CBS_get_asn1_element(&eci, &ai, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&eci, &encrypted_contents, |
| CBS_ASN1_CONTEXT_SPECIFIC | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (OBJ_cbs2nid(&contents_type) != NID_pkcs7_data) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| inp = CBS_data(&ai); |
| algor = d2i_X509_ALGOR(NULL, &inp, CBS_len(&ai)); |
| if (algor == NULL) { |
| goto err; |
| } |
| if (inp != CBS_data(&ai) + CBS_len(&ai)) { |
| X509_ALGOR_free(algor); |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!pbe_crypt(algor, ctx->password, ctx->password_len, |
| CBS_data(&encrypted_contents), CBS_len(&encrypted_contents), |
| &out, &out_len, 0 /* decrypt */)) { |
| X509_ALGOR_free(algor); |
| goto err; |
| } |
| X509_ALGOR_free(algor); |
| |
| CBS_init(&content_infos, out, out_len); |
| ret = PKCS12_handle_content_infos(&content_infos, depth + 1, ctx); |
| OPENSSL_free(out); |
| } else if (nid == NID_pkcs7_data) { |
| CBS octet_string_contents; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, |
| CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ret = PKCS12_handle_content_infos(&octet_string_contents, depth + 1, ctx); |
| } else if (nid == NID_pkcs8ShroudedKeyBag) { |
| /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| * 4.2.2. */ |
| const uint8_t *inp = CBS_data(&wrapped_contents); |
| PKCS8_PRIV_KEY_INFO *pki = NULL; |
| X509_SIG *encrypted = NULL; |
| |
| if (*ctx->out_key) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
| goto err; |
| } |
| |
| /* encrypted isn't actually an X.509 signature, but it has the same |
| * structure as one and so |X509_SIG| is reused to store it. */ |
| encrypted = d2i_X509_SIG(NULL, &inp, CBS_len(&wrapped_contents)); |
| if (encrypted == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| if (inp != CBS_data(&wrapped_contents) + CBS_len(&wrapped_contents)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| X509_SIG_free(encrypted); |
| goto err; |
| } |
| |
| pki = PKCS8_decrypt_pbe(encrypted, ctx->password, ctx->password_len); |
| X509_SIG_free(encrypted); |
| if (pki == NULL) { |
| goto err; |
| } |
| |
| *ctx->out_key = EVP_PKCS82PKEY(pki); |
| PKCS8_PRIV_KEY_INFO_free(pki); |
| |
| if (ctx->out_key == NULL) { |
| goto err; |
| } |
| ret = 1; |
| } else if (nid == NID_certBag) { |
| CBS cert_bag, cert_type, wrapped_cert, cert; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &cert_bag, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&cert_bag, &wrapped_cert, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (OBJ_cbs2nid(&cert_type) == NID_x509Certificate) { |
| const uint8_t *inp = CBS_data(&cert); |
| X509 *x509 = d2i_X509(NULL, &inp, CBS_len(&cert)); |
| if (!x509) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| if (inp != CBS_data(&cert) + CBS_len(&cert)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_handle_content_info, |
| PKCS8_R_BAD_PKCS12_DATA); |
| X509_free(x509); |
| goto err; |
| } |
| |
| if (0 == sk_X509_push(ctx->out_certs, x509)) { |
| X509_free(x509); |
| goto err; |
| } |
| } |
| ret = 1; |
| } else { |
| /* Unknown element type - ignore it. */ |
| ret = 1; |
| } |
| |
| err: |
| return ret; |
| } |
| |
| int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
| CBS *ber_in, const char *password) { |
| uint8_t *der_bytes = NULL; |
| size_t der_len; |
| CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
| uint64_t version; |
| int ret = 0; |
| struct pkcs12_context ctx; |
| const size_t original_out_certs_len = sk_X509_num(out_certs); |
| |
| /* The input may be in BER format. */ |
| if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) { |
| return 0; |
| } |
| if (der_bytes != NULL) { |
| CBS_init(&in, der_bytes, der_len); |
| } else { |
| CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in)); |
| } |
| |
| *out_key = NULL; |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| * four. */ |
| if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || |
| CBS_len(&in) != 0 || |
| !CBS_get_asn1_uint64(&pfx, &version)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (version < 3) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, |
| PKCS8_R_BAD_PKCS12_VERSION); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (CBS_len(&pfx) == 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_MISSING_MAC); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* authsafe is a PKCS#7 ContentInfo. See |
| * https://tools.ietf.org/html/rfc2315#section-7. */ |
| if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&authsafe, &wrapped_authsafes, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* The content type can either be |NID_pkcs7_data| or |NID_pkcs7_signed|. The |
| * latter indicates that it's signed by a public key, which isn't |
| * supported. */ |
| if (OBJ_cbs2nid(&content_type) != NID_pkcs7_data) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, |
| PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ctx.out_key = out_key; |
| ctx.out_certs = out_certs; |
| if (!ascii_to_ucs2(password, strlen(password), &ctx.password, |
| &ctx.password_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| /* Verify the MAC. */ |
| { |
| CBS mac, hash_type_seq, hash_oid, salt, expected_mac; |
| uint64_t iterations; |
| int hash_nid; |
| const EVP_MD *md; |
| uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
| uint8_t hmac[EVP_MAX_MD_SIZE]; |
| unsigned hmac_len; |
| |
| if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&mac, &hash_type_seq, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&hash_type_seq, &hash_oid, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* The iteration count is optional and the default is one. */ |
| iterations = 1; |
| if (CBS_len(&mac_data) > 0) { |
| if (!CBS_get_asn1_uint64(&mac_data, &iterations) || |
| iterations > INT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, |
| PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| } |
| |
| hash_nid = OBJ_cbs2nid(&hash_oid); |
| if (hash_nid == NID_undef || |
| (md = EVP_get_digestbynid(hash_nid)) == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, PKCS8_R_UNKNOWN_HASH); |
| goto err; |
| } |
| |
| if (!pkcs12_key_gen_raw(ctx.password, ctx.password_len, CBS_data(&salt), |
| CBS_len(&salt), PKCS12_MAC_ID, iterations, |
| EVP_MD_size(md), hmac_key, md)) { |
| goto err; |
| } |
| |
| if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes), |
| CBS_len(&authsafes), hmac, &hmac_len)) { |
| goto err; |
| } |
| |
| if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS12_get_key_and_certs, |
| PKCS8_R_INCORRECT_PASSWORD); |
| goto err; |
| } |
| } |
| |
| /* authsafes contains a series of PKCS#7 ContentInfos. */ |
| if (!PKCS12_handle_content_infos(&authsafes, 0, &ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(ctx.password); |
| OPENSSL_free(der_bytes); |
| if (!ret) { |
| EVP_PKEY_free(*out_key); |
| *out_key = NULL; |
| while (sk_X509_num(out_certs) > original_out_certs_len) { |
| X509 *x509 = sk_X509_pop(out_certs); |
| X509_free(x509); |
| } |
| } |
| |
| return ret; |
| } |
| |
| void PKCS12_PBE_add(void) {} |
| |
| struct pkcs12_st { |
| uint8_t *ber_bytes; |
| size_t ber_len; |
| }; |
| |
| PKCS12* d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, size_t ber_len) { |
| PKCS12 *p12; |
| |
| /* out_p12 must be NULL because we don't export the PKCS12 structure. */ |
| assert(out_p12 == NULL); |
| |
| p12 = OPENSSL_malloc(sizeof(PKCS12)); |
| if (!p12) { |
| return NULL; |
| } |
| |
| p12->ber_bytes = OPENSSL_malloc(ber_len); |
| if (!p12->ber_bytes) { |
| OPENSSL_free(p12); |
| return NULL; |
| } |
| |
| memcpy(p12->ber_bytes, *ber_bytes, ber_len); |
| p12->ber_len = ber_len; |
| *ber_bytes += ber_len; |
| |
| return p12; |
| } |
| |
| PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
| size_t used = 0; |
| BUF_MEM *buf; |
| const uint8_t *dummy; |
| static const size_t kMaxSize = 256 * 1024; |
| PKCS12 *ret = NULL; |
| |
| buf = BUF_MEM_new(); |
| if (buf == NULL) { |
| return NULL; |
| } |
| if (BUF_MEM_grow(buf, 8192) == 0) { |
| goto out; |
| } |
| |
| for (;;) { |
| int n = BIO_read(bio, &buf->data[used], buf->length - used); |
| if (n < 0) { |
| goto out; |
| } |
| |
| if (n == 0) { |
| break; |
| } |
| used += n; |
| |
| if (used < buf->length) { |
| continue; |
| } |
| |
| if (buf->length > kMaxSize || |
| BUF_MEM_grow(buf, buf->length * 2) == 0) { |
| goto out; |
| } |
| } |
| |
| dummy = (uint8_t*) buf->data; |
| ret = d2i_PKCS12(out_p12, &dummy, used); |
| |
| out: |
| BUF_MEM_free(buf); |
| return ret; |
| } |
| |
| PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
| BIO *bio; |
| PKCS12 *ret; |
| |
| bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| if (!bio) { |
| return NULL; |
| } |
| |
| ret = d2i_PKCS12_bio(bio, out_p12); |
| BIO_free(bio); |
| return ret; |
| } |
| |
| int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
| X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
| CBS ber_bytes; |
| STACK_OF(X509) *ca_certs = NULL; |
| char ca_certs_alloced = 0; |
| |
| if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
| ca_certs = *out_ca_certs; |
| } |
| |
| if (!ca_certs) { |
| ca_certs = sk_X509_new_null(); |
| if (ca_certs == NULL) { |
| return 0; |
| } |
| ca_certs_alloced = 1; |
| } |
| |
| CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); |
| if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { |
| if (ca_certs_alloced) { |
| sk_X509_free(ca_certs); |
| } |
| return 0; |
| } |
| |
| *out_cert = NULL; |
| if (sk_X509_num(ca_certs) > 0) { |
| *out_cert = sk_X509_shift(ca_certs); |
| } |
| |
| if (out_ca_certs) { |
| *out_ca_certs = ca_certs; |
| } else { |
| sk_X509_pop_free(ca_certs, X509_free); |
| } |
| |
| return 1; |
| } |
| |
| void PKCS12_free(PKCS12 *p12) { |
| OPENSSL_free(p12->ber_bytes); |
| OPENSSL_free(p12); |
| } |