|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <tuple> | 
|  |  | 
|  | #include <openssl/buf.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/md5.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha2.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | static bool add_record_to_flight(SSL *ssl, uint8_t type, | 
|  | Span<const uint8_t> in) { | 
|  | // The caller should have flushed |pending_hs_data| first. | 
|  | assert(!ssl->s3->pending_hs_data); | 
|  | // We'll never add a flight while in the process of writing it out. | 
|  | assert(ssl->s3->pending_flight_offset == 0); | 
|  |  | 
|  | if (ssl->s3->pending_flight == nullptr) { | 
|  | ssl->s3->pending_flight.reset(BUF_MEM_new()); | 
|  | if (ssl->s3->pending_flight == nullptr) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t max_out = in.size() + SSL_max_seal_overhead(ssl); | 
|  | size_t new_cap = ssl->s3->pending_flight->length + max_out; | 
|  | if (max_out < in.size() || new_cap < max_out) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t len; | 
|  | if (!BUF_MEM_reserve(ssl->s3->pending_flight.get(), new_cap) || | 
|  | !tls_seal_record(ssl, | 
|  | (uint8_t *)ssl->s3->pending_flight->data + | 
|  | ssl->s3->pending_flight->length, | 
|  | &len, max_out, type, in.data(), in.size())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssl->s3->pending_flight->length += len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { | 
|  | // Pick a modest size hint to save most of the |realloc| calls. | 
|  | if (!CBB_init(cbb, 64) ||      // | 
|  | !CBB_add_u8(cbb, type) ||  // | 
|  | !CBB_add_u24_length_prefixed(cbb, body)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | CBB_cleanup(cbb); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { | 
|  | return CBBFinishArray(cbb, out_msg); | 
|  | } | 
|  |  | 
|  | bool tls_add_message(SSL *ssl, Array<uint8_t> msg) { | 
|  | // Pack handshake data into the minimal number of records. This avoids | 
|  | // unnecessary encryption overhead, notably in TLS 1.3 where we send several | 
|  | // encrypted messages in a row. For now, we do not do this for the null | 
|  | // cipher. The benefit is smaller and there is a risk of breaking buggy | 
|  | // implementations. | 
|  | // | 
|  | // TODO(crbug.com/374991962): See if we can do this uniformly. | 
|  | Span<const uint8_t> rest = msg; | 
|  | if (!SSL_is_quic(ssl) && ssl->s3->aead_write_ctx->is_null_cipher()) { | 
|  | while (!rest.empty()) { | 
|  | Span<const uint8_t> chunk = rest.subspan(0, ssl->max_send_fragment); | 
|  | rest = rest.subspan(chunk.size()); | 
|  |  | 
|  | if (!add_record_to_flight(ssl, SSL3_RT_HANDSHAKE, chunk)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | while (!rest.empty()) { | 
|  | // Flush if |pending_hs_data| is full. | 
|  | if (ssl->s3->pending_hs_data && | 
|  | ssl->s3->pending_hs_data->length >= ssl->max_send_fragment && | 
|  | !tls_flush_pending_hs_data(ssl)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t pending_len = | 
|  | ssl->s3->pending_hs_data ? ssl->s3->pending_hs_data->length : 0; | 
|  | Span<const uint8_t> chunk = | 
|  | rest.subspan(0, ssl->max_send_fragment - pending_len); | 
|  | assert(!chunk.empty()); | 
|  | rest = rest.subspan(chunk.size()); | 
|  |  | 
|  | if (!ssl->s3->pending_hs_data) { | 
|  | ssl->s3->pending_hs_data.reset(BUF_MEM_new()); | 
|  | } | 
|  | if (!ssl->s3->pending_hs_data || | 
|  | !BUF_MEM_append(ssl->s3->pending_hs_data.get(), chunk.data(), | 
|  | chunk.size())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, msg); | 
|  | // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript on | 
|  | // hs. | 
|  | if (ssl->s3->hs != NULL &&  // | 
|  | !ssl->s3->hs->transcript.Update(msg)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_flush_pending_hs_data(SSL *ssl) { | 
|  | if (!ssl->s3->pending_hs_data || ssl->s3->pending_hs_data->length == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | UniquePtr<BUF_MEM> pending_hs_data = std::move(ssl->s3->pending_hs_data); | 
|  | auto data = Span(reinterpret_cast<const uint8_t *>(pending_hs_data->data), | 
|  | pending_hs_data->length); | 
|  | if (SSL_is_quic(ssl)) { | 
|  | if ((ssl->s3->hs == nullptr || !ssl->s3->hs->hints_requested) && | 
|  | !ssl->quic_method->add_handshake_data(ssl, ssl->s3->quic_write_level, | 
|  | data.data(), data.size())) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return add_record_to_flight(ssl, SSL3_RT_HANDSHAKE, data); | 
|  | } | 
|  |  | 
|  | bool tls_add_change_cipher_spec(SSL *ssl) { | 
|  | if (SSL_is_quic(ssl)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; | 
|  | if (!tls_flush_pending_hs_data(ssl) || | 
|  | !add_record_to_flight(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, | 
|  | kChangeCipherSpec)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, | 
|  | kChangeCipherSpec); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int tls_flush(SSL *ssl) { | 
|  | if (!tls_flush_pending_hs_data(ssl)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (SSL_is_quic(ssl)) { | 
|  | if (ssl->s3->write_shutdown != ssl_shutdown_none) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!ssl->quic_method->flush_flight(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_QUIC_INTERNAL_ERROR); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ssl->s3->pending_flight == nullptr) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ssl->s3->write_shutdown != ssl_shutdown_none) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static_assert(INT_MAX <= 0xffffffff, "int is larger than 32 bits"); | 
|  | if (ssl->s3->pending_flight->length > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If there is pending data in the write buffer, it must be flushed out before | 
|  | // any new data in pending_flight. | 
|  | if (!ssl->s3->write_buffer.empty()) { | 
|  | int ret = ssl_write_buffer_flush(ssl); | 
|  | if (ret <= 0) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ssl->wbio == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Write the pending flight. | 
|  | while (ssl->s3->pending_flight_offset < ssl->s3->pending_flight->length) { | 
|  | int ret = BIO_write( | 
|  | ssl->wbio.get(), | 
|  | ssl->s3->pending_flight->data + ssl->s3->pending_flight_offset, | 
|  | ssl->s3->pending_flight->length - ssl->s3->pending_flight_offset); | 
|  | if (ret <= 0) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssl->s3->pending_flight_offset += ret; | 
|  | } | 
|  |  | 
|  | if (BIO_flush(ssl->wbio.get()) <= 0) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ssl->s3->pending_flight.reset(); | 
|  | ssl->s3->pending_flight_offset = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static ssl_open_record_t read_v2_client_hello(SSL *ssl, size_t *out_consumed, | 
|  | Span<const uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | assert(in.size() >= SSL3_RT_HEADER_LENGTH); | 
|  | // Determine the length of the V2ClientHello. | 
|  | size_t msg_length = ((in[0] & 0x7f) << 8) | in[1]; | 
|  | if (msg_length > (1024 * 4)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | if (msg_length < SSL3_RT_HEADER_LENGTH - 2) { | 
|  | // Reject lengths that are too short early. We have already read | 
|  | // |SSL3_RT_HEADER_LENGTH| bytes, so we should not attempt to process an | 
|  | // (invalid) V2ClientHello which would be shorter than that. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_LENGTH_MISMATCH); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Ask for the remainder of the V2ClientHello. | 
|  | if (in.size() < 2 + msg_length) { | 
|  | *out_consumed = 2 + msg_length; | 
|  | return ssl_open_record_partial; | 
|  | } | 
|  |  | 
|  | CBS v2_client_hello = CBS(in.subspan(2, msg_length)); | 
|  | // The V2ClientHello without the length is incorporated into the handshake | 
|  | // hash. This is only ever called at the start of the handshake, so hs is | 
|  | // guaranteed to be non-NULL. | 
|  | if (!ssl->s3->hs->transcript.Update(v2_client_hello)) { | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, 0 /* V2ClientHello */, | 
|  | v2_client_hello); | 
|  |  | 
|  | uint8_t msg_type; | 
|  | uint16_t version, cipher_spec_length, session_id_length, challenge_length; | 
|  | CBS cipher_specs, session_id, challenge; | 
|  | if (!CBS_get_u8(&v2_client_hello, &msg_type) || | 
|  | !CBS_get_u16(&v2_client_hello, &version) || | 
|  | !CBS_get_u16(&v2_client_hello, &cipher_spec_length) || | 
|  | !CBS_get_u16(&v2_client_hello, &session_id_length) || | 
|  | !CBS_get_u16(&v2_client_hello, &challenge_length) || | 
|  | !CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) || | 
|  | !CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) || | 
|  | !CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) || | 
|  | CBS_len(&v2_client_hello) != 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // msg_type has already been checked. | 
|  | assert(msg_type == SSL2_MT_CLIENT_HELLO); | 
|  |  | 
|  | // The client_random is the V2ClientHello challenge. Truncate or left-pad with | 
|  | // zeros as needed. | 
|  | size_t rand_len = CBS_len(&challenge); | 
|  | if (rand_len > SSL3_RANDOM_SIZE) { | 
|  | rand_len = SSL3_RANDOM_SIZE; | 
|  | } | 
|  | uint8_t random[SSL3_RANDOM_SIZE]; | 
|  | OPENSSL_memset(random, 0, SSL3_RANDOM_SIZE); | 
|  | OPENSSL_memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge), | 
|  | rand_len); | 
|  |  | 
|  | // Write out an equivalent TLS ClientHello directly to the handshake buffer. | 
|  | size_t max_v3_client_hello = SSL3_HM_HEADER_LENGTH + 2 /* version */ + | 
|  | SSL3_RANDOM_SIZE + 1 /* session ID length */ + | 
|  | 2 /* cipher list length */ + | 
|  | CBS_len(&cipher_specs) / 3 * 2 + | 
|  | 1 /* compression length */ + 1 /* compression */; | 
|  | ScopedCBB client_hello; | 
|  | CBB hello_body, cipher_suites; | 
|  | if (!ssl->s3->hs_buf) { | 
|  | ssl->s3->hs_buf.reset(BUF_MEM_new()); | 
|  | } | 
|  | if (!ssl->s3->hs_buf || | 
|  | !BUF_MEM_reserve(ssl->s3->hs_buf.get(), max_v3_client_hello) || | 
|  | !CBB_init_fixed(client_hello.get(), (uint8_t *)ssl->s3->hs_buf->data, | 
|  | ssl->s3->hs_buf->max) || | 
|  | !CBB_add_u8(client_hello.get(), SSL3_MT_CLIENT_HELLO) || | 
|  | !CBB_add_u24_length_prefixed(client_hello.get(), &hello_body) || | 
|  | !CBB_add_u16(&hello_body, version) || | 
|  | !CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) || | 
|  | // No session id. | 
|  | !CBB_add_u8(&hello_body, 0) || | 
|  | !CBB_add_u16_length_prefixed(&hello_body, &cipher_suites)) { | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Copy the cipher suites. | 
|  | while (CBS_len(&cipher_specs) > 0) { | 
|  | uint32_t cipher_spec; | 
|  | if (!CBS_get_u24(&cipher_specs, &cipher_spec)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Skip SSLv2 ciphers. | 
|  | if ((cipher_spec & 0xff0000) != 0) { | 
|  | continue; | 
|  | } | 
|  | if (!CBB_add_u16(&cipher_suites, cipher_spec)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the null compression scheme and finish. | 
|  | if (!CBB_add_u8(&hello_body, 1) ||  // | 
|  | !CBB_add_u8(&hello_body, 0) ||  // | 
|  | !CBB_finish(client_hello.get(), NULL, &ssl->s3->hs_buf->length)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | *out_consumed = 2 + msg_length; | 
|  | ssl->s3->is_v2_hello = true; | 
|  | return ssl_open_record_success; | 
|  | } | 
|  |  | 
|  | static bool parse_message(const SSL *ssl, SSLMessage *out, | 
|  | size_t *out_bytes_needed) { | 
|  | if (!ssl->s3->hs_buf) { | 
|  | *out_bytes_needed = 4; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | uint32_t len; | 
|  | CBS_init(&cbs, reinterpret_cast<const uint8_t *>(ssl->s3->hs_buf->data), | 
|  | ssl->s3->hs_buf->length); | 
|  | if (!CBS_get_u8(&cbs, &out->type) ||  // | 
|  | !CBS_get_u24(&cbs, &len)) { | 
|  | *out_bytes_needed = 4; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!CBS_get_bytes(&cbs, &out->body, len)) { | 
|  | *out_bytes_needed = 4 + len; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CBS_init(&out->raw, reinterpret_cast<const uint8_t *>(ssl->s3->hs_buf->data), | 
|  | 4 + len); | 
|  | out->is_v2_hello = ssl->s3->is_v2_hello; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_get_message(const SSL *ssl, SSLMessage *out) { | 
|  | size_t unused; | 
|  | if (!parse_message(ssl, out, &unused)) { | 
|  | return false; | 
|  | } | 
|  | if (!ssl->s3->has_message) { | 
|  | if (!out->is_v2_hello) { | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); | 
|  | } | 
|  | ssl->s3->has_message = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert) { | 
|  | // If there is a complete message, the caller must have consumed it first. | 
|  | SSLMessage msg; | 
|  | size_t bytes_needed; | 
|  | if (parse_message(ssl, &msg, &bytes_needed)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | *out_alert = SSL_AD_INTERNAL_ERROR; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Enforce the limit so the peer cannot force us to buffer 16MB. | 
|  | if (bytes_needed > 4 + ssl_max_handshake_message_len(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); | 
|  | *out_alert = SSL_AD_ILLEGAL_PARAMETER; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls_has_unprocessed_handshake_data(const SSL *ssl) { | 
|  | size_t msg_len = 0; | 
|  | if (ssl->s3->has_message) { | 
|  | SSLMessage msg; | 
|  | size_t unused; | 
|  | if (parse_message(ssl, &msg, &unused)) { | 
|  | msg_len = CBS_len(&msg.raw); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ssl->s3->hs_buf && ssl->s3->hs_buf->length > msg_len; | 
|  | } | 
|  |  | 
|  | bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data) { | 
|  | // Re-create the handshake buffer if needed. | 
|  | if (!ssl->s3->hs_buf) { | 
|  | ssl->s3->hs_buf.reset(BUF_MEM_new()); | 
|  | } | 
|  | return ssl->s3->hs_buf && | 
|  | BUF_MEM_append(ssl->s3->hs_buf.get(), data.data(), data.size()); | 
|  | } | 
|  |  | 
|  | ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | // Bypass the record layer for the first message to handle V2ClientHello. | 
|  | if (ssl->server && !ssl->s3->v2_hello_done) { | 
|  | // Ask for the first 5 bytes, the size of the TLS record header. This is | 
|  | // sufficient to detect a V2ClientHello and ensures that we never read | 
|  | // beyond the first record. | 
|  | if (in.size() < SSL3_RT_HEADER_LENGTH) { | 
|  | *out_consumed = SSL3_RT_HEADER_LENGTH; | 
|  | return ssl_open_record_partial; | 
|  | } | 
|  |  | 
|  | // Some dedicated error codes for protocol mixups should the application | 
|  | // wish to interpret them differently. (These do not overlap with | 
|  | // ClientHello or V2ClientHello.) | 
|  | auto str = bssl::BytesAsStringView(in); | 
|  | if (str.substr(0, 4) == "GET " ||   // | 
|  | str.substr(0, 5) == "POST " ||  // | 
|  | str.substr(0, 5) == "HEAD " ||  // | 
|  | str.substr(0, 4) == "PUT ") { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_HTTP_REQUEST); | 
|  | *out_alert = 0; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | if (str.substr(0, 5) == "CONNE") { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_HTTPS_PROXY_REQUEST); | 
|  | *out_alert = 0; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Check for a V2ClientHello. | 
|  | if ((in[0] & 0x80) != 0 && in[2] == SSL2_MT_CLIENT_HELLO && | 
|  | in[3] == SSL3_VERSION_MAJOR) { | 
|  | auto ret = read_v2_client_hello(ssl, out_consumed, in); | 
|  | if (ret == ssl_open_record_error) { | 
|  | *out_alert = 0; | 
|  | } else if (ret == ssl_open_record_success) { | 
|  | ssl->s3->v2_hello_done = true; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssl->s3->v2_hello_done = true; | 
|  | } | 
|  |  | 
|  | uint8_t type; | 
|  | Span<uint8_t> body; | 
|  | auto ret = tls_open_record(ssl, &type, &body, out_consumed, out_alert, in); | 
|  | if (ret != ssl_open_record_success) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (type != SSL3_RT_HANDSHAKE) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Append the entire handshake record to the buffer. | 
|  | if (!tls_append_handshake_data(ssl, body)) { | 
|  | *out_alert = SSL_AD_INTERNAL_ERROR; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | return ssl_open_record_success; | 
|  | } | 
|  |  | 
|  | void tls_next_message(SSL *ssl) { | 
|  | SSLMessage msg; | 
|  | if (!tls_get_message(ssl, &msg) ||  // | 
|  | !ssl->s3->hs_buf ||             // | 
|  | ssl->s3->hs_buf->length < CBS_len(&msg.raw)) { | 
|  | assert(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | OPENSSL_memmove(ssl->s3->hs_buf->data, | 
|  | ssl->s3->hs_buf->data + CBS_len(&msg.raw), | 
|  | ssl->s3->hs_buf->length - CBS_len(&msg.raw)); | 
|  | ssl->s3->hs_buf->length -= CBS_len(&msg.raw); | 
|  | ssl->s3->is_v2_hello = false; | 
|  | ssl->s3->has_message = false; | 
|  |  | 
|  | // Post-handshake messages are rare, so release the buffer after every | 
|  | // message. During the handshake, |on_handshake_complete| will release it. | 
|  | if (!SSL_in_init(ssl) && ssl->s3->hs_buf->length == 0) { | 
|  | ssl->s3->hs_buf.reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CipherScorer { | 
|  | public: | 
|  | using Score = int; | 
|  | static constexpr Score kMinScore = 0; | 
|  |  | 
|  | virtual ~CipherScorer() = default; | 
|  |  | 
|  | virtual Score Evaluate(const SSL_CIPHER *cipher) const = 0; | 
|  | }; | 
|  |  | 
|  | // AesHwCipherScorer scores cipher suites based on whether AES is supported in | 
|  | // hardware. | 
|  | class AesHwCipherScorer : public CipherScorer { | 
|  | public: | 
|  | explicit AesHwCipherScorer(bool has_aes_hw) : aes_is_fine_(has_aes_hw) {} | 
|  |  | 
|  | virtual ~AesHwCipherScorer() override = default; | 
|  |  | 
|  | Score Evaluate(const SSL_CIPHER *a) const override { | 
|  | return | 
|  | // Something is always preferable to nothing. | 
|  | 1 + | 
|  | // Either AES is fine, or else ChaCha20 is preferred. | 
|  | ((aes_is_fine_ || a->algorithm_enc == SSL_CHACHA20POLY1305) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const bool aes_is_fine_; | 
|  | }; | 
|  |  | 
|  | // CNsaCipherScorer prefers AES-256-GCM over AES-128-GCM over anything else. | 
|  | class CNsaCipherScorer : public CipherScorer { | 
|  | public: | 
|  | virtual ~CNsaCipherScorer() override = default; | 
|  |  | 
|  | Score Evaluate(const SSL_CIPHER *a) const override { | 
|  | if (a->id == TLS1_3_CK_AES_256_GCM_SHA384) { | 
|  | return 3; | 
|  | } else if (a->id == TLS1_3_CK_AES_128_GCM_SHA256) { | 
|  | return 2; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id, | 
|  | enum ssl_compliance_policy_t policy) { | 
|  | switch (policy) { | 
|  | case ssl_compliance_policy_none: | 
|  | case ssl_compliance_policy_cnsa_202407: | 
|  | return true; | 
|  |  | 
|  | case ssl_compliance_policy_fips_202205: | 
|  | switch (cipher_id) { | 
|  | case TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff: | 
|  | case TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff: | 
|  | return true; | 
|  | case TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff: | 
|  | return false; | 
|  | default: | 
|  | assert(false); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ssl_compliance_policy_wpa3_192_202304: | 
|  | switch (cipher_id) { | 
|  | case TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff: | 
|  | return true; | 
|  | case TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff: | 
|  | case TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff: | 
|  | return false; | 
|  | default: | 
|  | assert(false); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(false); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw, | 
|  | uint16_t version, | 
|  | enum ssl_compliance_policy_t policy) { | 
|  | if (CBS_len(&cipher_suites) % 2 != 0) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const SSL_CIPHER *best = nullptr; | 
|  | AesHwCipherScorer aes_hw_scorer(has_aes_hw); | 
|  | CNsaCipherScorer cnsa_scorer; | 
|  | CipherScorer *const scorer = | 
|  | (policy == ssl_compliance_policy_cnsa_202407) | 
|  | ? static_cast<CipherScorer *>(&cnsa_scorer) | 
|  | : static_cast<CipherScorer *>(&aes_hw_scorer); | 
|  | CipherScorer::Score best_score = CipherScorer::kMinScore; | 
|  |  | 
|  | while (CBS_len(&cipher_suites) > 0) { | 
|  | uint16_t cipher_suite; | 
|  | if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Limit to TLS 1.3 ciphers we know about. | 
|  | const SSL_CIPHER *candidate = SSL_get_cipher_by_value(cipher_suite); | 
|  | if (candidate == nullptr || | 
|  | SSL_CIPHER_get_min_version(candidate) > version || | 
|  | SSL_CIPHER_get_max_version(candidate) < version) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ssl_tls13_cipher_meets_policy(SSL_CIPHER_get_protocol_id(candidate), | 
|  | policy)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const CipherScorer::Score candidate_score = scorer->Evaluate(candidate); | 
|  | // |candidate_score| must be larger to displace the current choice. That way | 
|  | // the client's order controls between ciphers with an equal score. | 
|  | if (candidate_score > best_score) { | 
|  | best = candidate; | 
|  | best_score = candidate_score; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best; | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END |