| // Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/aes.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/mem.h> |
| |
| #include "../../internal.h" |
| #include "../service_indicator/internal.h" |
| |
| |
| // kDefaultIV is the default IV value given in RFC 3394, 2.2.3.1. |
| static const uint8_t kDefaultIV[] = { |
| 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, |
| }; |
| |
| static const unsigned kBound = 6; |
| |
| int AES_wrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out, |
| const uint8_t *in, size_t in_len) { |
| // See RFC 3394, section 2.2.1. Additionally, note that section 2 requires the |
| // plaintext be at least two 8-byte blocks. |
| |
| if (in_len > INT_MAX - 8 || in_len < 16 || in_len % 8 != 0) { |
| return -1; |
| } |
| |
| if (iv == NULL) { |
| iv = kDefaultIV; |
| } |
| |
| OPENSSL_memmove(out + 8, in, in_len); |
| uint8_t A[AES_BLOCK_SIZE]; |
| OPENSSL_memcpy(A, iv, 8); |
| |
| size_t n = in_len / 8; |
| |
| for (unsigned j = 0; j < kBound; j++) { |
| for (size_t i = 1; i <= n; i++) { |
| OPENSSL_memcpy(A + 8, out + 8 * i, 8); |
| AES_encrypt(A, A, key); |
| |
| uint32_t t = (uint32_t)(n * j + i); |
| A[7] ^= t & 0xff; |
| A[6] ^= (t >> 8) & 0xff; |
| A[5] ^= (t >> 16) & 0xff; |
| A[4] ^= (t >> 24) & 0xff; |
| OPENSSL_memcpy(out + 8 * i, A + 8, 8); |
| } |
| } |
| |
| OPENSSL_memcpy(out, A, 8); |
| FIPS_service_indicator_update_state(); |
| return (int)in_len + 8; |
| } |
| |
| // aes_unwrap_key_inner performs steps one and two from |
| // https://tools.ietf.org/html/rfc3394#section-2.2.2 |
| static int aes_unwrap_key_inner(const AES_KEY *key, uint8_t *out, |
| uint8_t out_iv[8], const uint8_t *in, |
| size_t in_len) { |
| // See RFC 3394, section 2.2.2. Additionally, note that section 2 requires the |
| // plaintext be at least two 8-byte blocks, so the ciphertext must be at least |
| // three blocks. |
| |
| if (in_len > INT_MAX || in_len < 24 || in_len % 8 != 0) { |
| return 0; |
| } |
| |
| uint8_t A[AES_BLOCK_SIZE]; |
| OPENSSL_memcpy(A, in, 8); |
| OPENSSL_memmove(out, in + 8, in_len - 8); |
| |
| size_t n = (in_len / 8) - 1; |
| |
| for (unsigned j = kBound - 1; j < kBound; j--) { |
| for (size_t i = n; i > 0; i--) { |
| uint32_t t = (uint32_t)(n * j + i); |
| A[7] ^= t & 0xff; |
| A[6] ^= (t >> 8) & 0xff; |
| A[5] ^= (t >> 16) & 0xff; |
| A[4] ^= (t >> 24) & 0xff; |
| OPENSSL_memcpy(A + 8, out + 8 * (i - 1), 8); |
| AES_decrypt(A, A, key); |
| OPENSSL_memcpy(out + 8 * (i - 1), A + 8, 8); |
| } |
| } |
| |
| memcpy(out_iv, A, 8); |
| return 1; |
| } |
| |
| int AES_unwrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out, |
| const uint8_t *in, size_t in_len) { |
| uint8_t calculated_iv[8]; |
| if (!aes_unwrap_key_inner(key, out, calculated_iv, in, in_len)) { |
| return -1; |
| } |
| |
| if (iv == NULL) { |
| iv = kDefaultIV; |
| } |
| if (CRYPTO_memcmp(calculated_iv, iv, 8) != 0) { |
| return -1; |
| } |
| |
| FIPS_service_indicator_update_state(); |
| return (int)in_len - 8; |
| } |
| |
| // kPaddingConstant is used in Key Wrap with Padding. See |
| // https://tools.ietf.org/html/rfc5649#section-3 |
| static const uint8_t kPaddingConstant[4] = {0xa6, 0x59, 0x59, 0xa6}; |
| |
| int AES_wrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *in, size_t in_len) { |
| // See https://tools.ietf.org/html/rfc5649#section-4.1 |
| const uint64_t in_len64 = in_len; |
| const size_t padded_len = (in_len + 7) & ~7; |
| *out_len = 0; |
| if (in_len == 0 || in_len64 > 0xffffffffu || in_len + 7 < in_len || |
| padded_len + 8 < padded_len || max_out < padded_len + 8) { |
| return 0; |
| } |
| |
| uint8_t block[AES_BLOCK_SIZE]; |
| memcpy(block, kPaddingConstant, sizeof(kPaddingConstant)); |
| CRYPTO_store_u32_be(block + 4, (uint32_t)in_len); |
| |
| if (in_len <= 8) { |
| memset(block + 8, 0, 8); |
| memcpy(block + 8, in, in_len); |
| AES_encrypt(block, out, key); |
| *out_len = AES_BLOCK_SIZE; |
| return 1; |
| } |
| |
| uint8_t *padded_in = reinterpret_cast<uint8_t *>(OPENSSL_malloc(padded_len)); |
| if (padded_in == NULL) { |
| return 0; |
| } |
| assert(padded_len >= 8); |
| memset(padded_in + padded_len - 8, 0, 8); |
| memcpy(padded_in, in, in_len); |
| FIPS_service_indicator_lock_state(); |
| const int ret = AES_wrap_key(key, block, out, padded_in, padded_len); |
| FIPS_service_indicator_unlock_state(); |
| OPENSSL_free(padded_in); |
| if (ret < 0) { |
| return 0; |
| } |
| *out_len = ret; |
| FIPS_service_indicator_update_state(); |
| return 1; |
| } |
| |
| int AES_unwrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| if (in_len < AES_BLOCK_SIZE || max_out < in_len - 8) { |
| return 0; |
| } |
| |
| uint8_t iv[8]; |
| if (in_len == AES_BLOCK_SIZE) { |
| uint8_t block[AES_BLOCK_SIZE]; |
| AES_decrypt(in, block, key); |
| memcpy(iv, block, sizeof(iv)); |
| memcpy(out, block + 8, 8); |
| } else if (!aes_unwrap_key_inner(key, out, iv, in, in_len)) { |
| return 0; |
| } |
| assert(in_len % 8 == 0); |
| |
| crypto_word_t ok = constant_time_eq_int( |
| CRYPTO_memcmp(iv, kPaddingConstant, sizeof(kPaddingConstant)), 0); |
| |
| const size_t claimed_len = CRYPTO_load_u32_be(iv + 4); |
| ok &= ~constant_time_is_zero_w(claimed_len); |
| ok &= constant_time_eq_w((claimed_len - 1) >> 3, (in_len - 9) >> 3); |
| |
| // Check that padding bytes are all zero. |
| for (size_t i = in_len - 15; i < in_len - 8; i++) { |
| ok &= constant_time_is_zero_w(constant_time_ge_8(i, claimed_len) & out[i]); |
| } |
| |
| *out_len = constant_time_select_w(ok, claimed_len, 0); |
| const int ret = ok & 1; |
| if (ret) { |
| FIPS_service_indicator_update_state(); |
| } |
| return ret; |
| } |