| // Copyright 2017 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef OPENSSL_HEADER_AES_INTERNAL_H |
| #define OPENSSL_HEADER_AES_INTERNAL_H |
| |
| #include <stdlib.h> |
| |
| #include <openssl/aes.h> |
| |
| #include "../../internal.h" |
| |
| extern "C" { |
| |
| |
| // block128_f is the type of an AES block cipher implementation. |
| // |
| // Unlike upstream OpenSSL, it and the other functions in this file hard-code |
| // |AES_KEY|. It is undefined in C to call a function pointer with anything |
| // other than the original type. Thus we either must match |block128_f| to the |
| // type signature of |AES_encrypt| and friends or pass in |void*| wrapper |
| // functions. |
| // |
| // These functions are called exclusively with AES, so we use the former. |
| typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
| const AES_KEY *key); |
| |
| // ctr128_f is the type of a function that performs CTR-mode encryption. |
| typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| |
| // aes_ctr_set_key initialises |*aes_key| using |key_bytes| bytes from |key|, |
| // where |key_bytes| must either be 16, 24 or 32. If not NULL, |*out_block| is |
| // set to a function that encrypts single blocks. If not NULL, |*out_is_hwaes| |
| // is set to whether the hardware AES implementation was used. It returns a |
| // function for optimised CTR-mode. |
| ctr128_f aes_ctr_set_key(AES_KEY *aes_key, int *out_is_hwaes, |
| block128_f *out_block, const uint8_t *key, |
| size_t key_bytes); |
| |
| |
| // AES implementations. |
| |
| #if !defined(OPENSSL_NO_ASM) |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| #define HWAES |
| #define HWAES_ECB |
| |
| inline int hwaes_capable(void) { return CRYPTO_is_AESNI_capable(); } |
| |
| #define VPAES |
| #define VPAES_CBC |
| inline int vpaes_capable(void) { return CRYPTO_is_SSSE3_capable(); } |
| |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| #define HWAES |
| |
| inline int hwaes_capable(void) { return CRYPTO_is_ARMv8_AES_capable(); } |
| |
| #if defined(OPENSSL_ARM) |
| #define BSAES |
| #define VPAES |
| inline int bsaes_capable(void) { return CRYPTO_is_NEON_capable(); } |
| inline int vpaes_capable(void) { return CRYPTO_is_NEON_capable(); } |
| #endif |
| |
| #if defined(OPENSSL_AARCH64) |
| #define VPAES |
| #define VPAES_CBC |
| inline int vpaes_capable(void) { return CRYPTO_is_NEON_capable(); } |
| #endif |
| |
| #endif |
| |
| #endif // !NO_ASM |
| |
| |
| #if defined(HWAES) |
| |
| int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, AES_KEY *key); |
| int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key); |
| void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc); |
| void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| // On x86 and x86_64, |aes_hw_set_decrypt_key| is implemented in terms of |
| // |aes_hw_set_encrypt_key| and a conversion function. |
| void aes_hw_encrypt_key_to_decrypt_key(AES_KEY *key); |
| |
| // There are two variants of this function, one which uses aeskeygenassist |
| // ("base") and one which uses aesenclast + pshufb ("alt"). aesenclast is |
| // overall faster but is slower on some older processors. It doesn't use AVX, |
| // but AVX is used as a proxy to detecting this. See |
| // https://groups.google.com/g/mailing.openssl.dev/c/OuFXwW4NfO8/m/7d2ZXVjkxVkJ |
| // |
| // TODO(davidben): It is unclear if the aeskeygenassist version is still |
| // worthwhile. However, the aesenclast version requires SSSE3. SSSE3 long |
| // predates AES-NI, but it's not clear if AES-NI implies SSSE3. In OpenSSL, the |
| // CCM AES-NI assembly seems to assume it does. |
| inline int aes_hw_set_encrypt_key_alt_capable(void) { |
| return hwaes_capable() && CRYPTO_is_SSSE3_capable(); |
| } |
| inline int aes_hw_set_encrypt_key_alt_preferred(void) { |
| return hwaes_capable() && CRYPTO_is_AVX_capable(); |
| } |
| int aes_hw_set_encrypt_key_base(const uint8_t *user_key, int bits, |
| AES_KEY *key); |
| int aes_hw_set_encrypt_key_alt(const uint8_t *user_key, int bits, AES_KEY *key); |
| #endif // OPENSSL_X86 || OPENSSL_X86_64 |
| |
| #else |
| |
| // If HWAES isn't defined then we provide dummy functions for each of the hwaes |
| // functions. |
| inline int hwaes_capable(void) { return 0; } |
| |
| inline int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| |
| inline int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| |
| inline void aes_hw_encrypt(const uint8_t *in, uint8_t *out, |
| const AES_KEY *key) { |
| abort(); |
| } |
| |
| inline void aes_hw_decrypt(const uint8_t *in, uint8_t *out, |
| const AES_KEY *key) { |
| abort(); |
| } |
| |
| inline void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc) { |
| abort(); |
| } |
| |
| inline void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| abort(); |
| } |
| |
| #endif // !HWAES |
| |
| |
| #if defined(HWAES_ECB) |
| void aes_hw_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, int enc); |
| #endif // HWAES_ECB |
| |
| |
| #if defined(BSAES) |
| // Note |bsaes_cbc_encrypt| requires |enc| to be zero. |
| void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t ivec[16], int enc); |
| void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| // VPAES to BSAES conversions are available on all BSAES platforms. |
| void vpaes_encrypt_key_to_bsaes(AES_KEY *out_bsaes, const AES_KEY *vpaes); |
| void vpaes_decrypt_key_to_bsaes(AES_KEY *out_bsaes, const AES_KEY *vpaes); |
| void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in, uint8_t *out, |
| size_t blocks, const AES_KEY *key, |
| const uint8_t ivec[16]); |
| #else |
| inline int bsaes_capable(void) { return 0; } |
| |
| // On other platforms, bsaes_capable() will always return false and so the |
| // following will never be called. |
| inline void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t ivec[16], int enc) { |
| abort(); |
| } |
| |
| inline void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| abort(); |
| } |
| |
| inline void vpaes_encrypt_key_to_bsaes(AES_KEY *out_bsaes, |
| const AES_KEY *vpaes) { |
| abort(); |
| } |
| |
| inline void vpaes_decrypt_key_to_bsaes(AES_KEY *out_bsaes, |
| const AES_KEY *vpaes) { |
| abort(); |
| } |
| #endif // !BSAES |
| |
| |
| #if defined(VPAES) |
| // On platforms where VPAES gets defined (just above), then these functions are |
| // provided by asm. |
| int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| |
| void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| |
| #if defined(VPAES_CBC) |
| void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc); |
| #endif |
| void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| #else |
| inline int vpaes_capable(void) { return 0; } |
| |
| // On other platforms, vpaes_capable() will always return false and so the |
| // following will never be called. |
| inline int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| inline int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| inline void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| abort(); |
| } |
| inline void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| abort(); |
| } |
| inline void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc) { |
| abort(); |
| } |
| inline void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| abort(); |
| } |
| #endif // !VPAES |
| |
| |
| int aes_nohw_set_encrypt_key(const uint8_t *key, unsigned bits, |
| AES_KEY *aeskey); |
| int aes_nohw_set_decrypt_key(const uint8_t *key, unsigned bits, |
| AES_KEY *aeskey); |
| void aes_nohw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_nohw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_nohw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t blocks, const AES_KEY *key, |
| const uint8_t ivec[16]); |
| void aes_nohw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t *ivec, int enc); |
| |
| // Modes |
| |
| inline void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16], |
| const uint8_t b[16]) { |
| // TODO(davidben): Ideally we'd leave this to the compiler, which could use |
| // vector registers, etc. But the compiler doesn't know that |in| and |out| |
| // cannot partially alias. |restrict| is slightly two strict (we allow exact |
| // aliasing), but perhaps in-place could be a separate function? |
| static_assert(16 % sizeof(crypto_word_t) == 0, |
| "block cannot be evenly divided into words"); |
| for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
| CRYPTO_store_word_le( |
| out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i)); |
| } |
| } |
| |
| |
| // CTR. |
| |
| // CRYPTO_ctr128_encrypt_ctr32 encrypts (or decrypts, it's the same in CTR mode) |
| // |len| bytes from |in| to |out| using |block| in counter mode. There's no |
| // requirement that |len| be a multiple of any value and any partial blocks are |
| // stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
| // call. The counter is a 128-bit, big-endian value in |ivec| and is |
| // incremented by this function. If the counter overflows, it wraps around. |
| // |ctr| must be a function that performs CTR mode but only deals with the lower |
| // 32 bits of the counter. |
| void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| uint8_t ecount_buf[16], unsigned *num, |
| ctr128_f ctr); |
| |
| |
| // GCM. |
| // |
| // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
| // not have a |key| pointer that points to the key as upstream's version does. |
| // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
| // can be safely copied. Additionally, |gcm_key| is split into a separate |
| // struct. |
| |
| // gcm_impl_t specifies an assembly implementation of AES-GCM. |
| enum gcm_impl_t { |
| gcm_separate = 0, // No combined AES-GCM, but may have AES-CTR and GHASH. |
| gcm_x86_aesni, |
| gcm_x86_vaes_avx2, |
| gcm_x86_vaes_avx10_512, |
| gcm_arm64_aes, |
| }; |
| |
| typedef struct { uint64_t hi,lo; } u128; |
| |
| // gmult_func multiplies |Xi| by the GCM key and writes the result back to |
| // |Xi|. |
| typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]); |
| |
| // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
| // |inp|. The result is written back to |Xi| and the |len| argument must be a |
| // multiple of 16. |
| typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16], |
| const uint8_t *inp, size_t len); |
| |
| typedef struct gcm128_key_st { |
| u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| AES_KEY aes; |
| |
| ctr128_f ctr; |
| block128_f block; |
| enum gcm_impl_t impl; |
| } GCM128_KEY; |
| |
| // GCM128_CONTEXT contains state for a single GCM operation. The structure |
| // should be zero-initialized before use. |
| typedef struct { |
| // The following 5 names follow names in GCM specification |
| uint8_t Yi[16]; |
| uint8_t EKi[16]; |
| uint8_t EK0[16]; |
| struct { |
| uint64_t aad; |
| uint64_t msg; |
| } len; |
| uint8_t Xi[16]; |
| unsigned mres, ares; |
| } GCM128_CONTEXT; |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
| // used. |
| int crypto_gcm_clmul_enabled(void); |
| #endif |
| |
| // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
| // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
| // accelerated) functions for performing operations in the GHASH field. |
| void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
| u128 out_table[16], const uint8_t gcm_key[16]); |
| |
| // CRYPTO_gcm128_init_aes_key initialises |gcm_key| to with AES key |key|. |
| void CRYPTO_gcm128_init_aes_key(GCM128_KEY *gcm_key, const uint8_t *key, |
| size_t key_bytes); |
| |
| // CRYPTO_gcm128_init_ctx initializes |ctx| to encrypt with |key| and |iv|. |
| void CRYPTO_gcm128_init_ctx(const GCM128_KEY *key, GCM128_CONTEXT *ctx, |
| const uint8_t *iv, size_t iv_len); |
| |
| // CRYPTO_gcm128_aad adds to the authenticated data for an instance of GCM. |
| // This must be called before and data is encrypted. |key| must be the same |
| // value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on success |
| // and zero otherwise. |
| int CRYPTO_gcm128_aad(const GCM128_KEY *key, GCM128_CONTEXT *ctx, |
| const uint8_t *aad, size_t aad_len); |
| |
| // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. |key| must be |
| // the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on |
| // success and zero otherwise. |
| int CRYPTO_gcm128_encrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx, |
| const uint8_t *in, uint8_t *out, size_t len); |
| |
| // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. |key| must be |
| // the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on |
| // success and zero otherwise. |
| int CRYPTO_gcm128_decrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx, |
| const uint8_t *in, uint8_t *out, size_t len); |
| |
| // CRYPTO_gcm128_finish calculates the authenticator and compares it against |
| // |len| bytes of |tag|. |key| must be the same value that was passed to |
| // |CRYPTO_gcm128_init_ctx|. It returns one on success and zero otherwise. |
| int CRYPTO_gcm128_finish(const GCM128_KEY *key, GCM128_CONTEXT *ctx, |
| const uint8_t *tag, size_t len); |
| |
| // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
| // The minimum of |len| and 16 bytes are copied into |tag|. |key| must be the |
| // same value that was passed to |CRYPTO_gcm128_init_ctx|. |
| void CRYPTO_gcm128_tag(const GCM128_KEY *key, GCM128_CONTEXT *ctx, uint8_t *tag, |
| size_t len); |
| |
| |
| // GCM assembly. |
| |
| void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #if !defined(OPENSSL_NO_ASM) |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| #define GCM_FUNCREF |
| void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in, |
| size_t len); |
| |
| #if defined(OPENSSL_X86_64) |
| #define GHASH_ASM_X86_64 |
| void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in, |
| size_t len); |
| |
| #define HW_GCM |
| size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| |
| void gcm_init_vpclmulqdq_avx2(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_vpclmulqdq_avx2(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_vpclmulqdq_avx2(uint8_t Xi[16], const u128 Htable[16], |
| const uint8_t *in, size_t len); |
| void aes_gcm_enc_update_vaes_avx2(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| void aes_gcm_dec_update_vaes_avx2(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| |
| void gcm_init_vpclmulqdq_avx10_512(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_vpclmulqdq_avx10(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_vpclmulqdq_avx10_512(uint8_t Xi[16], const u128 Htable[16], |
| const uint8_t *in, size_t len); |
| void aes_gcm_enc_update_vaes_avx10_512(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| void aes_gcm_dec_update_vaes_avx10_512(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16], |
| const u128 Htable[16], uint8_t Xi[16]); |
| |
| #endif // OPENSSL_X86_64 |
| |
| #if defined(OPENSSL_X86) |
| #define GHASH_ASM_X86 |
| #endif // OPENSSL_X86 |
| |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| |
| #define GHASH_ASM_ARM |
| #define GCM_FUNCREF |
| |
| inline int gcm_pmull_capable(void) { return CRYPTO_is_ARMv8_PMULL_capable(); } |
| |
| void gcm_init_v8(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| inline int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } |
| |
| void gcm_init_neon(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]); |
| void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #if defined(OPENSSL_AARCH64) |
| #define HW_GCM |
| // These functions are defined in aesv8-gcm-armv8.pl. |
| void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out, |
| void *Xi, uint8_t *ivec, const AES_KEY *key, |
| const u128 Htable[16]); |
| void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out, |
| void *Xi, uint8_t *ivec, const AES_KEY *key, |
| const u128 Htable[16]); |
| #endif |
| |
| #endif |
| #endif // OPENSSL_NO_ASM |
| |
| |
| // CBC. |
| |
| // cbc128_f is the type of a function that performs CBC-mode encryption. |
| typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], int enc); |
| |
| // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
| // given IV and block cipher in CBC mode. The input need not be a multiple of |
| // 128 bits long, but the output will round up to the nearest 128 bit multiple, |
| // zero padding the input if needed. The IV will be updated on return. |
| void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
| // given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
| // bits then only that many bytes will be written, but a multiple of 128 bits |
| // is always read from |in|. The IV will be updated on return. |
| void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| |
| // OFB. |
| |
| // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
| // |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
| // requirement that |len| be a multiple of any value and any partial blocks are |
| // stored in |ivec| and |*num|, the latter must be zero before the initial |
| // call. |
| void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
| block128_f block); |
| |
| |
| // CFB. |
| |
| // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB mode. There's no requirement that |
| // |len| be a multiple of any value and any partial blocks are stored in |ivec| |
| // and |*num|, the latter must be zero before the initial call. |
| void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
| int enc, block128_f block); |
| |
| // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
| // |num| should be set to zero. |
| void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| unsigned *num, int enc, block128_f block); |
| |
| // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
| // |num| should be set to zero. |
| void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
| const AES_KEY *key, uint8_t ivec[16], |
| unsigned *num, int enc, block128_f block); |
| |
| size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| |
| // POLYVAL. |
| // |
| // POLYVAL is a polynomial authenticator that operates over a field very |
| // similar to the one that GHASH uses. See |
| // https://www.rfc-editor.org/rfc/rfc8452.html#section-3. |
| |
| struct polyval_ctx { |
| uint8_t S[16]; |
| u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| }; |
| |
| // CRYPTO_POLYVAL_init initialises |ctx| using |key|. |
| void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
| |
| // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
| // blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
| // must be a multiple of 16. |
| void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
| size_t in_len); |
| |
| // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. |
| void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
| |
| |
| } // extern C |
| |
| #endif // OPENSSL_HEADER_AES_INTERNAL_H |