| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| namespace bssl { |
| |
| int ssl_is_key_type_supported(int key_type) { |
| return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC || |
| key_type == EVP_PKEY_ED25519; |
| } |
| |
| static int ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) { |
| if (!ssl_is_key_type_supported(pkey->type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| return 0; |
| } |
| |
| if (cert->chain != nullptr && |
| sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr && |
| // Sanity-check that the private key and the certificate match. |
| !ssl_cert_check_private_key(cert, pkey)) { |
| return 0; |
| } |
| |
| cert->privatekey = UpRef(pkey); |
| return 1; |
| } |
| |
| typedef struct { |
| uint16_t sigalg; |
| int pkey_type; |
| int curve; |
| const EVP_MD *(*digest_func)(void); |
| char is_rsa_pss; |
| } SSL_SIGNATURE_ALGORITHM; |
| |
| static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = { |
| {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, 0}, |
| {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, 0}, |
| {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 0}, |
| {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 0}, |
| {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 0}, |
| |
| {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 1}, |
| {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 1}, |
| {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 1}, |
| |
| {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, 0}, |
| {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1, |
| &EVP_sha256, 0}, |
| {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384, |
| 0}, |
| {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512, |
| 0}, |
| |
| {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, NULL, 0}, |
| }; |
| |
| static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) { |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) { |
| if (kSignatureAlgorithms[i].sigalg == sigalg) { |
| return &kSignatureAlgorithms[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| int ssl_has_private_key(const SSL_CONFIG *cfg) { |
| return cfg->cert->privatekey != nullptr || cfg->cert->key_method != nullptr; |
| } |
| |
| static int pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, |
| uint16_t sigalg) { |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| if (alg == NULL || |
| EVP_PKEY_id(pkey) != alg->pkey_type) { |
| return 0; |
| } |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| // RSA keys may only be used with RSA-PSS. |
| if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) { |
| return 0; |
| } |
| |
| // EC keys have a curve requirement. |
| if (alg->pkey_type == EVP_PKEY_EC && |
| (alg->curve == NID_undef || |
| EC_GROUP_get_curve_name( |
| EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, uint16_t sigalg, |
| int is_verify) { |
| if (!pkey_supports_algorithm(ssl, pkey, sigalg)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL; |
| EVP_PKEY_CTX *pctx; |
| if (is_verify) { |
| if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) { |
| return 0; |
| } |
| } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) { |
| return 0; |
| } |
| |
| if (alg->is_rsa_pss) { |
| if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| enum ssl_private_key_result_t ssl_private_key_sign( |
| SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, |
| uint16_t sigalg, Span<const uint8_t> in) { |
| SSL *const ssl = hs->ssl; |
| if (hs->config->cert->key_method != NULL) { |
| enum ssl_private_key_result_t ret; |
| if (hs->pending_private_key_op) { |
| ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out); |
| } else { |
| ret = hs->config->cert->key_method->sign(ssl, out, out_len, max_out, |
| sigalg, in.data(), in.size()); |
| } |
| if (ret == ssl_private_key_failure) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); |
| } |
| hs->pending_private_key_op = ret == ssl_private_key_retry; |
| return ret; |
| } |
| |
| *out_len = max_out; |
| ScopedEVP_MD_CTX ctx; |
| if (!setup_ctx(ssl, ctx.get(), hs->config->cert->privatekey.get(), sigalg, |
| 0 /* sign */) || |
| !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) { |
| return ssl_private_key_failure; |
| } |
| return ssl_private_key_success; |
| } |
| |
| bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, |
| uint16_t sigalg, EVP_PKEY *pkey, |
| Span<const uint8_t> in) { |
| ScopedEVP_MD_CTX ctx; |
| return setup_ctx(ssl, ctx.get(), pkey, sigalg, 1 /* verify */) && |
| EVP_DigestVerify(ctx.get(), signature.data(), signature.size(), |
| in.data(), in.size()); |
| } |
| |
| enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, |
| uint8_t *out, |
| size_t *out_len, |
| size_t max_out, |
| Span<const uint8_t> in) { |
| SSL *const ssl = hs->ssl; |
| if (hs->config->cert->key_method != NULL) { |
| enum ssl_private_key_result_t ret; |
| if (hs->pending_private_key_op) { |
| ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out); |
| } else { |
| ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out, |
| in.data(), in.size()); |
| } |
| if (ret == ssl_private_key_failure) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); |
| } |
| hs->pending_private_key_op = ret == ssl_private_key_retry; |
| return ret; |
| } |
| |
| RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get()); |
| if (rsa == NULL) { |
| // Decrypt operations are only supported for RSA keys. |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_private_key_failure; |
| } |
| |
| // Decrypt with no padding. PKCS#1 padding will be removed as part of the |
| // timing-sensitive code by the caller. |
| if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(), |
| RSA_NO_PADDING)) { |
| return ssl_private_key_failure; |
| } |
| return ssl_private_key_success; |
| } |
| |
| bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, |
| uint16_t sigalg) { |
| SSL *const ssl = hs->ssl; |
| if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) { |
| return false; |
| } |
| |
| // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that |
| // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the |
| // hash in TLS. Reasonable RSA key sizes are large enough for the largest |
| // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for |
| // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the |
| // size so that we can fall back to another algorithm in that case. |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) < |
| 2 * EVP_MD_size(alg->digest_func()) + 2) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| } // namespace bssl |
| |
| using namespace bssl; |
| |
| int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { |
| if (rsa == NULL || ssl->config == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (!pkey || |
| !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
| return 0; |
| } |
| |
| return ssl_set_pkey(ssl->config->cert.get(), pkey.get()); |
| } |
| |
| int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { |
| UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); |
| if (!rsa) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| return SSL_use_RSAPrivateKey(ssl, rsa.get()); |
| } |
| |
| int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { |
| if (pkey == NULL || ssl->config == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| return ssl_set_pkey(ssl->config->cert.get(), pkey); |
| } |
| |
| int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, |
| size_t der_len) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); |
| if (!pkey || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| return SSL_use_PrivateKey(ssl, pkey.get()); |
| } |
| |
| int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (!pkey || |
| !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
| return 0; |
| } |
| |
| return ssl_set_pkey(ctx->cert.get(), pkey.get()); |
| } |
| |
| int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, |
| size_t der_len) { |
| UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); |
| if (!rsa) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get()); |
| } |
| |
| int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| return ssl_set_pkey(ctx->cert.get(), pkey); |
| } |
| |
| int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, |
| size_t der_len) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); |
| if (!pkey || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| return SSL_CTX_use_PrivateKey(ctx, pkey.get()); |
| } |
| |
| void SSL_set_private_key_method(SSL *ssl, |
| const SSL_PRIVATE_KEY_METHOD *key_method) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->cert->key_method = key_method; |
| } |
| |
| void SSL_CTX_set_private_key_method(SSL_CTX *ctx, |
| const SSL_PRIVATE_KEY_METHOD *key_method) { |
| ctx->cert->key_method = key_method; |
| } |
| |
| static constexpr size_t kMaxSignatureAlgorithmNameLen = 23; |
| |
| // This was "constexpr" rather than "const", but that triggered a bug in MSVC |
| // where it didn't pad the strings to the correct length. |
| static const struct { |
| uint16_t signature_algorithm; |
| const char name[kMaxSignatureAlgorithmNameLen]; |
| } kSignatureAlgorithmNames[] = { |
| {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"}, |
| {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"}, |
| {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"}, |
| {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"}, |
| {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"}, |
| {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"}, |
| {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"}, |
| {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"}, |
| {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"}, |
| {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"}, |
| {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"}, |
| {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"}, |
| {SSL_SIGN_ED25519, "ed25519"}, |
| }; |
| |
| const char *SSL_get_signature_algorithm_name(uint16_t sigalg, |
| int include_curve) { |
| if (!include_curve) { |
| switch (sigalg) { |
| case SSL_SIGN_ECDSA_SECP256R1_SHA256: |
| return "ecdsa_sha256"; |
| case SSL_SIGN_ECDSA_SECP384R1_SHA384: |
| return "ecdsa_sha384"; |
| case SSL_SIGN_ECDSA_SECP521R1_SHA512: |
| return "ecdsa_sha512"; |
| } |
| } |
| |
| for (const auto &candidate : kSignatureAlgorithmNames) { |
| if (candidate.signature_algorithm == sigalg) { |
| return candidate.name; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| int SSL_get_signature_algorithm_key_type(uint16_t sigalg) { |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE; |
| } |
| |
| const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) { |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| if (alg == nullptr || alg->digest_func == nullptr) { |
| return nullptr; |
| } |
| return alg->digest_func(); |
| } |
| |
| int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) { |
| const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
| return alg != nullptr && alg->is_rsa_pss; |
| } |
| |
| int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, |
| size_t num_prefs) { |
| return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); |
| } |
| |
| int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, |
| size_t num_prefs) { |
| if (!ssl->config) { |
| return 0; |
| } |
| return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); |
| } |
| |
| static constexpr struct { |
| int pkey_type; |
| int hash_nid; |
| uint16_t signature_algorithm; |
| } kSignatureAlgorithmsMapping[] = { |
| {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1}, |
| {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256}, |
| {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384}, |
| {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512}, |
| {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256}, |
| {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384}, |
| {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512}, |
| {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1}, |
| {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256}, |
| {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384}, |
| {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512}, |
| {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519}, |
| }; |
| |
| static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values, |
| size_t num_values) { |
| if ((num_values & 1) == 1) { |
| return false; |
| } |
| |
| const size_t num_pairs = num_values / 2; |
| if (!out->Init(num_pairs)) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < num_values; i += 2) { |
| const int hash_nid = values[i]; |
| const int pkey_type = values[i+1]; |
| |
| bool found = false; |
| for (const auto &candidate : kSignatureAlgorithmsMapping) { |
| if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) { |
| (*out)[i / 2] = candidate.signature_algorithm; |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int compare_uint16_t(const void *p1, const void *p2) { |
| uint16_t u1 = *((const uint16_t *)p1); |
| uint16_t u2 = *((const uint16_t *)p2); |
| if (u1 < u2) { |
| return -1; |
| } else if (u1 > u2) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) { |
| Array<uint16_t> sigalgs; |
| if (!sigalgs.CopyFrom(in_sigalgs)) { |
| return false; |
| } |
| |
| qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t); |
| |
| for (size_t i = 1; i < sigalgs.size(); i++) { |
| if (sigalgs[i - 1] == sigalgs[i]) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) { |
| Array<uint16_t> sigalgs; |
| if (!parse_sigalg_pairs(&sigalgs, values, num_values) || |
| !sigalgs_unique(sigalgs)) { |
| return 0; |
| } |
| |
| if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), |
| sigalgs.size()) || |
| !ctx->verify_sigalgs.CopyFrom(sigalgs)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) { |
| if (!ssl->config) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| Array<uint16_t> sigalgs; |
| if (!parse_sigalg_pairs(&sigalgs, values, num_values) || |
| !sigalgs_unique(sigalgs)) { |
| return 0; |
| } |
| |
| if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || |
| !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) { |
| // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256". |
| |
| // Count colons to give the number of output elements from any successful |
| // parse. |
| size_t num_elements = 1; |
| size_t len = 0; |
| for (const char *p = str; *p; p++) { |
| len++; |
| if (*p == ':') { |
| num_elements++; |
| } |
| } |
| |
| if (!out->Init(num_elements)) { |
| return false; |
| } |
| size_t out_i = 0; |
| |
| enum { |
| pkey_or_name, |
| hash_name, |
| } state = pkey_or_name; |
| |
| char buf[kMaxSignatureAlgorithmNameLen]; |
| // buf_used is always < sizeof(buf). I.e. it's always safe to write |
| // buf[buf_used] = 0. |
| size_t buf_used = 0; |
| |
| int pkey_type = 0, hash_nid = 0; |
| |
| // Note that the loop runs to len+1, i.e. it'll process the terminating NUL. |
| for (size_t offset = 0; offset < len+1; offset++) { |
| const char c = str[offset]; |
| |
| switch (c) { |
| case '+': |
| if (state == hash_name) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("+ found in hash name at offset %zu", offset); |
| return false; |
| } |
| if (buf_used == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("empty public key type at offset %zu", offset); |
| return false; |
| } |
| buf[buf_used] = 0; |
| |
| if (strcmp(buf, "RSA") == 0) { |
| pkey_type = EVP_PKEY_RSA; |
| } else if (strcmp(buf, "RSA-PSS") == 0 || |
| strcmp(buf, "PSS") == 0) { |
| pkey_type = EVP_PKEY_RSA_PSS; |
| } else if (strcmp(buf, "ECDSA") == 0) { |
| pkey_type = EVP_PKEY_EC; |
| } else { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("unknown public key type '%s'", buf); |
| return false; |
| } |
| |
| state = hash_name; |
| buf_used = 0; |
| break; |
| |
| case ':': |
| OPENSSL_FALLTHROUGH; |
| case 0: |
| if (buf_used == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("empty element at offset %zu", offset); |
| return false; |
| } |
| |
| buf[buf_used] = 0; |
| |
| if (state == pkey_or_name) { |
| // No '+' was seen thus this is a TLS 1.3-style name. |
| bool found = false; |
| for (const auto &candidate : kSignatureAlgorithmNames) { |
| if (strcmp(candidate.name, buf) == 0) { |
| assert(out_i < num_elements); |
| (*out)[out_i++] = candidate.signature_algorithm; |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("unknown signature algorithm '%s'", buf); |
| return false; |
| } |
| } else { |
| if (strcmp(buf, "SHA1") == 0) { |
| hash_nid = NID_sha1; |
| } else if (strcmp(buf, "SHA256") == 0) { |
| hash_nid = NID_sha256; |
| } else if (strcmp(buf, "SHA384") == 0) { |
| hash_nid = NID_sha384; |
| } else if (strcmp(buf, "SHA512") == 0) { |
| hash_nid = NID_sha512; |
| } else { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("unknown hash function '%s'", buf); |
| return false; |
| } |
| |
| bool found = false; |
| for (const auto &candidate : kSignatureAlgorithmsMapping) { |
| if (candidate.pkey_type == pkey_type && |
| candidate.hash_nid == hash_nid) { |
| assert(out_i < num_elements); |
| (*out)[out_i++] = candidate.signature_algorithm; |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf); |
| return false; |
| } |
| } |
| |
| state = pkey_or_name; |
| buf_used = 0; |
| break; |
| |
| default: |
| if (buf_used == sizeof(buf) - 1) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("substring too long at offset %zu", offset); |
| return false; |
| } |
| |
| if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || |
| (c >= 'A' && c <= 'Z') || c == '-' || c == '_') { |
| buf[buf_used++] = c; |
| } else { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
| ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c, |
| offset); |
| return false; |
| } |
| } |
| } |
| |
| assert(out_i == out->size()); |
| return true; |
| } |
| |
| int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) { |
| Array<uint16_t> sigalgs; |
| if (!parse_sigalgs_list(&sigalgs, str) || |
| !sigalgs_unique(sigalgs)) { |
| return 0; |
| } |
| |
| if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), |
| sigalgs.size()) || |
| !ctx->verify_sigalgs.CopyFrom(sigalgs)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_set1_sigalgs_list(SSL *ssl, const char *str) { |
| if (!ssl->config) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| Array<uint16_t> sigalgs; |
| if (!parse_sigalgs_list(&sigalgs, str) || |
| !sigalgs_unique(sigalgs)) { |
| return 0; |
| } |
| |
| if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || |
| !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, |
| size_t num_prefs) { |
| return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs)); |
| } |